Chapter 23 : Regulation of Vesicle Formation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Regulation of Vesicle Formation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap23-1.gif /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap23-2.gif


This chapter addresses the regulation of outer membrane vesicles (OMVs) production in gram-negative bacteria; however, a brief section is dedicated to summarizing current knowledge of gram-positive membrane vesicles (MVs). To understand the molecular mechanisms of OMV formation, it is important to first review the structural differences between the cell envelopes of Gram-negative and Gram-positive bacteria. Despite intense interest and research in the field since the discovery of OMVs, the molecular mechanism of OMV formation has not been completely elucidated. Three main models for the mechanism of OMV formation have been proposed, which are not mutually exclusive. Processes regulated by quorum sensing (QS) include production of secondary metabolites and virulence factors, light production, biofilm formation, and OMV formation. The contribution of OMVs to biofilm structures is discussed in the chapter; however, specifically within the host, the propensity to form microcolonies and the role OMVs play during infection may reveal novel biofilm-related regulatory mechanisms of OMV formation within the host. Through the combined efforts of many investigators over the course of decades of research, much light has been shed on the highly conserved process of bacterial MV formation, though several questions remain unanswered. Regulatory schemes for OMV formation are actively being determined, and some of the future progress could be derived from collaboration with other research areas like QS and regulatory RNAs.

Citation: Wessel A, Palmer G, Whiteley M. 2013. Regulation of Vesicle Formation, p 441-464. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch23
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Two papers published in 1966 and 1967 give visible evidence of bacterial membrane blebbing. (A) An electron micrograph of lysine-limited cells, illustrating the OM blebbing away from the IM (at arrows). g, extracellular globule, presumably an OMV; m, intracytoplasmic membranous organelle. Reprinted from the ( ) with permission of the publisher. (B) Exponential-phase grown in peptone water, exhibiting multiple areas of membrane blebbing. Reprinted from the ( ) with permission of the publisher. doi:10.1128/9781555818524.ch23f1

Citation: Wessel A, Palmer G, Whiteley M. 2013. Regulation of Vesicle Formation, p 441-464. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

The three models of OMV formation. The cell envelope contains an OM with an outer leaflet of LPS. In models 1 and 2, LPS is hexa-acylated to illustrate a common structure, while in model 3, LPS is penta-acylated to illustrate a common structure. In model 1, the membrane can bleb in areas where the OM is not well anchored to the PG. In model 2, pressure on the OM caused by accumulation of proteins in the periplasmic space is relieved by membrane blebbing (figure adapted from ). In model 3, charge-charge repulsion of LPS and PQS insertion is shown. In , in areas containing large amounts of B band LPS, charge-charge interactions induce curvature of the membrane. Membrane curvature is additionally enhanced by PQS preferentially inserting into the outer leaflet of the OM. doi:10.1128/9781555818524.ch23f2

Citation: Wessel A, Palmer G, Whiteley M. 2013. Regulation of Vesicle Formation, p 441-464. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

vesicles released upon the beginning of septation (black arrows), as the PG and cytoplasmic membrane grow inward toward the center of the cell (white arrows). Scale bar, 100 nm. Reprinted from the ( ) with permission of the publisher. doi:10.1128/9781555818524.ch23f3

Citation: Wessel A, Palmer G, Whiteley M. 2013. Regulation of Vesicle Formation, p 441-464. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Thin-section TEM of producing nanopods, an organelle which secretes OMVs. (A) Cell-attached nanopods (white arrows) can be up to 6 μm in length. Scale bar, 200 nm. (B) The cell-nanopod junction. Scale bar, 100 nm. Reprinted from ( ) with permission of the publisher. doi:10.1128/9781555818524.ch23f4

Citation: Wessel A, Palmer G, Whiteley M. 2013. Regulation of Vesicle Formation, p 441-464. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Protein banding patterns of OM proteins (OM) and OMVs (Ves) from HB101 and ETEC strains, with varying growth conditions. OM and Ves (0.5 μg) were applied to 12.5% SDS-PAGE gels and silver stained. Banding patterns for Ves look similar to the OM protein banding; however, some proteins appear to be preferentially sorted into OMVs. Molecular mass standards are indicated on the left, in kilodaltons. Reprinted from ( ) with permission of the publisher. doi:10.1128/9781555818524.ch23f5

Citation: Wessel A, Palmer G, Whiteley M. 2013. Regulation of Vesicle Formation, p 441-464. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

TEM of OMVs produced in biofilms. (A and B) (b) infects in the lumen of the intestine, producing what appears to be OMVs (omv), in the presence of extracellular material (em). Scale bar, 0.5 μm. Reprinted from ( ) with permission of the publisher. (C) TEM of a biofilm isolated from a domestic bathroom drain, indicating the presence of OMVs between cells (arrows), as well as blebbing off the cell surface (arrows). Scale bar, 1 μm. Reprinted from ( ) with permission of the publisher. doi:10.1128/9781555818524.ch23f6

Citation: Wessel A, Palmer G, Whiteley M. 2013. Regulation of Vesicle Formation, p 441-464. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Production of MVs is not limited to Gram-negative bacteria. (A) A thin-section TEM of the gram-positive bacterium . MV formation occurs at the cell surface (arrows), and a secreted MV is shown nearby (arrowhead). Scale bar, 100 nm. Reprinted from ( ) with permission of the publisher. (B) The Gram-positive bacterium (Ba) produces MVs within macrophages (MØ). A disrupted phagosome (P) double membrane is visible (two dashed arrows), and a vesicle is present in the macrophage cytoplasm (solid arrow). Scale bar, 500 nm. Reprinted from ( ) with permission of the publisher. doi:10.1128/9781555818524.ch23f7

Citation: Wessel A, Palmer G, Whiteley M. 2013. Regulation of Vesicle Formation, p 441-464. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Ades, S. E. 2004. Control of the alternative sigma factor σ E in Escherichia coli. Curr. Opin. Microbiol. 7: 157 162.
2. Ades, S. E. 2008. Regulation by destruction: design of the σ E envelope stress response. Curr. Opin. Microbiol. 11: 535 540.
3. Alba, B. M.,, and C. A. Gross. 2004. Regulation of the Escherichia coli sigma-dependent envelope stress response. Mol. Microbiol. 52: 613 619.
4. Alphen, W. V.,, and B. Lugtenberg. 1977. Influence of osmolarity of the growth medium on the outer membrane protein pattern of Escherichia coli. J. Bacteriol. 131: 623 630.
5. Bauman, S. J.,, and M. J. Kuehn. 2006. Purification of outer membrane vesicles from Pseudomonas aeruginosa and their activation of an IL-8 response. Microbes Infect. 8: 2400 2408.
6. Berlanda Scorza, F.,, F. Doro,, M. J. Rodriguez-Ortega,, M. Stella,, S. Liberatori,, A. R. Taddei,, L. Serino,, D. Gomes Moriel,, B. Nesta,, M. R. Fontana,, A. Spagnuolo,, M. Pizza,, N. Norais,, and G. Grandi. 2008. Proteomics characterization of outer membrane vesicles from the extraintestinal pathogenic Escherichia coliΔ tolR IHE 3034 mutant. Mol. Cell. Proteomics 7: 473 485.
7. Bernadac, A.,, M. Gavioli,, J. C. Lazzaroni,, S. Raina,, and R. Lloubes. 1998. Escherichia coli tol-pal mutants form outer membrane vesicles. J. Bacteriol. 180: 4872 4878.
8. Beveridge, T. J. 1999. Structures of gram-negative cell walls and their derived membrane vesicles. J. Bacteriol. 181: 4725 4733.
9. Beveridge, T. J.,, S. A. Makin,, J. L. Kadurugamuwa,, and Z. Li. 1997. Interactions between biofilms and the environment. FEMS Microbiol. Rev. 20: 291 303.
10. Bodero, M. D.,, M. C. Pilonieta,, and G. P. Munson. 2007. Repression of the inner membrane lipoprotein NlpA by Rns in enterotoxigenic Escherichia coli. J. Bacteriol. 189: 1627 1632.
11. Bomberger, J. M.,, D. P. Maceachran,, B. A. Coutermarsh,, S. Ye,, G. A. O'Toole,, and B. A. Stanton. 2009. Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog. 5: e1000382.
12. Burdett, I. D. J.,, and R. G. E. Murray. 1974a. Electron microscope study of septum formation in Escherichia coli strains B and B/r during synchronous growth. J. Bacteriol. 119: 1039 1056.
13. Burdett, I. D. J.,, and R. G. E. Murray. 1974b. Septum formation in Escherichia coli: characterization of septal structure and the effects of antibiotics on cell division. J. Bacteriol. 119: 303 324.
14. Cascales, E.,, A. Bernadac,, M. Gavioli,, J. C. Lazzaroni,, and R. Lloubes. 2002. Pal lipoprotein of Escherichia coli plays a major role in outer membrane integrity. J. Bacteriol. 184: 754 759.
15. Chaba, R.,, I. L. Grigorova,, J. M. Flynn,, T. A. Baker,, and C. A. Gross. 2007. Design principles of the proteolytic cascade governing the σ E-mediated envelope stress response in Escherichia coli: keys to graded, buffered, and rapid signal transduction. Genes Dev. 21: 124 136.
16. Chatterjee, S. N.,, and J. Das. 1967. Electron microscopic observations on the excretion of cell-wall material by Vibrio cholerae. J. Gen. Microbiol. 49: 1 11.
17. Choi, D. S.,, D. K. Kim,, S. J. Choi,, J. Lee,, J. P. Choi,, S. Rho,, S. H. Park,, Y. K. Kim,, D. Hwang,, and Y. S. Gho. 2011. Proteomic analysis of outer membrane vesicles derived from Pseudomonas aeruginosa. Proteomics 11: 3424 3429.
18. Cigana, C.,, L. Curcuru,, M. R. Leone,, T. Ierano,, N. I. Lore,, I. Bianconi,, A. Silipo,, F. Cozzolino,, R. Lanzetta,, A. Molinaro,, M. L. Bernardini,, and A. Bragonzi. 2009. Pseudomonas aeruginosa exploits lipid A and muropeptides modification as a strategy to lower innate immunity during cystic fibrosis lung infection. PLoS One 4: e8439.
19. Ciofu, O.,, T. J. Beveridge,, J. Kadurugamuwa,, J. Walther-Rasmussen,, and N. Hoiby. 2000. Chromosomal beta-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa. J. Antimicrob. Chemother. 45: 9 13.
20. Costerton, J. W.,, G. G. Geesey,, and K. J. Cheng. 1978. How bacteria stick. Sci. Am. 238: 86 95.
21. Costerton, J. W.,, R. T. Irvin,, and K. J. Cheng. 1981. The bacterial glycocalyx in nature and disease. Annu. Rev. Microbiol. 35: 299 324.
22. Dargis, M.,, P. Gourde,, D. Beauchamp,, B. Foiry,, M. Jacques,, and F. Malouin. 1992. Modification in penicillin-binding proteins during in vivo development of genetic competence of Haemophilus influenzae is associated with a rapid change in the physiological state of cells. Infect. Immun. 60: 4024 4031.
23. Deatherage, B. L.,, J. C. Lara,, T. Bergsbaken,, S. L. Rassoulian Barrett,, S. Lara,, and B. T. Cookson. 2009. Biogenesis of bacterial membrane vesicles. Mol. Microbiol. 72: 1395 1407.
24. Deich, R. A.,, and L. C. Hoyer. 1982. Generation and release of DNA-binding vesicles by Haemophilus influenzae during induction and loss of competence. J. Bacteriol. 152: 855 864.
25. Dorward, D. W.,, and C. F. Garon. 1990. DNA is packaged within membrane-derived vesicles of gram-negative but not gram-positive bacteria. Appl. Environ. Microbiol. 56: 1960 1962.
26. Dorward, D. W.,, C. F. Garon,, and R. C. Judd. 1989. Export and intercellular transfer of DNA via membrane blebs of Neisseria gonorrhoeae. J. Bacteriol. 171: 2499 2505.
27. Dorward, D. W.,, T. G. Schwan,, and C. F. Garon. 1991. Immune capture and detection of Borrelia burgdorferi antigens in urine, blood, or tissues from infected ticks, mice, dogs, and humans. J. Clin. Microbiol. 29: 1162 1170.
28. Douchin, V.,, C. Bohn,, and P. Bouloc. 2006. Down-regulation of porins by a small RNA bypasses the essentiality of the regulated intramembrane proteolysis protease RseP in Escherichia coli. J. Biol. Chem. 281: 12253 12259.
29. Dubey, G. P.,, and S. Ben-Yehuda. 2011. Intercellular nanotubes mediate bacterial communication. Cell 144: 590 600.
30. Dutta, S.,, K. Iida,, A. Takade,, Y. Meno,, G. B. Nair,, and S. Yoshida. 2004. Release of Shiga toxin by membrane vesicles in Shigella dysenteriae serotype 1 strains and in vitro effects of antimicrobials on toxin production and release. Microbiol. Immunol. 48: 965 969.
31. Engelhardt, H.,, S. Gerblrieger,, D. Krezmar,, S. Schneidervoss,, A. Engel,, and W. Baumeister. 1990. Structural properties of the outer membrane and the regular surface protein of Comamonas acidovorans. J. Struct. Biol. 105: 92 102.
32. Ferrari, G.,, I. Garaguso,, J. Adu-Bobie,, F. Doro,, A. R. Taddei,, A. Biolchi,, B. Brunelli,, M. M. Giuliani,, M. Pizza,, N. Norais,, and G. Grandi. 2006. Outer membrane vesicles from group B Neisseria meningitidisΔ gna33 mutant: proteomic and immunological comparison with detergent-derived outer membrane vesicles. Proteomics 6: 1856 1866.
33. Figueroa-Bossi, N.,, S. Lemire,, D. Maloriol,, R. Balbontin,, J. Casadesus,, and L. Bossi. 2006. Loss of Hfq activates the σ E-dependent envelope stress response in Salmonella enterica. Mol. Microbiol. 62: 838 852.
34. George, K. M.,, D. Chatterjee,, G. Gunawardana,, D. Welty,, J. Hayman,, R. Lee,, and P. L. Small. 1999. Mycolactone: a polyketide toxin from Mycobacterium ulcerans required for virulence. Science 283: 854 857.
35. Goedhart, J.,, H. Rohrig,, M. A. Hink,, A. van Hoek,, A. J. Visser,, T. Bisseling,, and T. W. Gadella, Jr. 1999. Nod factors integrate spontaneously in biomembranes and transfer rapidly between membranes and to root hairs, but transbilayer flip-flop does not occur. Biochemistry 38: 10898 10907.
36. Guyard-Nicodeme, M.,, A. Bazire,, G. Hemery,, T. Meylheuc,, D. Molle,, N. Orange,, L. Fito-Boncompte,, M. Feuilloley,, D. Haras,, A. Dufour,, and S. Chevalier. 2008. Outer membrane modifications of Pseudomonas fluorescens MF37 in response to hyperosmolarity. J. Proteome Res. 7: 1218 1225.
37. Hancock, R. E. 1984. Alterations in outer membrane permeability. Annu. Rev. Microbiol. 38: 237 264.
38. Haurat, M. F.,, J. Aduse-Opoku,, M. Rangarajan,, L. Dorobantu,, M. R.Gray, M. A. Curtis, and M. F. Feldman. 2011. Selective sorting of cargo proteins into bacterial membrane vesicles. J. Biol. Chem. 286: 1269 1276.
39. Hayashi, J.,, N. Hamada,, and H. K. Kuramitsu. 2002. The autolysin of Porphyromonas gingivalis is involved in outer membrane vesicle release. FEMS Microbiol. Lett. 216: 217 222.
40. Henry, T.,, S. Pommier,, L. Journet,, A. Bernadac,, J. P. Gorvel,, and R. Lloubes. 2004. Improved methods for producing outer membrane vesicles in Gram-negative bacteria. Res. Microbiol. 155: 437 446.
41. Hoekstra, D.,, J. W. van der Laan,, L. de Leij,, and B. Witholt. 1976. Release of outer membrane fragments from normally growing Escherichia coli. Biochim. Biophys. Acta 455: 889 899.
42. Horstman, A. L.,, and M. J. Kuehn. 2000. Enterotoxigenic Escherichia coli secretes active heat-labile enterotoxin via outer membrane vesicles. J. Biol. Chem. 275: 12489 12496.
43. Irazoqui, J. E.,, E. R. Troemel,, R. L. Feinbaum,, L. G. Luhachack,, B. O. Cezairliyan,, and F. M. Ausubel. 2010. Distinct pathogenesis and host responses during infection of C. elegans by P. aeruginosa and S. aureus. PLoS Pathog. 6: e1000982.
44. Johansen, J.,, A. A. Rasmussen,, M. Overgaard,, and P. Valentin-Hansen. 2006. Conserved small non-coding RNAs that belong to the σ E regulon: role in down-regulation of outer membrane proteins. J. Mol. Biol. 364: 1 8.
45. Kadurugamuwa, J. L.,, and T. J. Beveridge. 1996. Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens: conceptually new antibiotics. J. Bacteriol. 178: 2767 2774.
46. Kadurugamuwa, J. L.,, and T. J. Beveridge. 1999. Membrane vesicles derived from Pseudomonas aeruginosa and Shigella flexneri can be integrated into the surfaces of other gram-negative bacteria. Microbiology 145( Pt. 8): 2051 2060.
47. Kadurugamuwa, J. L.,, and T. J. Beveridge. 1997. Natural release of virulence factors in membrane vesicles by Pseudomonas aeruginosa and the effect of aminoglycoside antibiotics on their release. J. Antimicrob. Chemother. 40: 615 621.
48. Kadurugamuwa, J. L.,, and T. J. Beveridge. 1995. Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J. Bacteriol. 177: 3998 4008.
49. Kadurugamuwa, J. L.,, A. J. Clarke,, and T. J. Beveridge. 1993a. Surface action of gentamicin on Pseudomonas aeruginosa. J. Bacteriol. 175: 5798 5805.
50. Kadurugamuwa, J. L.,, J. S. Lam,, and T. J. Beveridge. 1993b. Interaction of gentamicin with the A band and B band lipopolysaccharides of Pseudomonas aeruginosa and its possible lethal effect. Antimicrob. Agents Chemother. 37: 715 721.
51. Karavolos, M. H.,, D. M. Bulmer,, H. Spencer,, G. Rampioni,, I. Schmalen,, S. Baker,, D. Pickard,, J. Gray,, M. Fookes,, K. Winzer,, A. Ivens,, G. Dougan,, P. Williams,, and C. M. Khan. 2011. Salmonella Typhi sense host neuroendocrine stress hormones and release the toxin haemolysin E. EMBO Rep. 12: 252 258.
52. Kato, S.,, Y. Kowashi,, and D. R. Demuth. 2002. Outer membrane-like vesicles secreted by Actinobacillus actinomycetemcomitans are enriched in leukotoxin. Microb. Pathog. 32: 1 13.
53. Katsui, N.,, T. Tsuchido,, R. Hiramatsu,, S. Fujikawa,, M. Takano,, and I. Shibasaki. 1982. Heat-induced blebbing and vesiculation of the outer membrane of Escherichia coli. J. Bacteriol. 151: 1523 1531.
54. Keenan, J. I.,, and R. A. Allardyce. 2000. Iron influences the expression of Helicobacter pylori outer membrane vesicle-associated virulence factors. Eur. J. Gastroenterol. Hepatol. 12: 1267 1273.
55. Kesty, N. C.,, and M. J. Kuehn. 2004. Incorporation of heterologous outer membrane and periplasmic proteins into Escherichia coli outer membrane vesicles. J. Biol. Chem. 279: 2069 2076.
56. Kesty, N. C.,, K. M. Mason,, M. Reedy,, S. E. Miller,, and M. J. Kuehn. 2004. Enterotoxigenic Escherichia coli vesicles target toxin delivery into mammalian cells. EMBO J. 23: 4538 4549.
57. Knox, K. W.,, M. Vesk,, and E. Work. 1966. Relation between excreted lipopolysaccharide complexes and surface structures of a lysine-limited culture of Escherichia coli. J. Bacteriol. 92: 1206 1217.
58. Kobayashi, H.,, K. Uematsu,, H. Hirayama,, and K. Horikoshi. 2000. Novel toluene elimination system in a toluene-tolerant microorganism. J. Bacteriol. 182: 6451 6455.
59. Koch, A. L.,, M. L. Higgins,, and R. J. Doyle. 1982. The role of surface stress in the morphology of microbes. J. Gen. Microbiol. 128: 927 945.
60. Kolling, G. L.,, and K. R. Matthews. 1999. Export of virulence genes and Shiga toxin by membrane vesicles of Escherichia coli O157:H7. Appl. Environ. Microbiol. 65: 1843 1848.
61. Kropinski, A. M.,, V. Lewis,, and D. Berry. 1987. Effect of growth temperature on the lipids, outer membrane proteins, and lipopolysaccharides of Pseudomonas aeruginosa PAO. J. Bacteriol. 169: 1960 1966.
62. Kuehn, M. J.,, and N. C. Kesty. 2005. Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev. 19: 2645 2655.
63. Kulp, A.,, and M. J. Kuehn. 2010. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 64: 163 184.
64. Kwon, S. O.,, Y. S. Gho,, J. C. Lee,, and S. I. Kim. 2009. Proteome analysis of outer membrane vesicles from a clinical Acinetobacter baumannii isolate. FEMS Microbiol. Lett. 297: 150 156.
65. Lai, C. H.,, M. A. Listgarten,, and B. F. Hammond. 1981. Comparative ultrastructure of leukotoxic and non-leukotoxic strains of Actinobacillus actinomycetemcomitans. J. Periodontal Res. 16: 379 389.
66. Lally, E. T.,, E. E. Golub,, I. R. Kieba,, N. S. Taichman,, J. Rosenbloom,, J. C. Rosenbloom,, C. W. Gibson,, and D. R. Demuth. 1989. Analysis of the Actinobacillus actinomycetemcomitans leukotoxin gene. Delineation of unique features and comparison to homologous toxins. J. Biol. Chem. 264: 15451 15456.
67. Lam, M. Y.,, E. J. McGroarty,, A. M. Kropinski,, L. A. MacDonald,, S. S. Pedersen,, N. Hoiby,, and J. S. Lam. 1989. Occurrence of a common lipopolysaccharide antigen in standard and clinical strains of Pseudomonas aeruginosa. J. Clin. Microbiol. 27: 962 967.
68. Lazzaroni, J. C.,, P. Germon,, M. C. Ray,, and A. Vianney. 1999. The Tol proteins of Escherichia coli and their involvement in the uptake of biomolecules and outer membrane stability. FEMS Microbiol. Lett. 177: 191 197.
69. Lee, E. Y.,, J. Y. Bang,, G. W. Park,, D. S. Choi,, J. S. Kang,, H. J. Kim,, K. S. Park,, J. O. Lee,, Y. K. Kim,, K. H. Kwon,, K. P. Kim,, and Y. S. Gho. 2007. Global proteomic profiling of native outer membrane vesicles derived from Escherichia coli. Proteomics 7: 3143 3153.
70. Lee, E. Y.,, D. S. Choi,, K. P. Kim,, and Y. S. Gho. 2008. Proteomics in gram-negative bacterial outer membrane vesicles. Mass Spectrom. Rev. 27: 535 555.
71. Lee, E. Y.,, D. Y. Choi,, D. K. Kim,, J. W. Kim,, J. O. Park,, S. Kim,, S. H. Kim,, D. M. Desiderio,, Y. K. Kim,, K. P. Kim,, and Y. S. Gho. 2009. Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics 9: 5425 5436.
72. Li, Z.,, A. J. Clarke,, and T. J. Beveridge. 1998. Gram-negative bacteria produce membrane vesicles which are capable of killing other bacteria. J. Bacteriol. 180: 5478 5483.
73. Li, Z.,, A. J. Clarke,, and T. J. Beveridge. 1996. A major autolysin of Pseudomonas aeruginosa: subcellular distribution, potential role in cell growth and division and secretion in surface membrane vesicles. J. Bacteriol. 178: 2479 2488.
74. Lim, H. W. G.,, M. Wortis,, and R. Mukhopadhyay. 2002. Stomatocyte-discocyte-echinocyte sequence of the human red blood cell: evidence for the bilayer-couple hypothesis from membrane mechanics. Proc. Natl. Acad. Sci. USA 99: 16766 16769.
75. Lin, Y. H.,, J. L. Xu,, J. Hu,, L. H. Wang,, S. L. Ong,, J. R. Leadbetter,, and L. H. Zhang. 2003. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol. Microbiol. 47: 849 860.
76. Llamas, M. A.,, J. L. Ramos,, and J. J. Rodriguez-Herva. 2000. Mutations in each of the tol genes of Pseudomonas putida reveal that they are critical for maintenance of outer membrane stability. J. Bacteriol. 182: 4764 4772.
77. Loeb, M. R.,, and J. Kilner. 1979. Effect of growth medium on the relative polypeptide composition of cellular outer membrane and released outer membrane material in Escherichia coli. J. Bacteriol. 137: 1031 1034.
78. Makin, S. A.,, and T. J. Beveridge. 1996. Pseudomonas aeruginosa PAO1 ceases to express serotype-specific lipopolysaccharide at 45 degrees C. J. Bacteriol. 178: 3350 3352.
79. Marden, P.,, A. Tunlid,, K. Malmcronafriberg,, G. Odham,, and S. Kjelleberg. 1985. Physiological and morphological changes during short-term starvation of marine bacterial isolates. Arch. Microbiol. 142: 326 332.
80. Marshall, A. J.,, and L. J. Piddock. 1994. Interaction of divalent cations, quinolones and bacteria. J. Antimicrob. Chemother. 34: 465 483.
81. Marsollier, L.,, P. Brodin,, M. Jackson,, J. Kordulakova,, P. Tafelmeyer,, E. Carbonnelle,, J. Aubry,, G. Milon,, P. Legras,, J. P. Andre,, C. Leroy,, J. Cottin,, M. L. Guillou,, G. Reysset,, and S. T. Cole. 2007. Impact of Mycobacterium ulcerans biofilm on transmissibility to ecological niches and Buruli ulcer pathogenesis. PLoS Pathog. 3:e62.
82. Martin, N. L.,, and T. J. Beveridge. 1986. Gentamicin interaction with Pseudomonas aeruginosa cell envelope. Antimicrob. Agents Chemother. 29: 1079 1087.
83. Mashburn, L. M.,, and M. Whiteley. 2005. Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437: 422 425.
84. Mashburn-Warren, L.,, J. Howe,, K. Brandenburg,, and M. Whiteley. 2009. Structural requirements of the Pseudomonas quinolone signal for membrane vesicle stimulation. J. Bacteriol. 191: 3411 3414.
85. Mashburn-Warren, L.,, J. Howe,, P. Garidel,, W. Richter,, F. Steiniger,, M. Roessle,, K. Brandenburg,, and M. Whiteley. 2008. Interaction of quorum signals with outer membrane lipids: insights into prokaryotic membrane vesicle formation. Mol. Microbiol. 69: 491 502.
86. Mashburn-Warren, L. M.,, and M. Whiteley. 2006. Special delivery: vesicle trafficking in prokaryotes. Mol. Microbiol. 61: 839 846.
87. Mayrand, D.,, and D. Grenier. 1989. Biological activities of outer membrane vesicles. Can. J. Microbiol. 35: 607 613.
88. McBroom, A. J.,, A. P. Johnson,, S. Vemulapalli,, and M. J. Kuehn. 2006. Outer membrane vesicle production by Escherichia coli is independent of membrane instability. J. Bacteriol. 188: 5385 5392.
89. McBroom, A. J.,, and M. J. Kuehn. 2007. Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Mol. Microbiol. 63: 545 558.
90. McConnell, M. J.,, C. Rumbo,, G. Bou,, and J. Pachon. 2011. Outer membrane vesicles as an acellular vaccine against Acinetobacter baumannii. Vaccine 29: 5705 5710.
91. McGroarty, E. J.,, and M. Rivera. 1990. Growth-dependent alterations in production of serotype-specific and common antigen lipopolysaccharides in Pseudomonas aeruginosa PAO1. Infect. Immun. 58: 1030 1037.
92. Mogensen, J. E.,, and D. E. Otzen. 2005. Interactions between folding factors and bacterial outer membrane proteins. Mol. Microbiol. 57: 326 346.
93. Moller, J. D.,, A. C. Barnes,, I. Dalsgaard,, and A. E. Ellis. 2005. Characterisation of surface blebbing and membrane vesicles produced by Flavobacterium psychrophilum. Dis. Aquat. Organ. 64: 201 209.
94. Moxon, E. R.,, V. Bouchet,, D. W. Hood,, J. J. Li,, J. R. Brisson,, G. A. Randle,, A. Martin,, Z. Li,, R. Goldstein,, E. K. H. Schweda,, S. I. Pelton,, and J. C. Richards. 2003. Host-derived sialic acid is incorporated into Haemophilus influenzae lipopolysaccharide and is a major virulence factor in experimental otitis media. Proc. Natl. Acad. Sci. USA 100: 8898 8903.
95. Mug-Opstelten, D.,, and B. Witholt. 1978. Preferential release of new outer membrane fragments by exponentially growing Escherichia coli. Biochim Biophys Acta 508: 287 295.
96. Nally, J. E.,, J. P. Whitelegge,, R. Aguilera,, M. M. Pereira,, D. R. Blanco,, and M. A. Lovett. 2005. Purification and proteomic analysis of outer membrane vesicles from a clinical isolate of Leptospira interrogansserovar Copenhageni. Proteomics 5: 144 152.
97. Namork, E.,, and P. Brandtzaeg. 2002. Fatal meningococcal septicaemia with “blebbing” meningococcus. Lancet 360: 1741.
98. Nevot, M.,, V. Deroncele,, P. Messner,, J. Guinea,, and E. Mercade. 2006. Characterization of outer membrane vesicles released by the psychrotolerant bacterium Pseudoalteromonas antarctica NF3. Environ. Microbiol. 8: 1523 1533.
99. Nguyen, T. T.,, A. Saxena,, and T. J. Beveridge. 2003. Effect of surface lipopolysaccharide on the nature of membrane vesicles liberated from the Gram-negative bacterium Pseudomonas aeruginosa. J. Electron Microsc. (Tokyo) 52: 465 469.
100. Nikaido, H.,, and M. Vaara. 1985. Molecular basis of bacterial outer membrane permeability. Microbiol. Rev. 49: 1 32.
101. Palmer, K. L.,, L. M. Aye,, and M. Whiteley. 2007. Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J. Bacteriol. 189: 8079 8087.
102. Palmer, K. L.,, L. M. Mashburn,, P. K. Singh,, and M. Whiteley. 2005. Cystic fibrosis sputum supports growth and cues key aspects of Pseudomonas aeruginosa physiology. J. Bacteriol. 187: 5267 5277.
103. Papenfort, K.,, V. Pfeiffer,, F. Mika,, S. Lucchini,, J. C. Hinton,, and J. Vogel. 2006. σ E-Dependent small RNAs of Salmonella respond to membrane stress by accelerating global omp mRNA decay. Mol. Microbiol. 62: 1674 1688.
104. Park, K. S.,, K. H. Choi,, Y. S. Kim,, B. S. Hong,, O. Y. Kim,, J. H. Kim,, C. M. Yoon,, G. Y. Koh,, Y. K. Kim,, and Y. S. Gho. 2010. Outer membrane vesicles derived from Escherichia coli induce systemic inflammatory response syndrome. PLoS One 5:e11334.
105. Pesci, E. C.,, J. B. Milbank,, J. P. Pearson,, S. McKnight,, A. S. Kende,, E. P. Greenberg,, and B. H. Iglewski. 1999. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 96: 11229 11234.
106. Peterson, A. A.,, R. E. Hancock,, and E. J. McGroarty. 1985. Binding of polycationic antibiotics and polyamines to lipopolysaccharides of Pseudomonas aeruginosa. J. Bacteriol. 164: 1256 1261.
107. Pettit, R. K.,, and R. C. Judd. 1992. The interaction of naturally elaborated blebs from serum-susceptible and serum-resistant strains of Neisseria gonorrhoeae with normal human serum. Mol. Microbiol. 6: 729 734.
108. Post, D. M.,, D. Zhang,, J. S. Eastvold,, A. Teghanemt,, B. W. Gibson,, and J. P. Weiss. 2005. Biochemical and functional characterization of membrane blebs purified from Neisseria meningitidis serogroup B. J. Biol. Chem. 280: 38383 38394.
109. Pumbwe, L.,, C. A. Skilbeck,, V. Nakano,, M. J. Avila-Campos,, R. M. Piazza,, and H. M. Wexler. 2007. Bile salts enhance bacterial co-aggregation, bacterial-intestinal epithelial cell adhesion, biofilm formation and antimicrobial resistance of Bacteroides fragilis. Microb. Pathog. 43: 78 87.
110. Raivio, T. L. 2005. Envelope stress responses and Gram-negative bacterial pathogenesis. Mol. Microbiol. 56: 1119 1128.
111. Renelli, M.,, V. Matias,, R. Y. Lo,, and T. J. Beveridge. 2004. DNA-containing membrane vesicles of Pseudomonas aeruginosa PAO1 and their genetic transformation potential. Microbiology 150: 2161 2169.
112. Rhodius, V. A.,, W. C. Suh,, G. Nonaka,, J. West,, and C. A. Gross. 2006. Conserved and variable functions of the σ E stress response in related genomes. PLoS Biol. 4: e2.
113. Rivera, J.,, R. J. Cordero,, A. S. Nakouzi,, S. Frases,, A. Nicola,, and A. Casadevall. 2010. Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins. Proc. Natl. Acad. Sci. USA 107: 19002 19007.
114. Rivera, M.,, and E. J. McGroarty. 1989. Analysis of a common-antigen lipopolysaccharide from Pseudomonas aeruginosa. J. Bacteriol. 171: 2244 2248.
115. Roy, N.,, S. Barman,, A. Ghosh,, A. Pal,, K. Chakraborty,, S. S. Das,, D. R.Saha, S. Yamasaki, and H. Koley. 2010. Immunogenicity and protective efficacy of Vibrio cholerae outer membrane vesicles in rabbit model. FEMS Immunol. Med. Microbiol. 60: 18 27.
116. Sabra, W.,, H. Lunsdorf,, and A. P. Zeng. 2003. Alterations in the formation of lipopolysaccharide and membrane vesicles on the surface of Pseudomonas aeruginosa PAO1 under oxygen stress conditions. Microbiology 149: 2789 2795.
117. Schertzer, J. W.,, S. A. Brown,, and M. Whiteley. 2010. Oxygen levels rapidly modulate Pseudomonas aeruginosa social behaviours via substrate limitation of PqsH. Mol. Microbiol. 77: 1527 1538.
118. Schertzer, J. W.,, and M. Whiteley. 2012. A bilayer-couple model of bacterial outer membrane vesicle biogenesis. MBio Mar 13; 3( 2). pii: e00297 11. doi: 10.1128/mBio.00297-11.
119. Schooling, S. R.,, and T. J. Beveridge. 2006. Membrane vesicles: an overlooked component of the matrices of biofilms. J. Bacteriol. 188: 5945 5957.
120. Schooling, S. R.,, A. Hubley,, and T. J. Beveridge. 2009. Interactions of DNA with biofilm-derived membrane vesicles. J. Bacteriol. 191: 4097 4102.
121. Schrempf, H.,, I. Koebsch,, S. Walter,, H. Engelhardt,, and H. Meschke. 2011. Extracellular Streptomyces vesicles: amphorae for survival and defence. Microb. Biotechnol. 4: 286 299.
122. Sheetz, M. P.,, and S. J. Singer. 1974. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc. Natl. Acad. Sci. USA 71: 4457 4461.
123. Shetty, A.,, S. Chen,, E. I. Tocheva,, G. J. Jensen,, and W. J. Hickey. 2011. Nanopods: a new bacterial structure and mechanism for deployment of outer membrane vesicles. PLoS One 6: e20725.
124. Smalley, J. W.,, A. J. Birss,, A. S. McKee,, and P. D. Marsh. 1991. Haemin-restriction influences haemin-binding, haemagglutination and protease activity of cells and extracellular membrane vesicles of Porphyromonas gingivalis W50. FEMS Microbiol. Lett. 69: 63 67.
125. Solcia, E.,, R. Fiocca,, V. Necchi,, P. Sommi,, V. Ricci,, J. Telford,, and T. L. Cover. 1999. Release of Helicobacter pylori vacuolating cytotoxin by both a specific secretion pathway and budding of outer membrane vesicles. Uptake of released toxin and vesicles by gastric epithelium. J. Pathol. 188: 220 226.
126. Song, T.,, F. Mika,, B. Lindmark,, Z. Liu,, S. Schild,, A. Bishop,, J. Zhu,, A. Camilli,, J. Johansson,, J. Vogel,, and S. N. Wai. 2008. A new Vibrio cholerae sRNA modulates colonization and affects release of outer membrane vesicles. Mol. Microbiol. 70: 100 111.
127. Sonntag, I.,, H. Schwarz,, Y. Hirota,, and U. Henning. 1978. Cell envelope and shape of Escherichia coli: multiple mutants missing the outer membrane lipoprotein and other major outer membrane proteins. J. Bacteriol. 136: 280 285.
128. Tashiro, Y.,, S. Ichikawa,, M. Shimizu,, M. Toyofuku,, N. Takaya,, T. Nakajima-Kambe,, H. Uchiyama,, and N. Nomura. 2010. Variation of physiochemical properties and cell association activity of membrane vesicles with growth phase in Pseudomonas aeruginosa. Appl. Environ. Microbiol. 76: 3732 3739.
129. Tashiro, Y.,, A. Inagaki,, M. Shimizu,, S. Ichikawa,, N. Takaya,, T. Nakajima-Kambe,, H. Uchiyama,, and N. Nomura. 2011. Characterization of phospholipids in membrane vesicles derived from Pseudomonas aeruginosa. Biosci. Biotechnol. Biochem. 75: 605 607.
130. Tashiro, Y.,, R. Sakai,, M. Toyofuku,, I. Sawada,, T. Nakajima-Kambe,, H. Uchiyama,, and N. Nomura. 2009. Outer membrane machinery and alginate synthesis regulators control membrane vesicle production in Pseudomonas aeruginosa. J. Bacteriol. 191: 7509 7519.
131. Thery, C.,, L. Zitvogel,, and S. Amigorena. 2002. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol. 2: 569 579.
132. Thompson, K. M.,, V. A. Rhodius,, and S. Gottesman. 2007. σ E regulates and is regulated by a small RNA in Escherichia coli. J. Bacteriol. 189: 4243 4256.
133. Thompson, S. S.,, Y. M. Naidu,, and J. J. Pestka. 1985. Ultrastructural localization of an extracellular protease in Pseudomonas fragi by using the peroxidase-antiperoxidase reaction. Appl. Environ. Microbiol. 50: 1038 1042.
134. Udekwu, K. I.,, F. Darfeuille,, J. Vogel,, J. Reimegard,, E. Holmqvist,, and E. G. Wagner. 2005. Hfq-dependent regulation of OmpA synthesis is mediated by an antisense RNA. Genes Dev. 19: 2355 2366.
135. Udekwu, K. I.,, and E. G. Wagner. 2007. Sigma E controls biogenesis of the antisense RNA MicA. Nucleic Acids Res. 35: 1279 1288.
136. Uli, L.,, L. Castellanos-Serra,, L. Betancourt,, F. Dominguez,, R. Barbera,, F. Sotolongo,, G. Guillen,, and R. Pajon Feyt. 2006. Outer membrane vesicles of the VA-MENGOC-BC vaccine against serogroup B of Neisseria meningitidis: analysis of protein components by two-dimensional gel electrophoresis and mass spectrometry. Proteomics 6: 3389 3399.
137. van der Kraan, M. I.,, J. van Marle,, K. Nazmi,, J. Groenink,, W. van't Hof,, E. C. Veerman,, J. G. Bolscher,, and A. V. Nieuw Amerongen. 2005. Ultrastructural effects of antimicrobial peptides from bovine lactoferrin on the membranes of Candida albicans and Escherichia coli. Peptides 26: 1537 1542.
138. Vasilyeva, N. V.,, I. M. Tsfasman,, N. E. Suzina,, O. A. Stepnaya,, and I. S. Kulaev. 2009. Outer membrane vesicles of Lysobacter sp. Dokl. Biochem. Biophys. 426: 139 142.
139. Vidakovics, M. L.,, J. Jendholm,, M. Morgelin,, A. Mansson,, C. Larsson,, L. O. Cardell,, and K. Riesbeck. 2010. B cell activation by outer membrane vesicles—a novel virulence mechanism. PLoS Pathog. 6: e1000724.
140. Vipond, C.,, J. Suker,, C. Jones,, C. Tang,, I. M. Feavers,, and J. X. Wheeler. 2006. Proteomic analysis of a meningococcal outer membrane vesicle vaccine prepared from the group B strain NZ98/254. Proteomics 6: 3400 3413.
141. Walker, S. G.,, and T. J. Beveridge. 1988. Amikacin disrupts the cell envelope of Pseudomonas aeruginosa ATCC 9027. Can. J. Microbiol. 34: 12 18.
142. Wang, Y. J.,, and J. R. Leadbetter. 2005. Rapid acyl-homoserine lactone quorum signal biodegradation in diverse soils. Appl. Environ. Microbiol. 71: 1291 1299.
143. Wensink, J.,, and B. Witholt. 1981a. Identification of different forms of the murein-bound lipoprotein found in isolated outer membranes of Escherichia coli. Eur. J. Biochem. 113: 349 357.
144. Wensink, J.,, and B. Witholt. 1981b. Outer-membrane vesicles released by normally growing Escherichia coli contain very little lipoprotein. Eur. J. Biochem. 116: 331 335.
145. Work, E.,, K. W. Knox,, and M. Vesk. 1966. The chemistry and electron microscopy of an extracellular lipopolysaccharide from Escherichia coli. Ann. N. Y. Acad. Sci. 133: 438 449.
146. Yaron, S.,, G. L. Kolling,, L. Simon,, and K. R. Matthews. 2000. Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria. Appl. Environ. Microbiol. 66: 4414 4420.
147. Yem, D. W.,, and H. C. Wu. 1978. Physiological characterization of an Escherichia coli mutant altered in the structure of murein lipoprotein. J. Bacteriol. 133: 1419 1426.
148. Yonezawa, H.,, T. Osaki,, T. Woo,, S. Kurata,, C. Zaman,, F. Hojo,, T. Hanawa,, S. Kato,, and S. Kamiya. 2011. Analysis of outer membrane vesicle protein involved in biofilm formation of Helicobacter pylori. Anaerobe 17: 388 390.
149. Zhou, L.,, R. Srisatjaluk,, D. E. Justus,, and R. J. Doyle. 1998. On the origin of membrane vesicles in gram-negative bacteria. FEMS Microbiol. Lett. 163: 223 228.
150. Zollinger, W. D.,, M. A. Donets,, D. H. Schmiel,, V. B. Pinto,, J. Labrie,, E. E. Moran,, B. L. Brandt,, B. Ionin,, R. Marques,, M. Wu,, P. Chen,, M. B. Stoddard,, and P. B. Keiser. 2010. Design and evaluation in mice of a broadly protective meningococcal group B native outer membrane vesicle vaccine. Vaccine 28: 5057 5067.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error