1887

Chapter 23 : Regulation of Vesicle Formation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Regulation of Vesicle Formation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap23-1.gif /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap23-2.gif

Abstract:

This chapter addresses the regulation of outer membrane vesicles (OMVs) production in gram-negative bacteria; however, a brief section is dedicated to summarizing current knowledge of gram-positive membrane vesicles (MVs). To understand the molecular mechanisms of OMV formation, it is important to first review the structural differences between the cell envelopes of Gram-negative and Gram-positive bacteria. Despite intense interest and research in the field since the discovery of OMVs, the molecular mechanism of OMV formation has not been completely elucidated. Three main models for the mechanism of OMV formation have been proposed, which are not mutually exclusive. Processes regulated by quorum sensing (QS) include production of secondary metabolites and virulence factors, light production, biofilm formation, and OMV formation. The contribution of OMVs to biofilm structures is discussed in the chapter; however, specifically within the host, the propensity to form microcolonies and the role OMVs play during infection may reveal novel biofilm-related regulatory mechanisms of OMV formation within the host. Through the combined efforts of many investigators over the course of decades of research, much light has been shed on the highly conserved process of bacterial MV formation, though several questions remain unanswered. Regulatory schemes for OMV formation are actively being determined, and some of the future progress could be derived from collaboration with other research areas like QS and regulatory RNAs.

Citation: Wessel A, Palmer G, Whiteley M. 2013. Regulation of Vesicle Formation, p 441-464. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch23
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Two papers published in 1966 and 1967 give visible evidence of bacterial membrane blebbing. (A) An electron micrograph of lysine-limited cells, illustrating the OM blebbing away from the IM (at arrows). g, extracellular globule, presumably an OMV; m, intracytoplasmic membranous organelle. Reprinted from the ( ) with permission of the publisher. (B) Exponential-phase grown in peptone water, exhibiting multiple areas of membrane blebbing. Reprinted from the ( ) with permission of the publisher. doi:10.1128/9781555818524.ch23f1

Citation: Wessel A, Palmer G, Whiteley M. 2013. Regulation of Vesicle Formation, p 441-464. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

The three models of OMV formation. The cell envelope contains an OM with an outer leaflet of LPS. In models 1 and 2, LPS is hexa-acylated to illustrate a common structure, while in model 3, LPS is penta-acylated to illustrate a common structure. In model 1, the membrane can bleb in areas where the OM is not well anchored to the PG. In model 2, pressure on the OM caused by accumulation of proteins in the periplasmic space is relieved by membrane blebbing (figure adapted from ). In model 3, charge-charge repulsion of LPS and PQS insertion is shown. In , in areas containing large amounts of B band LPS, charge-charge interactions induce curvature of the membrane. Membrane curvature is additionally enhanced by PQS preferentially inserting into the outer leaflet of the OM. doi:10.1128/9781555818524.ch23f2

Citation: Wessel A, Palmer G, Whiteley M. 2013. Regulation of Vesicle Formation, p 441-464. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

vesicles released upon the beginning of septation (black arrows), as the PG and cytoplasmic membrane grow inward toward the center of the cell (white arrows). Scale bar, 100 nm. Reprinted from the ( ) with permission of the publisher. doi:10.1128/9781555818524.ch23f3

Citation: Wessel A, Palmer G, Whiteley M. 2013. Regulation of Vesicle Formation, p 441-464. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Thin-section TEM of producing nanopods, an organelle which secretes OMVs. (A) Cell-attached nanopods (white arrows) can be up to 6 μm in length. Scale bar, 200 nm. (B) The cell-nanopod junction. Scale bar, 100 nm. Reprinted from ( ) with permission of the publisher. doi:10.1128/9781555818524.ch23f4

Citation: Wessel A, Palmer G, Whiteley M. 2013. Regulation of Vesicle Formation, p 441-464. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Protein banding patterns of OM proteins (OM) and OMVs (Ves) from HB101 and ETEC strains, with varying growth conditions. OM and Ves (0.5 μg) were applied to 12.5% SDS-PAGE gels and silver stained. Banding patterns for Ves look similar to the OM protein banding; however, some proteins appear to be preferentially sorted into OMVs. Molecular mass standards are indicated on the left, in kilodaltons. Reprinted from ( ) with permission of the publisher. doi:10.1128/9781555818524.ch23f5

Citation: Wessel A, Palmer G, Whiteley M. 2013. Regulation of Vesicle Formation, p 441-464. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

TEM of OMVs produced in biofilms. (A and B) (b) infects in the lumen of the intestine, producing what appears to be OMVs (omv), in the presence of extracellular material (em). Scale bar, 0.5 μm. Reprinted from ( ) with permission of the publisher. (C) TEM of a biofilm isolated from a domestic bathroom drain, indicating the presence of OMVs between cells (arrows), as well as blebbing off the cell surface (arrows). Scale bar, 1 μm. Reprinted from ( ) with permission of the publisher. doi:10.1128/9781555818524.ch23f6

Citation: Wessel A, Palmer G, Whiteley M. 2013. Regulation of Vesicle Formation, p 441-464. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Production of MVs is not limited to Gram-negative bacteria. (A) A thin-section TEM of the gram-positive bacterium . MV formation occurs at the cell surface (arrows), and a secreted MV is shown nearby (arrowhead). Scale bar, 100 nm. Reprinted from ( ) with permission of the publisher. (B) The Gram-positive bacterium (Ba) produces MVs within macrophages (MØ). A disrupted phagosome (P) double membrane is visible (two dashed arrows), and a vesicle is present in the macrophage cytoplasm (solid arrow). Scale bar, 500 nm. Reprinted from ( ) with permission of the publisher. doi:10.1128/9781555818524.ch23f7

Citation: Wessel A, Palmer G, Whiteley M. 2013. Regulation of Vesicle Formation, p 441-464. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818524.chap23
1. Ades, S. E. 2004. Control of the alternative sigma factor σE in Escherichia coli. Curr. Opin. Microbiol. 7:157162.
2. Ades, S. E. 2008. Regulation by destruction: design of the σE envelope stress response. Curr. Opin. Microbiol. 11:535540.
3. Alba, B. M.,, and C. A. Gross. 2004. Regulation of the Escherichia coli sigma-dependent envelope stress response. Mol. Microbiol. 52:613619.
4. Alphen, W. V.,, and B. Lugtenberg. 1977. Influence of osmolarity of the growth medium on the outer membrane protein pattern of Escherichia coli. J. Bacteriol. 131:623630.
5. Bauman, S. J.,, and M. J. Kuehn. 2006. Purification of outer membrane vesicles from Pseudomonas aeruginosa and their activation of an IL-8 response. Microbes Infect. 8:24002408.
6. Berlanda Scorza, F.,, F. Doro,, M. J. Rodriguez-Ortega,, M. Stella,, S. Liberatori,, A. R. Taddei,, L. Serino,, D. Gomes Moriel,, B. Nesta,, M. R. Fontana,, A. Spagnuolo,, M. Pizza,, N. Norais,, and G. Grandi. 2008. Proteomics characterization of outer membrane vesicles from the extraintestinal pathogenic Escherichia coliΔtolR IHE3034 mutant. Mol. Cell. Proteomics 7:473485.
7. Bernadac, A.,, M. Gavioli,, J. C. Lazzaroni,, S. Raina,, and R. Lloubes. 1998. Escherichia coli tol-pal mutants form outer membrane vesicles. J. Bacteriol. 180:48724878.
8. Beveridge, T. J. 1999. Structures of gram-negative cell walls and their derived membrane vesicles. J. Bacteriol. 181:47254733.
9. Beveridge, T. J.,, S. A. Makin,, J. L. Kadurugamuwa,, and Z. Li. 1997. Interactions between biofilms and the environment. FEMS Microbiol. Rev. 20:291303.
10. Bodero, M. D.,, M. C. Pilonieta,, and G. P. Munson. 2007. Repression of the inner membrane lipoprotein NlpA by Rns in enterotoxigenic Escherichia coli. J. Bacteriol. 189:16271632.
11. Bomberger, J. M.,, D. P. Maceachran,, B. A. Coutermarsh,, S. Ye,, G. A. O'Toole,, and B. A. Stanton. 2009. Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog. 5:e1000382.
12. Burdett, I. D. J.,, and R. G. E. Murray. 1974a. Electron microscope study of septum formation in Escherichia coli strains B and B/r during synchronous growth. J. Bacteriol. 119:10391056.
13. Burdett, I. D. J.,, and R. G. E. Murray. 1974b. Septum formation in Escherichia coli: characterization of septal structure and the effects of antibiotics on cell division. J. Bacteriol. 119:303324.
14. Cascales, E.,, A. Bernadac,, M. Gavioli,, J. C. Lazzaroni,, and R. Lloubes. 2002. Pal lipoprotein of Escherichia coli plays a major role in outer membrane integrity. J. Bacteriol. 184:754759.
15. Chaba, R.,, I. L. Grigorova,, J. M. Flynn,, T. A. Baker,, and C. A. Gross. 2007. Design principles of the proteolytic cascade governing the σE-mediated envelope stress response in Escherichia coli: keys to graded, buffered, and rapid signal transduction. Genes Dev. 21:124136.
16. Chatterjee, S. N.,, and J. Das. 1967. Electron microscopic observations on the excretion of cell-wall material by Vibrio cholerae. J. Gen. Microbiol. 49:111.
17. Choi, D. S.,, D. K. Kim,, S. J. Choi,, J. Lee,, J. P. Choi,, S. Rho,, S. H. Park,, Y. K. Kim,, D. Hwang,, and Y. S. Gho. 2011. Proteomic analysis of outer membrane vesicles derived from Pseudomonas aeruginosa. Proteomics 11:34243429.
18. Cigana, C.,, L. Curcuru,, M. R. Leone,, T. Ierano,, N. I. Lore,, I. Bianconi,, A. Silipo,, F. Cozzolino,, R. Lanzetta,, A. Molinaro,, M. L. Bernardini,, and A. Bragonzi. 2009. Pseudomonas aeruginosa exploits lipid A and muropeptides modification as a strategy to lower innate immunity during cystic fibrosis lung infection. PLoS One 4:e8439.
19. Ciofu, O.,, T. J. Beveridge,, J. Kadurugamuwa,, J. Walther-Rasmussen,, and N. Hoiby. 2000. Chromosomal beta-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa. J. Antimicrob. Chemother. 45:913.
20. Costerton, J. W.,, G. G. Geesey,, and K. J. Cheng. 1978. How bacteria stick. Sci. Am. 238:8695.
21. Costerton, J. W.,, R. T. Irvin,, and K. J. Cheng. 1981. The bacterial glycocalyx in nature and disease. Annu. Rev. Microbiol. 35:299324.
22. Dargis, M.,, P. Gourde,, D. Beauchamp,, B. Foiry,, M. Jacques,, and F. Malouin. 1992. Modification in penicillin-binding proteins during in vivo development of genetic competence of Haemophilus influenzae is associated with a rapid change in the physiological state of cells. Infect. Immun. 60:40244031.
23. Deatherage, B. L.,, J. C. Lara,, T. Bergsbaken,, S. L. Rassoulian Barrett,, S. Lara,, and B. T. Cookson. 2009. Biogenesis of bacterial membrane vesicles. Mol. Microbiol. 72:13951407.
24. Deich, R. A.,, and L. C. Hoyer. 1982. Generation and release of DNA-binding vesicles by Haemophilus influenzae during induction and loss of competence. J. Bacteriol. 152:855864.
25. Dorward, D. W.,, and C. F. Garon. 1990. DNA is packaged within membrane-derived vesicles of gram-negative but not gram-positive bacteria. Appl. Environ. Microbiol. 56:19601962.
26. Dorward, D. W.,, C. F. Garon,, and R. C. Judd. 1989. Export and intercellular transfer of DNA via membrane blebs of Neisseria gonorrhoeae. J. Bacteriol. 171:24992505.
27. Dorward, D. W.,, T. G. Schwan,, and C. F. Garon. 1991. Immune capture and detection of Borrelia burgdorferi antigens in urine, blood, or tissues from infected ticks, mice, dogs, and humans. J. Clin. Microbiol. 29:11621170.
28. Douchin, V.,, C. Bohn,, and P. Bouloc. 2006. Down-regulation of porins by a small RNA bypasses the essentiality of the regulated intramembrane proteolysis protease RseP in Escherichia coli. J. Biol. Chem. 281:1225312259.
29. Dubey, G. P.,, and S. Ben-Yehuda. 2011. Intercellular nanotubes mediate bacterial communication. Cell 144:590600.
30. Dutta, S.,, K. Iida,, A. Takade,, Y. Meno,, G. B. Nair,, and S. Yoshida. 2004. Release of Shiga toxin by membrane vesicles in Shigella dysenteriae serotype 1 strains and in vitro effects of antimicrobials on toxin production and release. Microbiol. Immunol. 48:965969.
31. Engelhardt, H.,, S. Gerblrieger,, D. Krezmar,, S. Schneidervoss,, A. Engel,, and W. Baumeister. 1990. Structural properties of the outer membrane and the regular surface protein of Comamonas acidovorans. J. Struct. Biol. 105:92102.
32. Ferrari, G.,, I. Garaguso,, J. Adu-Bobie,, F. Doro,, A. R. Taddei,, A. Biolchi,, B. Brunelli,, M. M. Giuliani,, M. Pizza,, N. Norais,, and G. Grandi. 2006. Outer membrane vesicles from group B Neisseria meningitidisΔgna33 mutant: proteomic and immunological comparison with detergent-derived outer membrane vesicles. Proteomics 6:18561866.
33. Figueroa-Bossi, N.,, S. Lemire,, D. Maloriol,, R. Balbontin,, J. Casadesus,, and L. Bossi. 2006. Loss of Hfq activates the σE-dependent envelope stress response in Salmonella enterica. Mol. Microbiol. 62:838852.
34. George, K. M.,, D. Chatterjee,, G. Gunawardana,, D. Welty,, J. Hayman,, R. Lee,, and P. L. Small. 1999. Mycolactone: a polyketide toxin from Mycobacterium ulcerans required for virulence. Science 283:854857.
35. Goedhart, J.,, H. Rohrig,, M. A. Hink,, A. van Hoek,, A. J. Visser,, T. Bisseling,, and T. W. Gadella, Jr. 1999. Nod factors integrate spontaneously in biomembranes and transfer rapidly between membranes and to root hairs, but transbilayer flip-flop does not occur. Biochemistry 38:1089810907.
36. Guyard-Nicodeme, M.,, A. Bazire,, G. Hemery,, T. Meylheuc,, D. Molle,, N. Orange,, L. Fito-Boncompte,, M. Feuilloley,, D. Haras,, A. Dufour,, and S. Chevalier. 2008. Outer membrane modifications of Pseudomonas fluorescens MF37 in response to hyperosmolarity. J. Proteome Res. 7:12181225.
37. Hancock, R. E. 1984. Alterations in outer membrane permeability. Annu. Rev. Microbiol. 38:237264.
38. Haurat, M. F.,, J. Aduse-Opoku,, M. Rangarajan,, L. Dorobantu,, M. R.Gray, M. A. Curtis, and M. F. Feldman. 2011. Selective sorting of cargo proteins into bacterial membrane vesicles. J. Biol. Chem. 286:12691276.
39. Hayashi, J.,, N. Hamada,, and H. K. Kuramitsu. 2002. The autolysin of Porphyromonas gingivalis is involved in outer membrane vesicle release. FEMS Microbiol. Lett. 216:217222.
40. Henry, T.,, S. Pommier,, L. Journet,, A. Bernadac,, J. P. Gorvel,, and R. Lloubes. 2004. Improved methods for producing outer membrane vesicles in Gram-negative bacteria. Res. Microbiol. 155:437446.
41. Hoekstra, D.,, J. W. van der Laan,, L. de Leij,, and B. Witholt. 1976. Release of outer membrane fragments from normally growing Escherichia coli. Biochim. Biophys. Acta 455:889899.
42. Horstman, A. L.,, and M. J. Kuehn. 2000. Enterotoxigenic Escherichia coli secretes active heat-labile enterotoxin via outer membrane vesicles. J. Biol. Chem. 275:1248912496.
43. Irazoqui, J. E.,, E. R. Troemel,, R. L. Feinbaum,, L. G. Luhachack,, B. O. Cezairliyan,, and F. M. Ausubel. 2010. Distinct pathogenesis and host responses during infection of C. elegans by P. aeruginosa and S. aureus. PLoS Pathog. 6:e1000982.
44. Johansen, J.,, A. A. Rasmussen,, M. Overgaard,, and P. Valentin-Hansen. 2006. Conserved small non-coding RNAs that belong to the σE regulon: role in down-regulation of outer membrane proteins. J. Mol. Biol. 364:18.
45. Kadurugamuwa, J. L.,, and T. J. Beveridge. 1996. Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens: conceptually new antibiotics. J. Bacteriol. 178:27672774.
46. Kadurugamuwa, J. L.,, and T. J. Beveridge. 1999. Membrane vesicles derived from Pseudomonas aeruginosa and Shigella flexneri can be integrated into the surfaces of other gram-negative bacteria. Microbiology 145(Pt. 8):20512060.
47. Kadurugamuwa, J. L.,, and T. J. Beveridge. 1997. Natural release of virulence factors in membrane vesicles by Pseudomonas aeruginosa and the effect of aminoglycoside antibiotics on their release. J. Antimicrob. Chemother. 40:615621.
48. Kadurugamuwa, J. L.,, and T. J. Beveridge. 1995. Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J. Bacteriol. 177:39984008.
49. Kadurugamuwa, J. L.,, A. J. Clarke,, and T. J. Beveridge. 1993a. Surface action of gentamicin on Pseudomonas aeruginosa. J. Bacteriol. 175:57985805.
50. Kadurugamuwa, J. L.,, J. S. Lam,, and T. J. Beveridge. 1993b. Interaction of gentamicin with the A band and B band lipopolysaccharides of Pseudomonas aeruginosa and its possible lethal effect. Antimicrob. Agents Chemother. 37:715721.
51. Karavolos, M. H.,, D. M. Bulmer,, H. Spencer,, G. Rampioni,, I. Schmalen,, S. Baker,, D. Pickard,, J. Gray,, M. Fookes,, K. Winzer,, A. Ivens,, G. Dougan,, P. Williams,, and C. M. Khan. 2011. Salmonella Typhi sense host neuroendocrine stress hormones and release the toxin haemolysin E. EMBO Rep. 12:252258.
52. Kato, S.,, Y. Kowashi,, and D. R. Demuth. 2002. Outer membrane-like vesicles secreted by Actinobacillus actinomycetemcomitans are enriched in leukotoxin. Microb. Pathog. 32:113.
53. Katsui, N.,, T. Tsuchido,, R. Hiramatsu,, S. Fujikawa,, M. Takano,, and I. Shibasaki. 1982. Heat-induced blebbing and vesiculation of the outer membrane of Escherichia coli. J. Bacteriol.151:15231531.
54. Keenan, J. I.,, and R. A. Allardyce. 2000. Iron influences the expression of Helicobacter pylori outer membrane vesicle-associated virulence factors. Eur. J. Gastroenterol. Hepatol. 12:12671273.
55. Kesty, N. C.,, and M. J. Kuehn. 2004. Incorporation of heterologous outer membrane and periplasmic proteins into Escherichia coli outer membrane vesicles. J. Biol. Chem. 279:20692076.
56. Kesty, N. C.,, K. M. Mason,, M. Reedy,, S. E. Miller,, and M. J. Kuehn. 2004. Enterotoxigenic Escherichia coli vesicles target toxin delivery into mammalian cells. EMBO J. 23:45384549.
57. Knox, K. W.,, M. Vesk,, and E. Work. 1966. Relation between excreted lipopolysaccharide complexes and surface structures of a lysine-limited culture of Escherichia coli. J. Bacteriol. 92:12061217.
58. Kobayashi, H.,, K. Uematsu,, H. Hirayama,, and K. Horikoshi. 2000. Novel toluene elimination system in a toluene-tolerant microorganism. J. Bacteriol. 182:64516455.
59. Koch, A. L.,, M. L. Higgins,, and R. J. Doyle. 1982. The role of surface stress in the morphology of microbes. J. Gen. Microbiol. 128:927945.
60. Kolling, G. L.,, and K. R. Matthews. 1999. Export of virulence genes and Shiga toxin by membrane vesicles of Escherichia coli O157:H7. Appl. Environ. Microbiol. 65:18431848.
61. Kropinski, A. M.,, V. Lewis,, and D. Berry. 1987. Effect of growth temperature on the lipids, outer membrane proteins, and lipopolysaccharides of Pseudomonas aeruginosa PAO. J. Bacteriol. 169:19601966.
62. Kuehn, M. J.,, and N. C. Kesty. 2005. Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev. 19:26452655.
63. Kulp, A.,, and M. J. Kuehn. 2010. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 64:163184.
64. Kwon, S. O.,, Y. S. Gho,, J. C. Lee,, and S. I. Kim. 2009. Proteome analysis of outer membrane vesicles from a clinical Acinetobacter baumannii isolate. FEMS Microbiol. Lett. 297:150156.
65. Lai, C. H.,, M. A. Listgarten,, and B. F. Hammond. 1981. Comparative ultrastructure of leukotoxic and non-leukotoxic strains of Actinobacillus actinomycetemcomitans. J. Periodontal Res. 16:379389.
66. Lally, E. T.,, E. E. Golub,, I. R. Kieba,, N. S. Taichman,, J. Rosenbloom,, J. C. Rosenbloom,, C. W. Gibson,, and D. R. Demuth. 1989. Analysis of the Actinobacillus actinomycetemcomitans leukotoxin gene. Delineation of unique features and comparison to homologous toxins. J. Biol. Chem. 264:1545115456.
67. Lam, M. Y.,, E. J. McGroarty,, A. M. Kropinski,, L. A. MacDonald,, S. S. Pedersen,, N. Hoiby,, and J. S. Lam. 1989. Occurrence of a common lipopolysaccharide antigen in standard and clinical strains of Pseudomonas aeruginosa. J. Clin. Microbiol. 27:962967.
68. Lazzaroni, J. C.,, P. Germon,, M. C. Ray,, and A. Vianney. 1999. The Tol proteins of Escherichia coli and their involvement in the uptake of biomolecules and outer membrane stability. FEMS Microbiol. Lett. 177:191197.
69. Lee, E. Y.,, J. Y. Bang,, G. W. Park,, D. S. Choi,, J. S. Kang,, H. J. Kim,, K. S. Park,, J. O. Lee,, Y. K. Kim,, K. H. Kwon,, K. P. Kim,, and Y. S. Gho. 2007. Global proteomic profiling of native outer membrane vesicles derived from Escherichia coli. Proteomics 7:31433153.
70. Lee, E. Y.,, D. S. Choi,, K. P. Kim,, and Y. S. Gho. 2008. Proteomics in gram-negative bacterial outer membrane vesicles. Mass Spectrom. Rev. 27:535555.
71. Lee, E. Y.,, D. Y. Choi,, D. K. Kim,, J. W. Kim,, J. O. Park,, S. Kim,, S. H. Kim,, D. M. Desiderio,, Y. K. Kim,, K. P. Kim,, and Y. S. Gho. 2009. Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics 9:54255436.
72. Li, Z.,, A. J. Clarke,, and T. J. Beveridge. 1998. Gram-negative bacteria produce membrane vesicles which are capable of killing other bacteria. J. Bacteriol. 180:54785483.
73. Li, Z.,, A. J. Clarke,, and T. J. Beveridge. 1996. A major autolysin of Pseudomonas aeruginosa: subcellular distribution, potential role in cell growth and division and secretion in surface membrane vesicles. J. Bacteriol. 178:24792488.
74. Lim, H. W. G.,, M. Wortis,, and R. Mukhopadhyay. 2002. Stomatocyte-discocyte-echinocyte sequence of the human red blood cell: evidence for the bilayer-couple hypothesis from membrane mechanics. Proc. Natl. Acad. Sci. USA 99:1676616769.
75. Lin, Y. H.,, J. L. Xu,, J. Hu,, L. H. Wang,, S. L. Ong,, J. R. Leadbetter,, and L. H. Zhang. 2003. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol. Microbiol. 47:849860.
76. Llamas, M. A.,, J. L. Ramos,, and J. J. Rodriguez-Herva. 2000. Mutations in each of the tol genes of Pseudomonas putida reveal that they are critical for maintenance of outer membrane stability. J. Bacteriol. 182:47644772.
77. Loeb, M. R.,, and J. Kilner. 1979. Effect of growth medium on the relative polypeptide composition of cellular outer membrane and released outer membrane material in Escherichia coli. J. Bacteriol. 137:10311034.
78. Makin, S. A.,, and T. J. Beveridge. 1996. Pseudomonas aeruginosa PAO1 ceases to express serotype-specific lipopolysaccharide at 45 degrees C. J. Bacteriol. 178:33503352.
79. Marden, P.,, A. Tunlid,, K. Malmcronafriberg,, G. Odham,, and S. Kjelleberg. 1985. Physiological and morphological changes during short-term starvation of marine bacterial isolates. Arch. Microbiol. 142:326332.
80. Marshall, A. J.,, and L. J. Piddock. 1994. Interaction of divalent cations, quinolones and bacteria. J. Antimicrob. Chemother. 34:465483.
81. Marsollier, L.,, P. Brodin,, M. Jackson,, J. Kordulakova,, P. Tafelmeyer,, E. Carbonnelle,, J. Aubry,, G. Milon,, P. Legras,, J. P. Andre,, C. Leroy,, J. Cottin,, M. L. Guillou,, G. Reysset,, and S. T. Cole. 2007. Impact of Mycobacterium ulcerans biofilm on transmissibility to ecological niches and Buruli ulcer pathogenesis. PLoS Pathog. 3:e62.
82. Martin, N. L.,, and T. J. Beveridge. 1986. Gentamicin interaction with Pseudomonas aeruginosa cell envelope. Antimicrob. Agents Chemother. 29:10791087.
83. Mashburn, L. M.,, and M. Whiteley. 2005. Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437:422425.
84. Mashburn-Warren, L.,, J. Howe,, K. Brandenburg,, and M. Whiteley. 2009. Structural requirements of the Pseudomonas quinolone signal for membrane vesicle stimulation. J. Bacteriol. 191:34113414.
85. Mashburn-Warren, L.,, J. Howe,, P. Garidel,, W. Richter,, F. Steiniger,, M. Roessle,, K. Brandenburg,, and M. Whiteley. 2008. Interaction of quorum signals with outer membrane lipids: insights into prokaryotic membrane vesicle formation. Mol. Microbiol. 69:491502.
86. Mashburn-Warren, L. M.,, and M. Whiteley. 2006. Special delivery: vesicle trafficking in prokaryotes. Mol. Microbiol. 61:839846.
87. Mayrand, D.,, and D. Grenier. 1989. Biological activities of outer membrane vesicles. Can. J. Microbiol. 35:607613.
88. McBroom, A. J.,, A. P. Johnson,, S. Vemulapalli,, and M. J. Kuehn. 2006. Outer membrane vesicle production by Escherichia coli is independent of membrane instability. J. Bacteriol. 188:53855392.
89. McBroom, A. J.,, and M. J. Kuehn. 2007. Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Mol. Microbiol. 63:545558.
90. McConnell, M. J.,, C. Rumbo,, G. Bou,, and J. Pachon. 2011. Outer membrane vesicles as an acellular vaccine against Acinetobacter baumannii. Vaccine 29:57055710.
91. McGroarty, E. J.,, and M. Rivera. 1990. Growth-dependent alterations in production of serotype-specific and common antigen lipopolysaccharides in Pseudomonas aeruginosa PAO1. Infect. Immun. 58:10301037.
92. Mogensen, J. E.,, and D. E. Otzen. 2005. Interactions between folding factors and bacterial outer membrane proteins. Mol. Microbiol. 57:326346.
93. Moller, J. D.,, A. C. Barnes,, I. Dalsgaard,, and A. E. Ellis. 2005. Characterisation of surface blebbing and membrane vesicles produced by Flavobacterium psychrophilum. Dis. Aquat. Organ. 64:201209.
94. Moxon, E. R.,, V. Bouchet,, D. W. Hood,, J. J. Li,, J. R. Brisson,, G. A. Randle,, A. Martin,, Z. Li,, R. Goldstein,, E. K. H. Schweda,, S. I. Pelton,, and J. C. Richards. 2003. Host-derived sialic acid is incorporated into Haemophilus influenzae lipopolysaccharide and is a major virulence factor in experimental otitis media. Proc. Natl. Acad. Sci. USA 100:88988903.
95. Mug-Opstelten, D.,, and B. Witholt. 1978. Preferential release of new outer membrane fragments by exponentially growing Escherichia coli. Biochim Biophys Acta 508:287295.
96. Nally, J. E.,, J. P. Whitelegge,, R. Aguilera,, M. M. Pereira,, D. R. Blanco,, and M. A. Lovett. 2005. Purification and proteomic analysis of outer membrane vesicles from a clinical isolate of Leptospira interrogansserovar Copenhageni. Proteomics 5:144152.
97. Namork, E.,, and P. Brandtzaeg. 2002. Fatal meningococcal septicaemia with “blebbing” meningococcus. Lancet 360:1741.
98. Nevot, M.,, V. Deroncele,, P. Messner,, J. Guinea,, and E. Mercade. 2006. Characterization of outer membrane vesicles released by the psychrotolerant bacterium Pseudoalteromonas antarctica NF3. Environ. Microbiol. 8:15231533.
99. Nguyen, T. T.,, A. Saxena,, and T. J. Beveridge. 2003. Effect of surface lipopolysaccharide on the nature of membrane vesicles liberated from the Gram-negative bacterium Pseudomonas aeruginosa. J. Electron Microsc. (Tokyo) 52:465469.
100. Nikaido, H.,, and M. Vaara. 1985. Molecular basis of bacterial outer membrane permeability. Microbiol. Rev. 49:132.
101. Palmer, K. L.,, L. M. Aye,, and M. Whiteley. 2007. Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J. Bacteriol. 189:80798087.
102. Palmer, K. L.,, L. M. Mashburn,, P. K. Singh,, and M. Whiteley. 2005. Cystic fibrosis sputum supports growth and cues key aspects of Pseudomonas aeruginosa physiology. J. Bacteriol. 187:52675277.
103. Papenfort, K.,, V. Pfeiffer,, F. Mika,, S. Lucchini,, J. C. Hinton,, and J. Vogel. 2006. σE-Dependent small RNAs of Salmonella respond to membrane stress by accelerating global omp mRNA decay. Mol. Microbiol. 62:16741688.
104. Park, K. S.,, K. H. Choi,, Y. S. Kim,, B. S. Hong,, O. Y. Kim,, J. H. Kim,, C. M. Yoon,, G. Y. Koh,, Y. K. Kim,, and Y. S. Gho. 2010. Outer membrane vesicles derived from Escherichia coli induce systemic inflammatory response syndrome. PLoS One 5:e11334.
105. Pesci, E. C.,, J. B. Milbank,, J. P. Pearson,, S. McKnight,, A. S. Kende,, E. P. Greenberg,, and B. H. Iglewski. 1999. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 96:1122911234.
106. Peterson, A. A.,, R. E. Hancock,, and E. J. McGroarty. 1985. Binding of polycationic antibiotics and polyamines to lipopolysaccharides of Pseudomonas aeruginosa. J. Bacteriol. 164:12561261.
107. Pettit, R. K.,, and R. C. Judd. 1992. The interaction of naturally elaborated blebs from serum-susceptible and serum-resistant strains of Neisseria gonorrhoeae with normal human serum. Mol. Microbiol. 6:729734.
108. Post, D. M.,, D. Zhang,, J. S. Eastvold,, A. Teghanemt,, B. W. Gibson,, and J. P. Weiss. 2005. Biochemical and functional characterization of membrane blebs purified from Neisseria meningitidis serogroup B. J. Biol. Chem. 280:3838338394.
109. Pumbwe, L.,, C. A. Skilbeck,, V. Nakano,, M. J. Avila-Campos,, R. M. Piazza,, and H. M. Wexler. 2007. Bile salts enhance bacterial co-aggregation, bacterial-intestinal epithelial cell adhesion, biofilm formation and antimicrobial resistance of Bacteroides fragilis. Microb. Pathog. 43:7887.
110. Raivio, T. L. 2005. Envelope stress responses and Gram-negative bacterial pathogenesis. Mol. Microbiol. 56:11191128.
111. Renelli, M.,, V. Matias,, R. Y. Lo,, and T. J. Beveridge. 2004. DNA-containing membrane vesicles of Pseudomonas aeruginosa PAO1 and their genetic transformation potential. Microbiology 150:21612169.
112. Rhodius, V. A.,, W. C. Suh,, G. Nonaka,, J. West,, and C. A. Gross. 2006. Conserved and variable functions of the σE stress response in related genomes. PLoS Biol. 4:e2.
113. Rivera, J.,, R. J. Cordero,, A. S. Nakouzi,, S. Frases,, A. Nicola,, and A. Casadevall. 2010. Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins. Proc. Natl. Acad. Sci. USA 107:1900219007.
114. Rivera, M.,, and E. J. McGroarty. 1989. Analysis of a common-antigen lipopolysaccharide from Pseudomonas aeruginosa. J. Bacteriol. 171:22442248.
115. Roy, N.,, S. Barman,, A. Ghosh,, A. Pal,, K. Chakraborty,, S. S. Das,, D. R.Saha, S. Yamasaki, and H. Koley. 2010. Immunogenicity and protective efficacy of Vibrio cholerae outer membrane vesicles in rabbit model. FEMS Immunol. Med. Microbiol. 60:1827.
116. Sabra, W.,, H. Lunsdorf,, and A. P. Zeng. 2003. Alterations in the formation of lipopolysaccharide and membrane vesicles on the surface of Pseudomonas aeruginosa PAO1 under oxygen stress conditions. Microbiology 149:27892795.
117. Schertzer, J. W.,, S. A. Brown,, and M. Whiteley. 2010. Oxygen levels rapidly modulate Pseudomonas aeruginosa social behaviours via substrate limitation of PqsH. Mol. Microbiol. 77:15271538.
118. Schertzer, J. W.,, and M. Whiteley. 2012. A bilayer-couple model of bacterial outer membrane vesicle biogenesis. MBio Mar 13;3(2). pii: e0029711. doi: 10.1128/mBio.00297-11.
119. Schooling, S. R.,, and T. J. Beveridge. 2006. Membrane vesicles: an overlooked component of the matrices of biofilms. J. Bacteriol. 188:59455957.
120. Schooling, S. R.,, A. Hubley,, and T. J. Beveridge. 2009. Interactions of DNA with biofilm-derived membrane vesicles. J. Bacteriol. 191:40974102.
121. Schrempf, H.,, I. Koebsch,, S. Walter,, H. Engelhardt,, and H. Meschke. 2011. Extracellular Streptomyces vesicles: amphorae for survival and defence. Microb. Biotechnol. 4:286299.
122. Sheetz, M. P.,, and S. J. Singer. 1974. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc. Natl. Acad. Sci. USA 71:44574461.
123. Shetty, A.,, S. Chen,, E. I. Tocheva,, G. J. Jensen,, and W. J. Hickey. 2011. Nanopods: a new bacterial structure and mechanism for deployment of outer membrane vesicles. PLoS One 6:e20725.
124. Smalley, J. W.,, A. J. Birss,, A. S. McKee,, and P. D. Marsh. 1991. Haemin-restriction influences haemin-binding, haemagglutination and protease activity of cells and extracellular membrane vesicles of Porphyromonas gingivalis W50. FEMS Microbiol. Lett. 69:6367.
125. Solcia, E.,, R. Fiocca,, V. Necchi,, P. Sommi,, V. Ricci,, J. Telford,, and T. L. Cover. 1999. Release of Helicobacter pylori vacuolating cytotoxin by both a specific secretion pathway and budding of outer membrane vesicles. Uptake of released toxin and vesicles by gastric epithelium. J. Pathol. 188:220226.
126. Song, T.,, F. Mika,, B. Lindmark,, Z. Liu,, S. Schild,, A. Bishop,, J. Zhu,, A. Camilli,, J. Johansson,, J. Vogel,, and S. N. Wai. 2008. A new Vibrio cholerae sRNA modulates colonization and affects release of outer membrane vesicles. Mol. Microbiol. 70:100111.
127. Sonntag, I.,, H. Schwarz,, Y. Hirota,, and U. Henning. 1978. Cell envelope and shape of Escherichia coli: multiple mutants missing the outer membrane lipoprotein and other major outer membrane proteins. J. Bacteriol. 136:280285.
128. Tashiro, Y.,, S. Ichikawa,, M. Shimizu,, M. Toyofuku,, N. Takaya,, T. Nakajima-Kambe,, H. Uchiyama,, and N. Nomura. 2010. Variation of physiochemical properties and cell association activity of membrane vesicles with growth phase in Pseudomonas aeruginosa. Appl. Environ. Microbiol. 76:37323739.
129. Tashiro, Y.,, A. Inagaki,, M. Shimizu,, S. Ichikawa,, N. Takaya,, T. Nakajima-Kambe,, H. Uchiyama,, and N. Nomura. 2011. Characterization of phospholipids in membrane vesicles derived from Pseudomonas aeruginosa. Biosci. Biotechnol. Biochem. 75:605607.
130. Tashiro, Y.,, R. Sakai,, M. Toyofuku,, I. Sawada,, T. Nakajima-Kambe,, H. Uchiyama,, and N. Nomura. 2009. Outer membrane machinery and alginate synthesis regulators control membrane vesicle production in Pseudomonas aeruginosa. J. Bacteriol. 191:75097519.
131. Thery, C.,, L. Zitvogel,, and S. Amigorena. 2002. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol. 2:569579.
132. Thompson, K. M.,, V. A. Rhodius,, and S. Gottesman. 2007. σE regulates and is regulated by a small RNA in Escherichia coli. J. Bacteriol. 189:42434256.
133. Thompson, S. S.,, Y. M. Naidu,, and J. J. Pestka. 1985. Ultrastructural localization of an extracellular protease in Pseudomonas fragi by using the peroxidase-antiperoxidase reaction. Appl. Environ. Microbiol. 50:10381042.
134. Udekwu, K. I.,, F. Darfeuille,, J. Vogel,, J. Reimegard,, E. Holmqvist,, and E. G. Wagner. 2005. Hfq-dependent regulation of OmpA synthesis is mediated by an antisense RNA. Genes Dev. 19:23552366.
135. Udekwu, K. I.,, and E. G. Wagner. 2007. Sigma E controls biogenesis of the antisense RNA MicA. Nucleic Acids Res. 35:12791288.
136. Uli, L.,, L. Castellanos-Serra,, L. Betancourt,, F. Dominguez,, R. Barbera,, F. Sotolongo,, G. Guillen,, and R. Pajon Feyt. 2006. Outer membrane vesicles of the VA-MENGOC-BC vaccine against serogroup B of Neisseria meningitidis: analysis of protein components by two-dimensional gel electrophoresis and mass spectrometry. Proteomics 6:33893399.
137. van der Kraan, M. I.,, J. van Marle,, K. Nazmi,, J. Groenink,, W. van't Hof,, E. C. Veerman,, J. G. Bolscher,, and A. V. Nieuw Amerongen. 2005. Ultrastructural effects of antimicrobial peptides from bovine lactoferrin on the membranes of Candida albicans and Escherichia coli. Peptides 26:15371542.
138. Vasilyeva, N. V.,, I. M. Tsfasman,, N. E. Suzina,, O. A. Stepnaya,, and I. S. Kulaev. 2009. Outer membrane vesicles of Lysobacter sp. Dokl. Biochem. Biophys. 426:139142.
139. Vidakovics, M. L.,, J. Jendholm,, M. Morgelin,, A. Mansson,, C. Larsson,, L. O. Cardell,, and K. Riesbeck. 2010. B cell activation by outer membrane vesicles—a novel virulence mechanism. PLoS Pathog. 6:e1000724.
140. Vipond, C.,, J. Suker,, C. Jones,, C. Tang,, I. M. Feavers,, and J. X. Wheeler. 2006. Proteomic analysis of a meningococcal outer membrane vesicle vaccine prepared from the group B strain NZ98/254. Proteomics 6:34003413.
141. Walker, S. G.,, and T. J. Beveridge. 1988. Amikacin disrupts the cell envelope of Pseudomonas aeruginosa ATCC 9027. Can. J. Microbiol. 34:1218.
142. Wang, Y. J.,, and J. R. Leadbetter. 2005. Rapid acyl-homoserine lactone quorum signal biodegradation in diverse soils. Appl. Environ. Microbiol. 71:12911299.
143. Wensink, J.,, and B. Witholt. 1981a. Identification of different forms of the murein-bound lipoprotein found in isolated outer membranes of Escherichia coli. Eur. J. Biochem. 113:349357.
144. Wensink, J.,, and B. Witholt. 1981b. Outer-membrane vesicles released by normally growing Escherichia coli contain very little lipoprotein. Eur. J. Biochem. 116:331335.
145. Work, E.,, K. W. Knox,, and M. Vesk. 1966. The chemistry and electron microscopy of an extracellular lipopolysaccharide from Escherichia coli. Ann. N. Y. Acad. Sci. 133:438449.
146. Yaron, S.,, G. L. Kolling,, L. Simon,, and K. R. Matthews. 2000. Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria. Appl. Environ. Microbiol. 66:44144420.
147. Yem, D. W.,, and H. C. Wu. 1978. Physiological characterization of an Escherichia coli mutant altered in the structure of murein lipoprotein. J. Bacteriol. 133:14191426.
148. Yonezawa, H.,, T. Osaki,, T. Woo,, S. Kurata,, C. Zaman,, F. Hojo,, T. Hanawa,, S. Kato,, and S. Kamiya. 2011. Analysis of outer membrane vesicle protein involved in biofilm formation of Helicobacter pylori. Anaerobe 17:388390.
149. Zhou, L.,, R. Srisatjaluk,, D. E. Justus,, and R. J. Doyle. 1998. On the origin of membrane vesicles in gram-negative bacteria. FEMS Microbiol. Lett. 163:223228.
150. Zollinger, W. D.,, M. A. Donets,, D. H. Schmiel,, V. B. Pinto,, J. Labrie,, E. E. Moran,, B. L. Brandt,, B. Ionin,, R. Marques,, M. Wu,, P. Chen,, M. B. Stoddard,, and P. B. Keiser. 2010. Design and evaluation in mice of a broadly protective meningococcal group B native outer membrane vesicle vaccine. Vaccine 28:50575067.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error