Chapter 22 : Regulation of Resistance to Oxidative and Nitrosative Stress

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Regulation of Resistance to Oxidative and Nitrosative Stress, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap22-1.gif /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap22-2.gif


This chapter presents the molecular mechanisms used by to sense and respond to reactive species encountered at various phases during the infectious cycle. Salmonellae are exposed to reactive oxygen species (ROS) produced endogenously through the univalent or divalent reduction of O by enzymes of the electron transport chain or cytoplasmic flavoproteins. Oxyradicals generated by the NADPH phagocyte oxidase react with sulfur compounds in the gut lumen, generating the alternative electron acceptor tetrathionate. The effect of ROS on central metabolism may be especially pertinent in phagosomes of macrophages, where nutrients might be a limited resource. The importance of thiol-mediated sensing of ROS and reactive nitrogen species (RNS) has been established in both prokaryotes and eukaryotes. Of interest to this chapter, SPI2 lessens the oxidative and nitrosative stress that must endure within macrophages. A section briefly discusses the sources of NO and the chemistry of RNS relevant to pathogenesis. The formation of dinitrosyliron complexes in fumarate/nitrate reduction (FNR) derepresses genes involved in the antinitrosative response of . ROS and RNS have distinct biological chemistries, but they also share some common molecular targets. The realization that the SPI2 master regulator SsrB can be a sensor of RNS illustrates the complex strategies used by intracellular to sense reactive species engendered in the course of the infection.

Citation: Henard C, Vázquez-Torres A. 2013. Regulation of Resistance to Oxidative and Nitrosative Stress, p 425-440. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch22
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Molecular targets of RNS- and ROS-mediated anti- activity. NO formed in the reaction of NO with molecular oxygen O is one of the indirect means by which NO causes cytotoxicity (blue box). NO forms ONOO through its interactions with superoxide anion (O ), and dinitrosyl-iron complexes (DNIC) by reacting with iron and low-molecularweight thiols (-SH). The strong oxidant ONOO targets [4Fe-4S] clusters of dehydratases. The NO radical can also react directly with the sulfenyl radical (-S) to form S-nitrosylated protein derivatives. Moreover, NO and DNIC are common sources of transnitrosation reactions and nitrosative stress. NO , NO, ONOO, O , and HO are common sources of oxidative stress (purple box). These species damage [Fe-S] clusters, liberating catalytically active Fe. In turn, Fe reduces HO to the highly reactive hydroxyl radical (OH), which causes extensive DNA damage. HO also oxidizes reactive cysteine residues in proteins to form sulfenic acid derivatives (-SOH). O and NO also target copper and heme cofactors in terminal cytochromes of the electron transport chain; however, hemoprotein targets are not depicted because heme-based sensors of O or NO have not yet been identified in . doi:10.1128/9781555818524.ch22f1

Citation: Henard C, Vázquez-Torres A. 2013. Regulation of Resistance to Oxidative and Nitrosative Stress, p 425-440. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Sensors of oxidative and nitrosative stress. The dedicated NO sensors NsrR and NorR react with NO (yellow box). Dinitrosyl-iron complex formation in the NsrR [2Fe-2S] cluster derepresses transcription of target genes such as , encoding a flavohemoglobin that detoxifies NO to NO . The NorR metalloprotein containing a nonheme iron center is also activated by NO. The N-terminal regulatory domain of NorR represses , encoding flavorubredoxin and associated oxidoreductase. The formation of a mononitrosyl-iron species in NorR activates transcription. The redox-active thiol of Cys of the SsrB response regulator that controls SPI2 gene transcription is the first thiol-based sensor of RNS to be identified in . Some sensors such as Fur, FNR, SoxR, and OxyR can respond to both oxidative and nitrosative stress (green box). The transcriptional repressors Fur and FNR bind to DNA as homodimers. Dinitrosyl-iron complexes disrupt the DNA binding activity of Fur and FNR, derepressing transcription. Fur can be indirectly activated by oxidative stress-mediated disruption of iron homeostasis (not shown). O and O oxidize the [4Fe-4S] cluster of FNR (not shown). The [2Fe-2S] cluster of SoxR is primarily dedicated to sensing and redox changes in the cell. Conformational changes associated with the oxidation or nitrosylation of SoxR [2Fe-2S] activate transcription. OxyR Cys is a primary sensor of HO. HO oxidizes the Cys thiolate to sulfenic acid, which condenses with Cys to form an intramolecular disulfide. OxyR Cys can also be S nitrosylated and form a mixed disulfide with glutathione (-SG). Both oxidized and RNS-modified OxyR are transcriptionally active. doi:10.1128/9781555818524.ch22f2

Citation: Henard C, Vázquez-Torres A. 2013. Regulation of Resistance to Oxidative and Nitrosative Stress, p 425-440. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Ackermann, M.,, B. Stecher,, N. E. Freed,, P. Songhet,, W. D. Hardt,, and M. Doebeli. 2008. Self-destructive cooperation mediated by phenotypic noise. Nature 454:987990.
2. Alam, M. S.,, M. H. Zaki,, T. Sawa,, S. Islam,, K. A. Ahmed,, S. Fujii,, T. Okamoto,, and T. Akaike. 2008. Nitric oxide produced in Peyer’s patches exhibits antiapoptotic activity contributing to an antimicrobial effect in murine salmonellosis. Microbiol. Immunol. 52:197208.
3. Aono, R.,, N. Tsukagoshi,, and M. Yamamoto. 1998. Involvement of outer membrane protein TolC, a possible member of the mar-sox regulon, in maintenance and improvement of organic solvent tolerance of Escherichia coli K-12. J. Bacteriol. 180:938944.
4. Aslund, F.,, M. Zheng,, J. Beckwith,, and G. Storz. 1999. Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status. Proc. Natl. Acad. Sci. USA 96:61616165.
5. Aussel, L.,, W. Zhao,, M. Hebrard,, A. A. Guilhon,, J. P. Viala,, S. Henri,, L. Chasson,, J. P. Gorvel,, F. Barras,, and S. Meresse. 2011. Salmonella detoxifying enzymes are sufficient to cope with the host oxidative burst. Mol. Microbiol. 80:628640.
6. Bang, I. S.,, L. Liu,, A. Vazquez-Torres,, M. L. Crouch,, J. S. Stamler,, and F. C. Fang. 2006. Maintenance of nitric oxide and redox homeostasis by the Salmonella flavohemoglobin Hmp. J. Biol. Chem. 281:2803928047.
7. Benov, L.,, and I. Fridovich. 1997. Superoxide imposes leakage of sulfite from Escherichia coli. Arch. Biochem. Biophys. 347:271274.
8. Benov, L.,, and I. Fridovich. 1999. Why superoxide imposes an aromatic amino acid auxotrophy on Escherichia coli. The transketolase connection. J. Biol. Chem. 274:42024206.
9. Berger, S. B.,, X. Romero,, C. Ma,, G. Wang,, W. A. Faubion,, G. Liao,, E. Compeer,, M. Keszei,, L. Rameh,, N. Wang,, M. Boes,, J. R. Regueiro,, H. C. Reinecker,, and C. Terhorst. 2010. SLAM is a microbial sensor that regulates bacterial phagosome functions in macrophages. Nat. Immunol. 11:920927.
10. Bodenmiller, D. M.,, and S. Spiro. 2006. The yjeB (nsrR) gene of Escherichia coli encodes a nitric oxide-sensitive transcriptional regulator. J. Bacteriol. 188:874881.
11. Boehm, D. E.,, K. Vincent,, and O. R. Brown. 1976. Oxygen and toxicity inhibition of amino acid biosynthesis. Nature 262:418420.
12. Bourret, T. J.,, S. Porwollik,, M. McClelland,, R. Zhao,, T. Greco,, H. Ischiropoulos,, and A. Vazquez-Torres. 2008. Nitric oxide antagonizes the acid tolerance response that protects Salmonella against innate gastric defenses. PLoS One 3:e1833.
13. Boveris, A.,, and B. Chance. 1973. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem. J. 134:707716.
14. Brandes, N.,, A. Rinck,, L. I. Leichert,, and U. Jakob. 2007. Nitrosative stress treatment of E. coli targets distinct set of thiol-containing proteins. Mol. Microbiol. 66:901914.
15. Brown, O.,, F. Yein,, D. Boehme,, L. Foudin,, and C. S. Song. 1979. Oxygen poisoning of NAD biosynthesis: a proposed site of cellular oxygen toxicity. Biochem. Biophys. Res. Commun. 91:982990.
16. Browning, D. F.,, D. J. Lee,, S. Spiro,, and S. J. Busby. 2010. Down-regulation of the Escherichia coli K-12 nrf promoter by binding of the NsrR nitric oxide-sensing transcription repressor to an upstream site. J. Bacteriol. 192:38243828.
17. Bryk, R.,, P. Griffin,, and C. Nathan. 2000. Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407:211215.
18. Buchmeier, N. A.,, S. J. Libby,, Y. Xu,, P. C. Loewen,, J. Switala,, D. G. Guiney,, and F. C. Fang. 1995. DNA repair is more important than catalase for Salmonella virulence in mice. J. Clin. Investig. 95:10471053.
19. Buchmeier, N. A.,, C. J. Lipps,, M. Y. So,, and F. Heffron. 1993. Recombination-deficient mutants of Salmonella typhimurium are avirulent and sensitive to the oxidative burst of macrophages. Mol. Microbiol. 7:933936.
20. Bush, M.,, T. Ghosh,, N. Tucker,, X. Zhang,, and R. Dixon. 2010. Nitric oxide-responsive interdomain regulation targets the σ54-interaction surface in the enhancer binding protein NorR. Mol. Microbiol. 77:12781288.
21. Buzzo, C. L.,, J. C. Campopiano,, L. M. Massis,, S. L. Lage,, A. A. Cassado,, R. Leme-Souza,, L. D. Cunha,, M. Russo,, D. S. Zamboni,, G. P. Amarante-Mendes,, and K. R. Bortoluci. 2010. A novel pathway for inducible nitric-oxide synthase activation through inflammasomes. J. Biol. Chem. 285:3208732095.
22. Bylund, J.,, K. L. Brown,, C. Movitz,, C. Dahlgren,, and A. Karlsson. 2010. Intracellular generation of superoxide by the phagocyte NADPH oxidase: how, where, and what for? Free Radic. Biol. Med. 49:18341845.
23. Carlioz, A.,, and D. Touati. 1986. Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life? EMBO J. 5:623630.
24. Chakravortty, D.,, I. Hansen-Wester,, and M. Hensel. 2002. Salmonella pathogenicity island 2 mediates protection of intracellular Salmonella from reactive nitrogen intermediates. J. Exp. Med. 195:11551166.
25. Chateau, M. T.,, and R. Caravano. 1997. The oxidative burst triggered by Salmonella typhimurium in differentiated U937 cells requires complement and a complete bacterial lipopolysaccharide. FEMS Immunol. Med. Microbiol. 17:5766.
26. Chen, L.,, Q. W. Xie,, and C. Nathan. 1998. Alkyl hydroperoxide reductase subunit C (AhpC) protects bacterial and human cells against reactive nitrogen intermediates. Mol. Cell 1:795805.
27. Cherayil, B. J.,, B. A. McCormick,, and J. Bosley. 2000. Salmonella enterica serovar Typhimurium-dependent regulation of inducible nitric oxide synthase expression in macrophages by invasins SipB, SipC, and SipD and effector SopE2. Infect. Immun. 68:55675574.
28. Choi, H.,, S. Kim,, P. Mukhopadhyay,, S. Cho,, J. Woo,, G. Storz,, and S. E. Ryu. 2001. Structural basis of the redox switch in the OxyR transcription factor. Cell 105:103113.
29. Choi, J.,, D. Shin,, H. Yoon,, J. Kim,, C. R. Lee,, M. Kim,, Y. J. Seok,, and S. Ryu. 2010. Salmonella pathogenicity island 2 expression negatively controlled by EIIANtr-SsrB interaction is required for Salmonella virulence. Proc. Natl. Acad. Sci. USA 107:2050620511.
30. Chou, J. H.,, J. T. Greenberg,, and B. Demple. 1993. Posttranscriptional repression of Escherichia coli OmpF protein in response to redox stress: positive control of the micF antisense RNA by the soxRS locus. J. Bacteriol. 175:10261031.
31. Christman, M. F.,, R. W. Morgan,, F. S. Jacobson,, and B. N. Ames. 1985. Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell 41:753762.
32. Cirillo, D. M.,, R. H. Valdivia,, D. M. Monack,, and S. Falkow. 1998. Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival. Mol. Microbiol. 30:175188.
33. Coombes, B. K.,, M. E. Wickham,, M. J. Lowden,, N. F. Brown,, and B. B. Finlay. 2005. Negative regulation of Salmonella pathogenicity island 2 is required for contextual control of virulence during typhoid. Proc. Natl. Acad. Sci. USA 102:1746017465.
34. Crack, J.,, J. Green,, and A. J. Thomson. 2004. Mechanism of oxygen sensing by the bacterial transcription factor fumarate-nitrate reduction (FNR). J. Biol. Chem. 279:92789286.
35. Craig, M.,, and J. M. Slauch. 2009. Phagocytic superoxide specifically damages an extracytoplasmic target to inhibit or kill Salmonella. PLoS One 4:e4975.
36. Crawford, M. J.,, and D. E. Goldberg. 1998. Role for the Salmonella flavohemoglobin in protection from nitric oxide. J. Biol. Chem. 273:1254312547.
37. Cruz-Ramos, H.,, J. Crack,, G. Wu,, M. N. Hughes,, C. Scott,, A. J. Thomson,, J. Green,, and R. K. Poole. 2002. NO sensing by FNR: regulation of the Escherichia coli NO-detoxifying flavohaemoglobin, Hmp. EMBO J. 21:32353244.
38. D’Autreaux, B.,, D. Touati,, B. Bersch,, J. M. Latour,, and I. Michaud-Soret. 2002. Direct inhibition by nitric oxide of the transcriptional ferric uptake regulation protein via nitrosylation of the iron. Proc. Natl. Acad. Sci. USA 99:1661916624.
39. D’Autreaux, B.,, N. P. Tucker,, R. Dixon,, and S. Spiro. 2005. A non-haem iron centre in the transcription factor NorR senses nitric oxide. Nature 437:769772.
40. De Groote, M. A.,, U. A. Ochsner,, M. U. Shiloh,, C. Nathan,, J. M. McCord,, M. C. Dinauer,, S. J. Libby,, A. Vazquez-Torres,, Y. Xu,, and F. C. Fang. 1997. Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NADPH-oxidase and nitric oxide synthase. Proc. Natl. Acad. Sci. USA 94:1399714001.
41. de Jong, R.,, F. Altare,, I. A. Haagen,, D. G. Elferink,, T. Boer,, P. J. van Breda Vriesman,, P. J. Kabel,, J. M. Draaisma,, J. T. van Dissel,, F. P. Kroon,, J. L. Casanova,, and T. H. Ottenhoff. 1998. Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science 280:14351438.
42. Dietrich, L. E.,, and P. J. Kiley. 2011. A shared mechanism of SoxR activation by redox-cycling compounds. Mol. Microbiol. 79:11191122.
43. Ding, H.,, and B. Demple. 2000. Direct nitric oxide signal transduction via nitrosylation of iron-sulfur centers in the SoxR transcription activator. Proc. Natl. Acad. Sci. USA 97:51465150.
44. Ding, H.,, and B. Demple. 1997. In vivo kinetics of a redox-regulated transcriptional switch. Proc. Natl. Acad. Sci. USA 94:84458449.
45. Ding, H.,, E. Hidalgo,, and B. Demple. 1996. The redox state of the [2Fe-2S] clusters in SoxR protein regulates its activity as a transcription factor. J. Biol. Chem. 271:3317333175.
46. Duncan, C.,, H. Dougall,, P. Johnston,, S. Green,, R. Brogan,, C. Leifert,, L. Smith,, M. Golden,, and N. Benjamin. 1995. Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nat. Med. 1:546551.
47. Enocksson, A.,, J. Lundberg,, E. Weitzberg,, A. Norrby-Teglund,, and B. Svenungsson. 2004. Rectal nitric oxide gas and stool cytokine levels during the course of infectious gastroenteritis. Clin. Diagn. Lab. Immunol. 11:250254.
48. Eriksson, S.,, S. Lucchini,, A. Thompson,, M. Rhen,, and J. C. Hinton. 2003. Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol. Microbiol. 47:103118.
49. Fang, F. C.,, S. J. Libby,, N. A. Buchmeier,, P. C. Loewen,, J. Switala,, J. Harwood,, and D. G. Guiney. 1992. The alternative sigma factor KatF (RpoS) regulates Salmonella virulence. Proc. Natl. Acad. Sci. USA 89:1197811982.
50. Fang, F. C.,, A. Vazquez-Torres,, and Y. Xu. 1997. The transcriptional regulator SoxS is required for resistance of Salmonella typhimurium to paraquat but not for virulence in mice. Infect. Immun. 65:53715375.
51. Farr, S. B.,, R. D’Ari,, and D. Touati. 1986. Oxygen-dependent mutagenesis in Escherichia coli lacking superoxide dismutase. Proc. Natl. Acad. Sci. USA 83:82688272.
52. Fields, P. I.,, R. V. Swanson,, C. G. Haidaris,, and F. Heffron. 1986. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc. Natl. Acad. Sci. USA 83:51895193.
53. Filenko, N.,, S. Spiro,, D. F. Browning,, D. Squire,, T. W. Overton,, J. Cole,, and C. Constantinidou. 2007. The NsrR regulon of Escherichia coli K-12 includes genes encoding the hybrid cluster protein and the periplasmic, respiratory nitrite reductase. J. Bacteriol. 189:44104417.
54. Fink, R. C.,, M. R. Evans,, S. Porwollik,, A. Vazquez-Torres,, J. Jones-Carson,, B. Troxell,, S. J. Libby,, M. McClelland,, and H. M. Hassan. 2007. FNR is a global regulator of virulence and anaerobic metabolism in Salmonella enterica serovar Typhimurium (ATCC 14028s). J. Bacteriol. 189:22622273.
55. Francis, K. P.,, P. D. Taylor,, C. J. Inchley,, and M. P. Gallagher. 1997. Identification of the ahp operon of Salmonella typhimurium as a macrophage-induced locus. J. Bacteriol. 179:40464048.
56. Fritsche, G.,, M. Dlaska,, H. Barton,, I. Theurl,, K. Garimorth,, and G. Weiss. 2003. Nramp1 functionality increases inducible nitric oxide synthase transcription via stimulation of IFN regulatory factor 1 expression. J. Immunol. 171:19941998.
57. Fritsche, G.,, M. Nairz,, E. R. Werner,, H. C. Barton,, and G. Weiss. 2008. Nramp1-functionality increases iNOS expression via repression of IL-10 formation. Eur. J. Immunol. 38:30603067.
58. Gallois, A.,, J. R. Klein,, L. A. Allen,, B. D. Jones,, and W. M. Nauseef. 2001. Salmonella pathogenicity island 2-encoded type III secretion system mediates exclusion of NADPH oxidase assembly from the phagosomal membrane. J. Immunol. 166:57415748.
59. Gardner, A. M.,, R. A. Helmick,, and P. R. Gardner. 2002. Flavorubredoxin, an inducible catalyst for nitric oxide reduction and detoxification in Escherichia coli. J. Biol. Chem. 277:81728177.
60. Gardner, P. R.,, A. M. Gardner,, L. A. Martin,, and A. L. Salzman. 1998. Nitric oxide dioxygenase: an enzymic function for flavohemoglobin. Proc. Natl. Acad. Sci. USA 95:1037810383.
61. Gaudu, P.,, N. Moon,, and B. Weiss. 1997. Regulation of the SoxRS oxidative stress regulon. Reversible oxidation of the Fe-S centers of SoxR in vivo. J. Biol. Chem. 272:50825086.
62. Gaudu, P.,, and B. Weiss. 2000. Flavodoxin mutants of Escherichia coli K-12. J. Bacteriol. 182:17881793.
63. Giacomodonato, M. N.,, N. B. Goren,, D. O. Sordelli,, M. I. Vaccaro,, D. H. Grasso,, A. J. Ropolo,, and M. C. Cerquetti. 2003. Involvement of intestinal inducible nitric oxide synthase (iNOS) in the early stages of murine salmonellosis. FEMS Microbiol. Lett. 223:231238.
64. Gilberthorpe, N. J.,, M. E. Lee,, T. M. Stevanin,, R. C. Read,, and R. K. Poole. 2007. NsrR: a key regulator circumventing Salmonella enterica serovar Typhimurium oxidative and nitrosative stress in vitro and in IFN-γ-stimulated J774.2 macrophages. Microbiology 153:17561771.
65. Gilberthorpe, N. J.,, and R. K. Poole. 2008. Nitric oxide homeostasis in Salmonella typhimurium: roles of respiratory nitrate reductase and flavohemoglobin. J. Biol. Chem. 283:1114611154.
66. Gomes, C. M.,, A. Giuffre,, E. Forte,, J. B. Vicente,, L. M. Saraiva,, M. Brunori,, and M. Teixeira. 2002. A novel type of nitric-oxide reductase. Escherichia coli flavorubredoxin. J. Biol. Chem. 277:2527325276.
67. Govoni, G.,, and P. Gros. 1998. Macrophage NRAMP1 and its role in resistance to microbial infections. Inflamm. Res. 47:277284.
68. Gralnick, J.,, and D. Downs. 2001. Protection from superoxide damage associated with an increased level of the YggX protein in Salmonella enterica. Proc. Natl. Acad. Sci. USA 98:80308035.
69. Gralnick, J. A.,, and D. M. Downs. 2003. The YggX protein of Salmonella enterica is involved in Fe(II) trafficking and minimizes the DNA damage caused by hydroxyl radicals: residue CYS-7 is essential for YggX function. J. Biol. Chem. 278:2070820715.
70. Greenberg, J. T.,, P. Monach,, J. H. Chou,, P. D. Josephy,, and B. Demple. 1990. Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc. Natl. Acad. Sci. USA 87:61816185.
71. Gruer, M. J.,, and J. R. Guest. 1994. Two genetically-distinct and differentially-regulated aconitases (AcnA and AcnB) in Escherichia coli. Microbiology 140:25312541.
72. Gu, M.,, and J. A. Imlay. 2011. The SoxRS response of Escherichia coli is directly activated by redox-cycling drugs rather than by superoxide. Mol. Microbiol. 79:11361150.
73. Halsey, T. A.,, A. Vazquez-Torres,, D. J. Gravdahl,, F. C. Fang,, and S. J. Libby. 2004. The ferritin-like Dps protein is required for Salmonella enterica serovar Typhimurium oxidative stress resistance and virulence. Infect. Immun. 72:11551158.
74. Hassan, H. M.,, and H. C. Sun. 1992. Regulatory roles of Fnr, Fur, and Arc in expression of manganese-containing superoxide dismutase in Escherichia coli. Proc. Natl. Acad. Sci. USA 89:32173221.
75. Hausladen, A.,, and I. Fridovich. 1994. Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not. J. Biol. Chem. 269:2940529408.
76. Hausladen, A.,, C. T. Privalle,, T. Keng,, J. DeAngelo,, and J. S. Stamler. 1996. Nitrosative stress: activation of the transcription factor OxyR. Cell 86:719729.
77. Hebrard, M.,, J. P. Viala,, S. Meresse,, F. Barras,, and L. Aussel. 2009. Redundant hydrogen peroxide scavengers contribute to Salmonella virulence and oxidative stress resistance. J. Bacteriol. 191:46054614.
78. Henard, C. A.,, and A. Vazquez-Torres. 2011. Nitric oxide and Salmonella pathogenesis. Front. Microbiol. 2:84.
79. Hernandez-Urzua, E.,, D. S. Zamorano-Sanchez,, J. Ponce-Coria,, E. Morett,, S. Grogan,, R. K. Poole,, and J. Membrillo-Hernandez. 2007. Multiple regulators of the flavohaemoglobin (hmp) gene of Salmonella enterica serovar Typhimurium include RamA, a transcriptional regulator conferring the multidrug resistance phenotype. Arch. Microbiol. 187:6777.
80. Hidalgo, E.,, J. M. Bollinger, Jr.,, T. M. Bradley,, C. T. Walsh,, and B. Demple. 1995. Binuclear [2Fe-2S] clusters in the Escherichia coli SoxR protein and role of the metal centers in transcription. J. Biol. Chem. 270:2090820914.
81. Hoffmann, J. H.,, K. Linke,, P. C. Graf,, H. Lilie,, and U. Jakob. 2004. Identification of a redox-regulated chaperone network. EMBO J. 23:160168.
82. Hoover, T. R.,, E. Santero,, S. Porter,, and S. Kustu. 1990. The integration host factor stimulates interaction of RNA polymerase with NIFA, the transcriptional activator for nitrogen fixation operons. Cell 63:1122.
83. Husain, M.,, T. J. Bourret,, B. D. McCollister,, J. Jones-Carson,, J. Laughlin,, and A. Vazquez-Torres. 2008. Nitric oxide evokes an adaptive response to oxidative stress by arresting respiration. J. Biol. Chem. 283:76827689.
84. Husain, M.,, J. Jones-Carson,, M. Song,, B. D. McCollister,, T. J. Bourret,, and A. Vazquez-Torres. 2010. Redox sensor SsrB Cys203 enhances Salmonella fitness against nitric oxide generated in the host immune response to oral infection. Proc. Natl. Acad. Sci. USA 107:1439614401.
85. Hutchings, M. I.,, N. Mandhana,, and S. Spiro. 2002. The NorR protein of Escherichia coli activates expression of the flavorubredoxin gene norV in response to reactive nitrogen species. J. Bacteriol. 184:46404643.
86. Imlay, J. A.,, S. M. Chin,, and S. Linn. 1988. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240:640642.
87. Jang, S.,, and J. A. Imlay. 2010. Hydrogen peroxide inactivates the Escherichia coli Isc iron-sulphur assembly system, and OxyR induces the Suf system to compensate. Mol. Microbiol. 78:14481467.
88. Jang, S.,, and J. A. Imlay. 2007. Micromolar intracellular hydrogen peroxide disrupts metabolism by damaging iron-sulfur enzymes. J. Biol. Chem. 282:929937.
89. Jones, B. D.,, N. Ghori,, and S. Falkow. 1994. Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer’s patches. J. Exp. Med. 180:1523.
90. Justino, M. C.,, V. M. Goncalves,, and L. M. Saraiva. 2005. Binding of NorR to three DNA sites is essential for promoter activation of the flavorubredoxin gene, the nitric oxide reductase of Escherichia coli. Biochem. Biophys. Res. Commun. 328:540544.
91. Keyer, K.,, and J. A. Imlay. 1997. Inactivation of dehydratase [4Fe-4S] clusters and disruption of iron homeostasis upon cell exposure to peroxynitrite. J. Biol. Chem. 272:2765227659.
92. Khoroshilova, N.,, C. Popescu,, E. Munck,, H. Beinert,, and P. J. Kiley. 1997. Iron-sulfur cluster disassembly in the FNR protein of Escherichia coli by O2: [4Fe-4S] to [2Fe-2S] conversion with loss of biological activity. Proc. Natl. Acad. Sci. USA 94:60876092.
93. Koh, Y. S.,, and J. H. Roe. 1996. Dual regulation of the paraquat-inducible gene pqi-5 by SoxS and RpoS in Escherichia coli. Mol. Microbiol. 22:5361.
94. Korshunov, S.,, and J. A. Imlay. 2006. Detection and quantification of superoxide formed within the periplasm of Escherichia coli. J. Bacteriol. 188:63266334.
95. Korshunov, S.,, and J. A. Imlay. 2010. Two sources of endogenous hydrogen peroxide in Escherichia coli. Mol. Microbiol. 75:13891401.
96. Krapp, A. D.,, M. V. Humbert,, and N. Carrillo. 2011. The soxRS response of Escherichia coli can be induced in the absence of oxidative stress and oxygen by modulation of NADPH contents. Microbiology 157:957965.
97. Krishnakumar, R.,, M. Craig,, J. A. Imlay,, and J. M. Slauch. 2004. Differences in enzymatic properties allow SodCI but not SodCII to contribute to virulence in Salmonella enterica serovar Typhimurium strain 14028. J. Bacteriol. 186:52305238.
98. Kullik, I.,, M. B. Toledano,, L. A. Tartaglia,, and G. Storz. 1995. Mutational analysis of the redox-sensitive transcriptional regulator OxyR: regions important for oxidation and transcriptional activation. J. Bacteriol. 177:12751284.
99. Kuo, C. F.,, T. Mashino,, and I. Fridovich. 1987. α,β-Dihydroxyisovalerate dehydratase. A superoxide-sensitive enzyme. J. Biol. Chem. 262:47244727.
100. Laver, J. R.,, T. M. Stevanin,, S. L. Messenger,, A. D. Lunn,, M. E. Lee,, J. W. Moir,, R. K. Poole,, and R. C. Read. 2010. Bacterial nitric oxide detoxification prevents host cell S-nitrosothiol formation: a novel mechanism of bacterial pathogenesis. FASEB J. 24:286295.
101. Lee, C.,, S. M. Lee,, P. Mukhopadhyay,, S. J. Kim,, S. C. Lee,, W. S. Ahn,, M. H. Yu,, G. Storz,, and S. E. Ryu. 2004. Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path. Nat. Struct. Mol. Biol. 11:11791185.
102. Levin, D. E.,, M. Hollstein,, M. F. Christman,, E. A. Schwiers,, and B. N. Ames. 1982. A new Salmonella tester strain (TA102) with A X T base pairs at the site of mutation detects oxidative mutagens. Proc. Natl. Acad. Sci. USA 79:74457449.
103. Liochev, S. I.,, and I. Fridovich. 1992. Fumarase C, the stable fumarase of Escherichia coli, is controlled by the SoxRS regulon. Proc. Natl. Acad. Sci. USA 89:58925896.
104. Lundberg, B. E.,, R. E. Wolf, Jr.,, M. C. Dinauer,, Y. Xu,, and F. C. Fang. 1999. Glucose 6-phosphate dehydrogenase is required for Salmonella typhimurium virulence and resistance to reactive oxygen and nitrogen intermediates. Infect. Immun. 67:436438.
105. Lundberg, J. O.,, E. Weitzberg,, J. A. Cole,, and N. Benjamin. 2004. Nitrate, bacteria and human health. Nat. Rev. Microbiol. 2:593602.
106. Luo, D.,, S. W. Smith,, and B. D. Anderson. 2005. Kinetics and mechanism of the reaction of cysteine and hydrogen peroxide in aqueous solution. J. Pharm. Sci. 94:304316.
107. Ma, D.,, M. Alberti,, C. Lynch,, H. Nikaido,, and J. E. Hearst. 1996. The local repressor AcrR plays a modulating role in the regulation of acrAB genes of Escherichia coli by global stress signals. Mol. Microbiol. 19:101112.
108. Martinez, A.,, and R. Kolter. 1997. Protection of DNA during oxidative stress by the nonspecific DNA-binding protein Dps. J. Bacteriol. 179:51885194.
109. Mason, M. G.,, M. Shepherd,, P. Nicholls,, P. S. Dobbin,, K. S. Dodsworth,, R. K. Poole,, and C. E. Cooper. 2009. Cytochrome bd confers nitric oxide resistance to Escherichia coli. Nat. Chem. Biol. 5:9496.
110. Mastroeni, P.,, A. Vazquez-Torres,, F. C. Fang,, Y. Xu,, S. Khan,, C. E. Hormaeche,, and G. Dougan. 2000. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II. Effects on microbial proliferation and host survival in vivo. J. Exp. Med. 192:237248.
111. McCollister, B. D.,, T. J. Bourret,, R. Gill,, J. Jones-Carson,, and A. Vazquez-Torres. 2005. Repression of SPI2 transcription by nitric oxide-producing, IFNγ-activated macrophages promotes maturation of Salmonella phagosomes. J. Exp. Med. 202:625635.
112. McLean, S.,, L. A. Bowman,, and R. K. Poole. 2010a. KatG from Salmonella typhimurium is a peroxynitritase. FEBS Lett. 584:16281632.
113. McLean, S.,, L. A. Bowman,, and R. K. Poole. 2010b. Peroxynitrite stress is exacerbated by flavohaemoglobin-derived oxidativestress in Salmonella Typhimurium and relieved by NO. Microbiology 156:35563565.
114. McLean, S.,, L. A. Bowman,, G. Sanguinetti,, R. C. Read,, and R. K. Poole. 2010c. Peroxynitrite toxicity in Escherichia coli K12 elicits expression of oxidative stress responses and protein nitration and nitrosylation. J. Biol. Chem. 285:2072420731.
115. Messner, K. R.,, and J. A. Imlay. 1999. The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli. J. Biol. Chem. 274:1011910128.
116. Mills, P. C.,, G. Rowley,, S. Spiro,, J. C. Hinton,, and D. J. Richardson. 2008. A combination of cytochrome c nitrite reductase (NrfA) and flavorubredoxin (NorV) protects Salmonella enterica serovar Typhimurium against killing by NO in anoxic environments. Microbiology 154:12181228.
117. Mouy, R.,, A. Fischer,, E. Vilmer,, R. Seger,, and C. Griscelli. 1989. Incidence, severity, and prevention of infections in chronic granulomatous disease. J. Pediatr. 114:555560.
118. Mukhopadhyay, P.,, M. Zheng,, L. A. Bedzyk,, R. A. LaRossa,, and G. Storz. 2004. Prominent roles of the NorR and Fur regulators in the Escherichia coli transcriptional response to reactive nitrogen species. Proc. Natl. Acad. Sci. USA 101:745750.
119. Muller, A. J.,, C. Hoffmann,, M. Galle,, A. Van Den Broeke,, M. Heikenwalder,, L. Falter,, B. Misselwitz,, M. Kremer,, R. Beyaert,, and W. D. Hardt. 2009. The S. Typhimurium effector SopE induces caspase-1 activation in stromal cells to initiate gut inflammation. Cell Host Microbe 6:125136.
120. Nairz, M.,, G. Fritsche,, M. L. Crouch,, H. C. Barton,, F. C. Fang,, and G. Weiss. 2009. Slc11a1 limits intracellular growth of Salmonella enterica sv. Typhimurium by promoting macrophage immune effector functions and impairing bacterial iron acquisition. Cell. Microbiol. 11:13651381.
121. Nunoshiba, T.,, T. DeRojas-Walker,, S. R. Tannenbaum,, and B. Demple. 1995. Roles of nitric oxide in inducible resistance of Escherichia coli to activated murine macrophages. Infect. Immun. 63:794798.
122. Ostrowski, J.,, J. Y. Wu,, D. C. Rueger,, B. E. Miller,, L. M. Siegel,, and N. M. Kredich. 1989. Characterization of the cysJIH regions of Salmonella typhimurium and Escherichia coli B. DNA sequences of cysI and cysH and a model for the siroheme-Fe4S4 active center of sulfite reductase hemoprotein based on amino acid homology with spinach nitrite reductase. J. Biol. Chem. 264:1572615737.
123. Pacello, F.,, P. Ceci,, S. Ammendola,, P. Pasquali,, E. Chiancone,, and A. Battistoni. 2008. Periplasmic Cu,Zn superoxide dismutase and cytoplasmic Dps concur in protecting Salmonella enterica serovar Typhimurium from extracellular reactive oxygen species. Biochim. Biophys. Acta 1780:226232.
124. Pomposiello, P. J.,, M. H. Bennik,, and B. Demple. 2001. Genome-wide transcriptional profiling of the Escherichia coli responses to superoxide stress and sodium salicylate. J. Bacteriol. 183:38903902.
125. Pomposiello, P. J.,, and B. Demple. 2000. Identification of SoxS-regulated genes in Salmonella enterica serovar Typhimurium. J. Bacteriol. 182:2329.
126. Poock, S. R.,, E. R. Leach,, J. W. Moir,, J. A. Cole,, and D. J. Richardson. 2002. Respiratory detoxification of nitric oxide by the cytochrome c nitrite reductase of Escherichia coli. J. Biol. Chem. 277:2366423669.
127. Robbe-Saule, V.,, C. Coynault,, M. Ibanez-Ruiz,, D. Hermant,, and F. Norel. 2001. Identification of a non-haem catalase in Salmonella and its regulation by RpoS (σS). Mol. Microbiol. 39:15331545.
128. Rongkavilit, C.,, Z. M. Rodriguez,, O. Gomez-Marin,, G. B. Scott,, C. Hutto,, D. M. Rivera-Hernandez,, and C. D. Mitchell. 2000. Gram-negative bacillary bacteremia in human immunodeficiency virus type 1-infected children. Pediatr. Infect. Dis. J. 19:122128.
129. Seaver, L. C.,, and J. A. Imlay. 2004. Are respiratory enzymes the primary sources of intracellular hydrogen peroxide? J. Biol. Chem. 279:4874248750.
130. Shiloh, M. U.,, J. D. MacMicking,, S. Nicholson,, J. E. Brause,, S. Potter,, M. Marino,, F. Fang,, M. Dinauer,, and C. Nathan. 1999. Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity 10:2938.
131. Stevanin, T. M.,, N. Ioannidis,, C. E. Mills,, S. O. Kim,, M. N. Hughes,, and R. K. Poole. 2000. Flavohemoglobin Hmp affords inducible protection for Escherichia coli respiration, catalyzed by cytochromes bo? or bd, from nitric oxide. J. Biol. Chem. 275:3586835875.
132. Stevanin, T. M.,, R. K. Poole,, E. A. Demoncheaux,, and R. C. Read. 2002. Flavohemoglobin Hmp protects Salmonella enterica serovar Typhimurium from nitric oxide-related killing by human macrophages. Infect. Immun. 70:43994405.
133. Suvarnapunya, A. E.,, and M. A. Stein. 2005. DNA base excision repair potentiates the protective effect of Salmonella pathogenicity island 2 within macrophages. Microbiology 151:557567.
134. Taylor, P. D.,, C. J. Inchley,, and M. P. Gallagher. 1998. The Salmonella typhimurium AhpC polypeptide is not essential for virulence in BALB/c mice but is recognized as an antigen during infection. Infect. Immun. 66:32083217.
135. Troxell, B.,, M. L. Sikes,, R. C. Fink,, A. Vazquez-Torres,, J. Jones-Carson,, and H. M. Hassan. 2011. Fur negatively regulates hns and is required for the expression of HilA and virulence in Salmonella enterica serovar Typhimurium. J. Bacteriol. 193:497505.
136. Tsaneva, I. R.,, and B. Weiss. 1990. soxR, a locus governing a superoxide response regulon in Escherichia coli K-12. J. Bacteriol. 172:41974205.
137. Tsolis, R. M.,, A. J. Baumler,, and F. Heffron. 1995. Role of Salmonella typhimurium Mn-superoxide dismutase (SodA) in protection against early killing by J774 macrophages. Infect. Immun. 63:17391744.
138. Tucker, N. P.,, B. D’Autreaux,, S. Spiro,, and R. Dixon. 2006. Mechanism of transcriptional regulation by the Escherichia coli nitric oxide sensor NorR. Biochem. Soc. Trans. 34:191194.
139. Tucker, N. P.,, M. G. Hicks,, T. A. Clarke,, J. C. Crack,, G. Chandra,, N. E. Le Brun,, R. Dixon,, and M. I. Hutchings. 2008. The transcriptional repressor protein NsrR senses nitric oxide directly via a [2Fe-2S] cluster. PLoS One 3:e3623.
140. Uzzau, S.,, L. Bossi,, and N. Figueroa-Bossi. 2002. Differential accumulation of Salmonella [Cu, Zn] superoxide dismutases SodCI and SodCII in intracellular bacteria: correlation with their relative contribution to pathogenicity. Mol. Microbiol. 46:147156.
141. Vazquez-Torres, A.,, G. Fantuzzi,, C. K. Edwards III,, C. A. Dinarello,, and F. C. Fang. 2001. Defective localization of the NADPH phagocyte oxidase to Salmonella-containing phagosomes in tumor necrosis factor p55 receptor-deficient macrophages. Proc. Natl. Acad. Sci. USA 98:25612565.
142. Vazquez-Torres, A.,, J. Jones-Carson,, A. J. Baumler,, S. Falkow,, R. Valdivia,, W. Brown,, M. Le,, R. Berggren,, W. T. Parks,, and F. C. Fang. 1999. Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature 401:804808.
143. Vazquez-Torres, A.,, J. Jones-Carson,, P. Mastroeni,, H. Ischiropoulos,, and F. C. Fang. 2000a. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophages in vitro. J. Exp. Med. 192:227236.
144. Vazquez-Torres, A.,, Y. Xu,, J. Jones-Carson,, D. W. Holden,, S. M. Lucia,, M. C. Dinauer,, P. Mastroeni,, and F. C. Fang. 2000b. Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science 287:16551658.
145. Vazquez-Torres, A.,, B. A. Vallance,, M. A. Bergman,, B. B. Finlay,, B. T. Cookson,, J. Jones-Carson,, and F. C. Fang. 2004. Toll-like receptor 4 dependence of innate and adaptive immunity to Salmonella: importance of the Kupffer cell network. J. Immunol. 172:62026208.
146. Vitiello, M.,, M. D’Isanto,, E. Finamore,, R. Ciarcia,, A. Kampanaraki,, and M. Galdiero. 2008. Role of mitogen-activated protein kinases in the iNOS production and cytokine secretion by Salmonella enterica serovar Typhimurium porins. Cytokine 41:279285.
147. Winter, S. E.,, P. Thiennimitr,, M. G. Winter,, B. P. Butler,, D. L. Huseby,, R. W. Crawford,, J. M. Russell,, C. L. Bevins,, L. G. Adams,, R. M. Tsolis,, J. R. Roth,, and A. J. Baumler. 2010. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467:426429.
148. Winterbourn, C. C.,, M. B. Hampton,, J. H. Livesey,, and A. J.Kettle. 2006. Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome: implications for microbial killing. J. Biol. Chem. 281:3986039869.
149. Witthoft, T.,, L. Eckmann,, J. M. Kim,, and M. F. Kagnoff. 1998. Enteroinvasive bacteria directly activate expression of iNOS and NO production in human colon epithelial cells. Am. J. Physiol. 275:G564G571.
150. Zhao, G.,, P. Ceci,, A. Ilari,, L. Giangiacomo,, T. M. Laue,, E. Chiancone,, and N. D. Chasteen. 2002. Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells. A ferritin-like DNA-binding protein of Escherichia coli. J. Biol. Chem. 277:2768927696.
151. Zheng, M.,, F. Aslund,, and G. Storz. 1998. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279:17181721.
152. Zheng, M.,, B. Doan,, T. D. Schneider,, and G. Storz. 1999. OxyR and SoxRS regulation of fur. J. Bacteriol. 181:46394643.
153. Zheng, M.,, X. Wang,, L. J. Templeton,, D. R. Smulski,, R. A. LaRossa,, and G. Storz. 2001. DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J. Bacteriol. 183:45624570.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error