1887

Chapter 3 : Quorum Sensing in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Quorum Sensing in , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap03-2.gif

Abstract:

This chapter focuses on quorum sensing in , specifically , , and (the Bptm group). This group has highly conserved quorum sensing systems, yet each species occupies strikingly different environments. Quorum sensing systems have been found in all of the species studied to date. Prior to discussing the quorum sensing components of the Bptm group, it is important to understand the evolutionary history and lifestyle of each species. and are saprophytic bacteria found in the soil and water in tropical regions common to Southeast Asia, northern Australia, South America, the Middle East, and some regions in Africa. Diagnosis and treatment of melioidosis are challenging because the disease presents with various symptoms and is intrinsically multidrug-resistant. Quorum sensing was first described to occur in the Bptm group within the past decade. The quorum sensing circuits in these bacteria are among the most complex acylated homoserine lactone (AHL) systems described. A summary of the quorum sensing components and AHL signals for each species is discussed in the chapter. Quorum sensing in has many parallels with quorum sensing in . Bacterial adherence, aggregation into microcolonies, and biofilm formation are important survival factors during the saprophytic and host-associated lifestyle of many opportunistic pathogens. The quorum sensing-controlled phenotypes observed in are consistent with the idea that this bacterium uses quorum sensing during its saprophytic lifestyle.

Citation: Majerczyk C, Greenberg E, Chandler J. 2013. Quorum Sensing in , p 40-57. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch3
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Some examples of AHL quorum sensing signals. The AHL structures and corresponding names are shown, organized by chain length or complexity. The signal made by RhII of is C4-HSL. LuxI of makes 3OC6-HSL. The Bptm signals of QS-1, QS-2, and QS-3 are C8-HSL, 3OHC10-HSL, and 3OHC8-HSL, respectively. LasI of produces 3OC12- HSL, and RpaI of synthesizes coumaroyl-HSL (C-HSL). doi:10.1128/9781555818524.ch3f1

Citation: Majerczyk C, Greenberg E, Chandler J. 2013. Quorum Sensing in , p 40-57. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

AHL signaling in (A) and (B). AHL signals (see Fig. 1 ) are made by members of the LuxI family of signal synthases and specifically interact with LuxR family transcription factors. At high cell density, AHLs accumulate and interact with LuxR homologs. AHL interaction causes the LuxR protein to change conformation and become active, which induces target gene regulation. (A) In , LuxI and LuxR produce and respond to 3OC6-HSL (red stars), respectively. (B) In , the LasIR system produces and responds to 3OC12-HSL (purple stars), and the RhlR system produces and responds to C4-HSL (green stars). QscR is an orphan LuxR receptor that is not genetically linked to a synthase gene. QscR responds to 3OC12-HSL produced by LasI. Each quorum sensing regulon is shown as a distinct entity in the figure, but in reality there exists some overlapping regulation among the controlled genes. doi:10.1128/9781555818524.ch3f2

Citation: Majerczyk C, Greenberg E, Chandler J. 2013. Quorum Sensing in , p 40-57. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Quorum sensing circuits of , , and . Shown are the genetic context of the homologous quorum sensing circuits (QS-1, QS-2, and QS-3) in (), (), and (). The cognate signal of each system is shown below the QS designation, and each structure can be found in Fig. 1 . The signals that bind the orphan LuxR homologs have not been determined (nd). The genes for the QS-1 LuxIR homologs are separated by a small region that contains one or two open reading frames of unknown function. The genes coding for the QS-2 LuxIR homologs are found within the bactobolin biosynthetic gene cluster and are separated by three open reading frames predicted to contribute to bactobolin synthesis. The genes coding for the LuxIR homologs of the QS-3 system are separated by a small intergenic region that does not contain additional open reading frames. doi:10.1128/9781555818524.ch3f3

Citation: Majerczyk C, Greenberg E, Chandler J. 2013. Quorum Sensing in , p 40-57. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818524.chap3
1. Adachi, H.,, and Y. Nishimura. 2003. Synthesis and biological activity of bactobolin glucosides. Nat. Prod. Res. 17:253257.
2. Adar, Y. Y.,, and S. Ulitzur. 1993. GroESL proteins facilitate binding of externally added inducer by LuxR protein-containing E. coli cells. J. Biolumin. Chemilumin. 8:261266.
3. Aendekerk, S.,, B. Ghysels,, P. Cornelis,, and C. Baysse. 2002. Characterization of a new efflux pump, MexGHI-OpmD, from Pseudomonas aeruginosa that confers resistance to vanadium. Microbiology 148:23712381.
4. Aguilar, C.,, A. Friscina,, G. Devescovi,, M. Kojic,, and V. Venturi. 2003. Identification of quorum-sensing-regulated genes of Burkholderia cepacia. J. Bacteriol. 185:64566462.
5. Ahlgren, N. A.,, C. S. Harwood,, A. L. Schaefer,, E. Giraud,, and E. P. Greenberg. 2011. Aryl-homoserine lactone quorum sensing in stem-nodulating photosynthetic bradyrhizobia. Proc. Natl. Acad. Sci. USA 108:71837188.
6. Ahmer, B. M.,, J. van Reeuwijk,, C. D. Timmers,, P. J. Valentine,, and F. Heffron. 1998. Salmonella typhimurium encodes an SdiA homolog, a putative quorum sensor of the LuxR family, that regulates genes on the virulence plasmid. J. Bacteriol. 180:11851193.
7. An, D.,, T. Danhorn,, C. Fuqua,, and M. R. Parsek. 2006. Quorum sensing and motility mediate interactions between Pseudomonas aeruginosa and Agrobacterium tumefaciens in biofilm cocultures. Proc. Natl. Acad. Sci. USA 103:38283833.
8. Andersson, R. A.,, A. R. Eriksson,, R. Heikinheimo,, A. Mae,, M. Pirhonen,, V. Koiv,, H. Hyytiainen,, A. Tuikkala,, and E. T. Palva. 2000. Quorum sensing in the plant pathogen Erwinia carotovora subsp. carotovora: the role of expREcc. Mol. Plant-Microbe Interact. 13:384393.
9. Antunes, L. C.,, A. L. Schaefer,, R. B. Ferreira,, N. Qin,, A. M. Stevens,, E. G. Ruby,, and E. P. Greenberg. 2007. Transcriptome analysis of the Vibrio fischeri LuxR-LuxI regulon. J. Bacteriol. 189:83878391.
10. Bainton, N. J.,, B. W. Bycroft,, S. R. Chhabra,, P. Stead,, L. Gledhill,, P. J. Hill,, C. E. Rees,, M. K. Winson,, G. P. Salmond,, G. S. Stewart, et al. 1992a. A general role for the lux autoinducer in bacterial cell signalling: control of antibiotic biosynthesis in Erwinia. Gene 116:8791.
11. Bainton, N. J.,, P. Stead,, S. R. Chhabra,, B. W. Bycroft,, G. P. Salmond,, G. S. Stewart,, and P. Williams. 1992b. N-(3-Oxohexanoyl)-L-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora. Biochem. J. 288(Pt. 3):9971004.
12. Bose, J. L.,, U. Kim,, W. Bartkowski,, R. P. Gunsalus,, A. M. Overley,, N. L. Lyell,, K. L. Visick,, and E. V. Stabb. 2007. Bioluminescence in Vibrio fischeri is controlled by the redox-responsive regulator ArcA. Mol. Microbiol. 65:538553.
13. Brett, P. J.,, D. DeShazer,, and D. E. Woods. 1998. Burkholderia thailandensis sp. nov., a Burkholderia pseudomallei-like species. Int. J. Syst. Bacteriol. 48(Pt. 1):317320.
14. Caballero-Mellado, J.,, J. Onofre-Lemus,, P. Estrada-de Los Santos,, and L. Martinez-Aguilar. 2007. The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Appl. Environ. Microbiol. 73:53085319.
15. Cabrol, S.,, A. Olliver,, G. B. Pier,, A. Andremont,, and R. Ruimy. 2003. Transcription of quorum-sensing system genes in clinical and environmental isolates of Pseudomonas aeruginosa. J. Bacteriol. 185:72227230.
16. Callahan, S. M.,, and P. V. Dunlap. 2000. LuxR- and acyl-homoserine-lactone-controlled non-lux genes define a quorum-sensing regulon in Vibrio fischeri. J. Bacteriol. 182:28112822.
17. Carr, G.,, M. R. Seyedsayamdost,, J. R. Chandler,, E. P. Greenberg,, and J. Clardy. 2011. Sources of diversity in bactobolin biosynthesis by Burkholderia thailandensis E264. Org. Lett. 13:30483051.
18. Chan, Y. Y.,, H. S. Bian,, T. M. Tan,, M. E. Mattmann,, G. D. Geske,, J. Igarashi,, T. Hatano,, H. Suga,, H. E. Blackwell,, and K. L. Chua. 2007. Control of quorum sensing by a Burkholderia pseudomallei multidrug efflux pump. J. Bacteriol. 189:43204324.
19. Chan, Y. Y.,, and K. L. Chua. 2005. The Burkholderia pseudomallei BpeAB-OprB efflux pump: expression and impact on quorum sensing and virulence. J. Bacteriol. 187:47074719.
20. Chandler, J. R.,, B. A. Duerkop,, A. Hinz,, T. E. West,, J. P. Herman,, M. E. Churchill,, S. J. Skerrett,, and E. P. Greenberg. 2009. Mutational analysis of Burkholderia thailandensis quorum sensing and self-aggregation. J. Bacteriol. 191:59015909.
21. Chantratita, N.,, V. Wuthiekanun,, K. Boonbumrung,, R. Tiyawisutsri,, M. Vesaratchavest,, D. Limmathurotsakul,, W. Chierakul,, S. Wongratanacheewin,, S. Pukritiyakamee,, N. J. White,, N. P. Day,, and S. J. Peacock. 2007. Biological relevance of colony morphology and phenotypic switching by Burkholderia pseudomallei. J. Bacteriol. 189:807817.
22. Cheng, A. C.,, and B. J. Currie. 2005. Melioidosis: epidemiology, pathophysiology, and management. Clin. Microbiol. Rev. 18:383416.
23. Chugani, S. A.,, M. Whiteley,, K. M. Lee,, D. D’Argenio,, C. Manoil,, and E. P. Greenberg. 2001. QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 98:27522757.
24. Conway, B. A.,, K. K. Chu,, J. Bylund,, E. Altman,, and D. P. Speert. 2004. Production of exopolysaccharide by Burkholderia cenocepacia results in altered cell-surface interactions and altered bacterial clearance in mice. J. Infect. Dis. 190:957966.
25. Costerton, J. W.,, Z. Lewandowski,, D. E. Caldwell,, D. R. Korber,, and H. M. Lappin-Scott. 1995. Microbial biofilms. Annu. Rev. Microbiol. 49:711745.
26. Costerton, J. W.,, P. S. Stewart,, and E. P. Greenberg. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284:13181322.
27. Cunha, M. V.,, S. A. Sousa,, J. H. Leitao,, L. M. Moreira,, P. A. Videira,, and I. Sa-Correia. 2004. Studies on the involvement of the exopolysaccharide produced by cystic fibrosis-associated isolates of the Burkholderia cepacia complex in biofilm formation and in persistence of respiratory infections. J. Clin. Microbiol. 42:30523058.
28. Currie, B. J.,, L. Ward,, and A. C. Cheng. 2010. The epidemiology and clinical spectrum of melioidosis: 540 cases from the 20 year Darwin prospective study. PLoS Negl. Trop. Dis. 4:e900.
29. D’Argenio, D. A.,, M. Wu,, L. R. Hoffman,, H. D. Kulasekara,, E. Deziel,, E. E. Smith,, H. Nguyen,, R. K. Ernst,, T. J. Larson Freeman,, D. H. Spencer,, M. Brittnacher,, H. S. Hayden,, S. Selgrade,, M. Klausen,, D. R. Goodlett,, J. L. Burns,, B. W. Ramsey,, and S. I. Miller. 2007. Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients. Mol. Microbiol. 64:512533.
30. Delrue, R. M.,, C. Deschamps,, S. Leonard,, C. Nijskens,, I. Danese,, J. M. Schaus,, S. Bonnot,, J. Ferooz,, A. Tibor,, X. De Bolle,, and J. J. Letesson. 2005. A quorum-sensing regulator controls expression of both the type IV secretion system and the flagellar apparatus of Brucella melitensis. Cell. Microbiol. 7:11511161.
31. DeShazer, D.,, P. J. Brett,, M. N. Burtnick,, and D. E. Woods. 1999. Molecular characterization of genetic loci required for secretion of exoproducts in Burkholderia pseudomallei. J. Bacteriol. 181:46614664.
32. Devine, J. H.,, G. S. Shadel,, and T. O. Baldwin. 1989. Identification of the operator of the lux regulon from the Vibrio fischeri strain ATCC7744. Proc. Natl. Acad. Sci. USA 86:56885692.
33. Diggle, S. P.,, A. Gardner,, S. A. West,, and A. S. Griffin. 2007a. Evolutionary theory of bacterial quorum sensing: when is a signal not a signal? Philos. Trans. R. Soc. Lond. B 362:12411249.
34. Diggle, S. P.,, A. S. Griffin,, G. S. Campbell,, and S. A. West. 2007b. Cooperation and conflict in quorum-sensing bacterial populations. Nature 450:411414.
35. Drevinek, P.,, and E. Mahenthiralingam. 2010. Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence. Clin. Microbiol. Infect. 16:821830.
36. Duerkop, B. A.,, J. P. Herman,, R. L. Ulrich,, M. E. Churchill,, and E. P. Greenberg. 2008. The Burkholderia mallei BmaR3-BmaI3 quorum-sensing system produces and responds to N-3-hydroxy-octanoyl homoserine lactone. J. Bacteriol. 190:5137–5141.
37. Duerkop, B. A.,, R. L. Ulrich,, and E. P. Greenberg. 2007. Octanoyl-homoserine lactone is the cognate signal for Burkholderia mallei BmaR1-BmaI1 quorum sensing. J. Bacteriol. 189:50345040.
38. Duerkop, B. A.,, J. Varga,, J. R. Chandler,, S. B. Peterson,, J. P. Herman,, M. E. Churchill,, M. R. Parsek,, W. C. Nierman,, and E. P. Greenberg. 2009. Quorum-sensing control of antibiotic synthesis in Burkholderia thailandensis. J. Bacteriol. 191:39093918.
39. Dyszel, J. L.,, J. N. Smith,, D. E. Lucas,, J. A. Soares,, M. C. Swearingen,, M. A. Vross,, G. M. Young,, and B. M. Ahmer. 2010. Salmonella enterica serovar Typhimurium can detect acyl homoserine lactone production by Yersinia enterocolitica in mice. J. Bacteriol. 192:2937.
40. Eberhard, A.,, A. L. Burlingame,, C. Eberhard,, G. L. Kenyon,, K. H. Nealson,, and N. J. Oppenheimer. 1981. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20:24442449.
41. Engebrecht, J.,, K. Nealson,, and M. Silverman. 1983. Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell 32:773781.
42. Engebrecht, J.,, and M. Silverman. 1984. Identification of genes and gene products necessary for bacterial bioluminescence. Proc. Natl. Acad. Sci. USA 81:41544158.
43. Ferluga, S.,, J. Bigirimana,, M. Hofte,, and V. Venturi. 2007. A LuxR homologue of Xanthomonas oryzae pv. oryzae is required for optimal rice virulence. Mol. Plant Pathol. 8:529538.
44. Ferreira, A. S.,, J. H. Leitao,, I. N. Silva,, P. F. Pinheiro,, S. A. Sousa,, C. G. Ramos,, and L. M. Moreira. 2010. Distribution of cepacian biosynthesis genes among environmental and clinical Burkholderia strains and role of cepacian exopolysaccharide in resistance to stress conditions. Appl. Environ. Microbiol. 76:441450.
45. Fothergill, J. L.,, S. Panagea,, C. A. Hart,, M. J. Walshaw,, T. L. Pitt,, and C. Winstanley. 2007. Widespread pyocyanin over-production among isolates of a cystic fibrosis epidemic strain. BMC Microbiol. 7:45.
46. Fritz, D. L.,, P. Vogel,, D. R. Brown,, D. Deshazer,, and D. M. Waag. 2000. Mouse model of sublethal and lethal intraperitoneal glanders (Burkholderia mallei). Vet. Pathol. 37:626636.
47. Fritz, D. L.,, P. Vogel,, D. R. Brown,, and D. M. Waag. 1999. The hamster model of intraperitoneal Burkholderia mallei (glanders). Vet. Pathol. 36:276291.
48. Fuqua, C. 2006. The QscR quorum-sensing regulon of Pseudomonas aeruginosa: an orphan claims its identity. J. Bacteriol. 188:31693171.
49. Fuqua, C.,, and E. P. Greenberg. 2002. Listening in on bacteria: acyl-homoserine lactone signalling. Nat. Rev. Mol. Cell Biol. 3:685695.
50. Fuqua, C.,, M. R. Parsek,, and E. P. Greenberg. 2001. Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu. Rev. Genet. 35:439468.
51. Fuqua, W. C.,, and S. C. Winans. 1994. A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. J. Bacteriol. 176:27962806.
52. Fuqua, W. C.,, S. C. Winans,, and E. P. Greenberg. 1994. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176:269275.
53. Galyov, E. E.,, P. J. Brett,, and D. DeShazer. 2010. Molecular insights into Burkholderia pseudomallei and Burkholderia mallei pathogenesis. Annu. Rev. Microbiol. 64:495517.
54. Gamage, A. M.,, G. Shui,, M. R. Wenk,, and K. L. Chua. 2011. N-Octanoyl homoserine lactone signaling mediated by the BpsI-BpsR quorum sensing system plays a major role in biofilm formation of Burkholderia pseudomallei. Microbiology 157:11761186.
55. Gambello, M. J.,, and B. H. Iglewski. 1991. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J. Bacteriol. 173:30003009.
56. Gauthier, Y. P.,, R. M. Hagen,, G. S. Brochier,, H. Neubauer,, W. D. Splettstoesser,, E. J. Finke,, and D. R. Vidal. 2001. Study on the pathophysiology of experimental Burkholderia pseudomallei infection in mice. FEMS Immunol. Med. Microbiol. 30:5363.
57. Gauthier, Y. P.,, F. M. Thibault,, J. C. Paucod,, and D. R. Vidal. 2000. Protease production by Burkholderia pseudomallei and virulence in mice. Acta Trop. 74:215220.
58. Gilad, J.,, I. Harary,, T. Dushnitsky,, D. Schwartz,, and Y. Amsalem. 2007. Burkholderia mallei and Burkholderia pseudomallei as bioterrorism agents: national aspects of emergency preparedness. Isr. Med. Assoc. J. 9:499503.
59. Gilbert, K. B.,, T. H. Kim,, R. Gupta,, E. P. Greenberg,, and M. Schuster. 2009. Global position analysis of the Pseudomonas aeruginosa quorum-sensing transcription factor LasR. Mol. Microbiol. 73:10721085.
60. Gilson, L.,, A. Kuo,, and P. V. Dunlap. 1995. AinS and a new family of autoinducer synthesis proteins. J. Bacteriol. 177:69466951.
61. Glass, M. B.,, J. E. Gee,, A. G. Steigerwalt,, D. Cavuoti,, T. Barton,, R. D. Hardy,, D. Godoy,, B. G. Spratt,, T. A. Clark,, and P. P. Wilkins. 2006. Pneumonia and septicemia caused by Burkholderia thailandensis in the United States. J. Clin. Microbiol. 44:46014604.
62. Godoy, D.,, G. Randle,, A. J. Simpson,, D. M. Aanensen,, T. L. Pitt,, R. Kinoshita,, and B. G. Spratt. 2003. Multilocus sequence typing and evolutionary relationships among the causative agents of melioidosis and glanders, Burkholderia pseudomallei and Burkholderia mallei. J. Clin. Microbiol. 41:20682079.
63. Graf, J.,, and E. G. Ruby. 1998. Host-derived amino acids support the proliferation of symbiotic bacteria. Proc. Natl. Acad. Sci. USA 95:18181822.
64. Green, S. K.,, M. N. Schroth,, J. J. Cho,, S. K. Kominos,, and V. B. Vitanza-jack. 1974. Agricultural plants and soil as a reservoir for Pseudomonas aeruginosa. Appl. Microbiol. 28:987991.
65. Gregory, B. C.,, and D. M. Waag,. 2007. Glanders, p. 121146. In Z. F. Dembek (ed.), Medical Aspects of Biological Warfare. Office of the Surgeon General, Washington, DC.
66. Hanzelka, B. L.,, and E. P. Greenberg. 1995. Evidence that the N-terminal region of the Vibrio fischeri LuxR protein constitutes an autoinducer-binding domain. J. Bacteriol. 177:815817.
67. Hardalo, C.,, and S. C. Edberg. 1997. Pseudomonas aeruginosa: assessment of risk from drinking water. Crit. Rev. Microbiol. 23:4775.
68. Hassett, D. J.,, J. F. Ma,, J. G. Elkins,, T. R. McDermott,, U. A. Ochsner,, S. E. West,, C. T. Huang,, J. Fredericks,, S. Burnett,, P. S. Stewart,, G. McFeters,, L. Passador,, and B. H. Iglewski. 1999. Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol. Microbiol. 34:10821093.
69. Hentzer, M.,, H. Wu,, J. B. Andersen,, K. Riedel,, T. B. Rasmussen,, N. Bagge,, N. Kumar,, M. A. Schembri,, Z. Song,, P. Kristoffersen,, M. Manefield,, J. W. Costerton,, S. Molin,, L. Eberl,, P. Steinberg,, S. Kjelleberg,, N. Hoiby,, and M. Givskov. 2003. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J. 22:38033815.
70. Heurlier, K.,, V. Denervaud,, and D. Haas. 2006. Impact of quorum sensing on fitness of Pseudomonas aeruginosa. Int. J. Med. Microbiol. 296:93102.
71. Heurlier, K.,, V. Denervaud,, M. Haenni,, L. Guy,, V. Krishnapillai,, and D. Haas. 2005. Quorum-sensing-negative (lasR) mutants of Pseudomonas aeruginosa avoid cell lysis and death. J. Bacteriol. 187:48754883.
72. Hibbing, M. E.,, C. Fuqua,, M. R. Parsek,, and S. B. Peterson. 2010. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8:1525.
73. Hoffman, L. R.,, H. D. Kulasekara,, J. Emerson,, L. S. Houston,, J. L. Burns,, B. W. Ramsey,, and S. I. Miller. 2009. Pseudomonas aeruginosa lasR mutants are associated with cystic fibrosis lung disease progression. J. Cyst. Fibros. 8:6670.
74. Holden, M. T.,, R. W. Titball,, S. J. Peacock,, A. M. Cerdeno-Tarraga,, T. Atkins,, L. C. Crossman,, T. Pitt,, C. Churcher,, K. Mungall,, S. D. Bentley,, M. Sebaihia,, N. R. Thomson,, N. Bason,, I. R. Beacham,, K. Brooks,, K. A. Brown,, N. F. Brown,, G. L. Challis,, I. Cherevach,, T. Chillingworth,, A. Cronin,, B. Crossett,, P. Davis,, D. DeShazer,, T. Feltwell,, A. Fraser,, Z. Hance,, H. Hauser,, S. Holroyd,, K. Jagels,, K. E. Keith,, M. Maddison,, S. Moule,, C. Price,, M. A. Quail,, E. Rabbinowitsch,, K. Rutherford,, M. Sanders,, M. Simmonds,, S. Songsivilai,, K. Stevens,, S. Tumapa,, M. Vesaratchavest,, S. Whitehead,, C. Yeats,, B. G. Barrell,, P. C. Oyston,, and J. Parkhill. 2004. Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc. Natl. Acad. Sci. USA 101:1424014245.
75. Hoppe, I.,, B. Brenneke,, M. Rohde,, A. Kreft,, S. Haussler,, A. Reganzerowski,, and I. Steinmetz. 1999. Characterization of a murine model of melioidosis: comparison of different strains of mice. Infect. Immun. 67:28912900.
76. Hori, M.,, K. Suzukake,, C. Ishikawa,, H. Asakura,, and H. Umezawa. 1981. Biochemical studies on bactobolin in relation to actinobolin. J. Antibiot. (Tokyo) 34:465468.
77. Huber, B.,, K. Riedel,, M. Hentzer,, A. Heydorn,, A. Gotschlich,, M. Givskov,, S. Molin,, and L. Eberl. 2001. The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology 147:25172528.
78. Jones, S.,, B. Yu,, N. J. Bainton,, M. Birdsall,, B. W. Bycroft,, S. R. Chhabra,, A. J. Cox,, P. Golby,, P. J. Reeves,, S. Stephens, et al. 1993. The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa. EMBO J. 12:24772482.
79. Kanamaru, K.,, I. Tatsuno,, T. Tobe,, and C. Sasakawa. 2000. SdiA, an Escherichia coli homologue of quorum-sensing regulators, controls the expression of virulence factors in enterohaemorrhagic Escherichia coli O157:H7. Mol. Microbiol. 38:805816.
80. Kaplan, H. B.,, and E. P. Greenberg. 1985. Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system. J. Bacteriol. 163:12101214.
81. Kim, H. S.,, M. A. Schell,, Y. Yu,, R. L. Ulrich,, S. H. Sarria,, W. C. Nierman,, and D. DeShazer. 2005. Bacterial genome adaptation to niches: divergence of the potential virulence genes in three Burkholderia species of different survival strategies. BMC Genomics 6:174.
82. Kim, J.,, J. G. Kim,, Y. Kang,, J. Y. Jang,, G. J. Jog,, J. Y. Lim,, S. Kim,, H. Suga,, T. Nagamatsu,, and I. Hwang. 2004. Quorum sensing and the LysR-type transcriptional activator ToxR regulate toxoflavin biosynthesis and transport in Burkholderia glumae. Mol. Microbiol. 54:921934.
83. Kiratisin, P.,, and S. Sanmee. 2008. Roles and interactions of Burkholderia pseudomallei BpsIR quorum-sensing system determinants. J. Bacteriol. 190:72917297.
84. Knappe, T. A.,, U. Linne,, S. Zirah,, S. Rebuffat,, X. Xie,, and M. A. Marahiel. 2008. Isolation and structural characterization of capistruin, a lasso peptide predicted from the genome sequence of Burkholderia thailandensis E264. J. Am. Chem. Soc. 130:1144611454.
85. Kohler, T.,, L. K. Curty,, F. Barja,, C. van Delden,, and J. C. Pechere. 2000. Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J. Bacteriol. 182:59905996.
86. Kohler, T.,, C. van Delden,, L. K. Curty,, M. M. Hamzehpour,, and J. C. Pechere. 2001. Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa. J. Bacteriol. 183:52135222.
87. Kohler, T.,, G. G. Perron,, A. Buckling,, and C. van Deldon. 2010. Quorum sensing inhibition selects for virulence and cooperation in Pseudomonas aeruginosa. PLoS Pathog. 6:e1000883.
88. Kondo, S.,, Y. Horiuchi,, M. Hamada,, T. Takeuchi,, and H. Umezawa. 1979. A new antitumor antibiotic, bactobolin produced by Pseudomonas. J. Antibiot. (Tokyo) 32:10691071.
89. Korbsrisate, S.,, N. Suwanasai,, A. Leelaporn,, T. Ezaki,, Y. Kawamura,, and S. Sarasombath. 1999. Cloning and characterization of a nonhemolytic phospholipase C gene from Burkholderia pseudomallei. J. Clin. Microbiol. 37:37423745.
90. Korbsrisate, S.,, A. Tomaras,, S. Damin,, J. Ckumdee,, V. Srinon,, I. Lengwehasatit,, M. Vasil,, and S. Suparak. 2007. Characterization of two distinct phospholipase C enzymes from Burkholderia pseudomallei. Microbiology 153:19071915.
91. Kothe, M.,, M. Antl,, B. Huber,, K. Stoecker,, D. Ebrecht,, I. Steinmetz,, and L. Eberl. 2003. Killing of Caenorhabditis elegans by Burkholderia cepacia is controlled by the cep quorum-sensing system. Cell. Microbiol. 5:343351.
92. Latifi, A.,, M. Foglino,, K. Tanaka,, P. Williams,, and A. Lazdunski. 1996. A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol. Microbiol. 21:11371146.
93. Lazar Adler, N. R.,, B. Govan,, M. Cullinane,, M. Harper,, B. Adler,, and J. D. Boyce. 2009. The molecular and cellular basis of pathogenesis in melioidosis: how does Burkholderia pseudomallei cause disease? FEMS Microbiol. Rev. 33:10791099.
94. Lee, J. H.,, Y. Lequette,, and E. P. Greenberg. 2006. Activity of purified QscR, a Pseudomonas aeruginosa orphan quorum-sensing transcription factor. Mol. Microbiol. 59:602609.
95. Leelarasamee, A. 2004. Recent development in melioidosis. Curr. Opin. Infect. Dis. 17:131136.
96. Lequette, Y.,, J. H. Lee,, F. Ledgham,, A. Lazdunski,, and E. P. Greenberg. 2006. A distinct QscR regulon in the Pseudomonas aeruginosa quorum-sensing circuit. J. Bacteriol. 188:33653370.
97. Lerat, E.,, and N. A. Moran. 2004. The evolutionary history of quorum-sensing systems in bacteria. Mol. Biol. Evol. 21:903913.
98. Lertpatanasuwan, N.,, K. Sermsri,, A. Petkaseam,, S. Trakulsomboon,, V. Thamlikitkul,, and Y. Suputtamongkol. 1999. Arabinose-positive Burkholderia pseudomallei infection in humans: case report. Clin. Infect. Dis. 28:927928.
99. Lever, M. S.,, M. Nelson,, P. I. Ireland,, A. J. Stagg,, R. J. Beedham,, G. A. Hall,, G. Knight,, and R. W. Titball. 2003. Experimental aerogenic Burkholderia mallei (glanders) infection in the BALB/c mouse. J. Med. Microbiol. 52:11091115.
100. Lewenza, S.,, B. Conway,, E. P. Greenberg,, and P. A. Sokol. 1999. Quorum sensing in Burkholderia cepacia: identification of the LuxRI homologs CepRI. J. Bacteriol. 181:748756.
101. Lewenza, S.,, and P. A. Sokol. 2001. Regulation of ornibactin biosynthesis and N-acyl-L-homoserine lactone production by CepR in Burkholderia cepacia. J. Bacteriol. 183:22122218.
102. Limmathurotsakul, D.,, S. Wongratanacheewin,, N. Teerawattanasook,, G. Wongsuvan,, S. Chaisuksant,, P. Chetchotisakd,, W. Chaowagul,, N. P. Day,, and S. J. Peacock. 2010. Increasing incidence of human melioidosis in Northeast Thailand. Am. J. Trop. Med. Hyg. 82:11131117.
103. Loprasert, S.,, W. Whangsuk,, R. Sallabhan,, and S. Mongkolsuk. 2004. DpsA protects the human pathogen Burkholderia pseudomallei against organic hydroperoxide. Arch. Microbiol. 182:96101.
104. Losada, L.,, C. M. Ronning,, D. DeShazer,, D. Woods,, N. Fedorova,, H. S. Kim,, S. A. Shabalina,, T. R. Pearson,, L. Brinkac,, P. Tan,, T. Nandi,, J. Crabtree,, J. Badger,, S. Beckstrom-Sternberg,, M. Saqib,, S. E. Schutzer,, P. Keim,, and W. C. Nierman. 2010. Continuing evolution of Burkholderia mallei through genome reduction and large-scale rearrangements. Genome Biol. Evol. 2:102116.
105. Loutet, S. A.,, and M. A. Valvano. 2010. A decade of Burkholderia cenocepacia virulence determinant research. Infect. Immun. 78:40884100.
106. Lumjiaktase, P.,, S. P. Diggle,, S. Loprasert,, S. Tungpradabkul,, M. Daykin,, M. Camara,, P. Williams,, and M. Kunakorn. 2006. Quorum sensing regulates dpsA and the oxidative stress response in Burkholderia pseudomallei. Microbiology 152:36513659.
107. Luo, Y.,, E. A. Frey,, R. A. Pfuetzner,, A. L. Creagh,, D. G. Knoechel,, C. A. Haynes,, B. B. Finlay,, and N. C. Strynadka. 2000. Crystal structure of enteropathogenic Escherichia coli intimin-receptor complex. Nature 405:10731077.
108. Lupp, C.,, M. Urbanowski,, E. P. Greenberg,, and E. G. Ruby. 2003. The Vibrio fischeri quorum-sensing systems ain and lux sequentially induce luminescence gene expression and are important for persistence in the squid host. Mol. Microbiol. 50:319331.
109. Lutter, E.,, S. Lewenza,, J. J. Dennis,, M. B. Visser,, and P. A. Sokol. 2001. Distribution of quorum-sensing genes in the Burkholderia cepacia complex. Infect. Immun. 69:46614666.
110. Lyczak, J. B.,, C. L. Cannon,, and G. B. Pier. 2000. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect. 2:10511060.
111. Lyczak, J. B.,, C. L. Cannon,, and G. B. Pier. 2002. Lung infections associated with cystic fibrosis. Clin. Microbiol. Rev. 15:194222.
112. Mahajan-Miklos, S.,, M. W. Tan,, L. G. Rahme,, and F. M. Ausubel. 1999. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell 96:4756.
113. Mahenthiralingam, E.,, T. A. Urban,, and J. B. Goldberg. 2005. The multifarious, multireplicon Burkholderia cepacia complex. Nat. Rev. Microbiol. 3:144156.
114. Martinez-Aguilar, L.,, R. Diaz,, J. J. Pena-Cabriales,, P. Estrada-de Los Santos,, M. F. Dunn,, and J. Caballero-Mellado. 2008. Multichromosomal genome structure and confirmation of diazotrophy in novel plant-associated Burkholderia species. Appl. Environ. Microbiol. 74:45744579.
115. McFall-Ngai, M. J.,, and E. G. Ruby. 1991. Symbiont recognition and subsequent morphogenesis as early events in an animal-bacterial mutualism. Science 254:14911494.
116. McGowan, S.,, M. Sebaihia,, S. Jones,, B. Yu,, N. Bainton,, P. F. Chan,, B. Bycroft,, G. S. Stewart,, P. Williams,, and G. P. Salmond. 1995. Carbapenem antibiotic production in Erwinia carotovora is regulated by CarR, a homologue of the LuxR transcriptional activator. Microbiology 141(Pt. 3):541550.
117. Meyer, J. M.,, A. Neely,, A. Stintzi,, C. Georges,, and I. A. Holder. 1996. Pyoverdin is essential for virulence of Pseudomonas aeruginosa. Infect. Immun. 64:518523.
118. Michael, B.,, J. N. Smith,, S. Swift,, F. Heffron,, and B. M. Ahmer. 2001. SdiA of Salmonella enterica is a LuxR homolog that detects mixed microbial communities. J. Bacteriol. 183:57335742.
119. Mima, T.,, and H. P. Schweizer. 2010. The BpeAB-OprB efflux pump of Burkholderia pseudomallei 1026b does not play a role in quorum sensing, virulence factor production, or extrusion of aminoglycosides but is a broad-spectrum drug efflux system. Antimicrob. Agents Chemother. 54:31133120.
120. Minogue, T. D.,, M. Wehland-von Trebra,, F. Bernhard,, and S.B. von Bodman. 2002. The autoregulatory role of EsaR, a quorum-sensing regulator in Pantoea stewartii ssp. stewartii: evidence for a repressor function. Mol. Microbiol. 44:16251635.
121. Molina, L.,, F. Constantinescu,, L. Michel,, C. Reimmann,, B. Duffy,, and G. Defago. 2003. Degradation of pathogen quorum-sensing molecules by soil bacteria: a preventive and curative biological control mechanism. FEMS Microbiol. Ecol. 45:7181.
122. More, M. I.,, L. D. Finger,, J. L. Stryker,, C. Fuqua,, A. Eberhard,, and S. C. Winans. 1996. Enzymatic synthesis of a quorum-sensing autoinducer through use of defined substrates. Science 272:16551658.
123. Nasser, W.,, M. L. Bouillant,, G. Salmond,, and S. Reverchon. 1998. Characterization of the Erwinia chrysanthemi expI-expR locus directing the synthesis of two N-acyl-homoserine lactone signal molecules. Mol. Microbiol. 29:13911405.
124. Nealson, K. H.,, and J. W. Hastings. 1979. Bacterial bioluminescence: its control and ecological significance. Microbiol. Rev. 43:496518.
125. Nguyen, T.,, K. Ishida,, H. Jenke-Kodama,, E. Dittmann,, C. Gurgui,, T. Hochmuth,, S. Taudien,, M. Platzer,, C. Hertweck,, and J. Piel. 2008. Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection. Nat. Biotechnol. 26:225233.
126. Nierman, W. C.,, D. DeShazer,, H. S. Kim,, H. Tettelin,, K. E. Nelson,, T. Feldblyum,, R. L. Ulrich,, C. M. Ronning,, L. M. Brinkac,, S. C. Daugherty,, T. D. Davidsen,, R. T. Deboy,, G. Dimitrov,, R. J. Dodson,, A. S. Durkin,, M. L. Gwinn,, D. H. Haft,, H. Khouri,, J. F. Kolonay,, R. Madupu,, Y. Mohammoud,, W. C. Nelson,, D. Radune,, C. M. Romero,, S. Sarria,, J. Selengut,, C. Shamblin,, S. A. Sullivan,, O. White,, Y. Yu,, N. Zafar,, L. Zhou,, and C. M. Fraser. 2004. Structural flexibility in the Burkholderia mallei genome. Proc. Natl. Acad. Sci. USA 101:1424614251.
127. Ochsner, U. A.,, A. K. Koch,, A. Fiechter,, and J. Reiser. 1994. Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J. Bacteriol. 176:20442054.
128. Ochsner, U. A.,, and J. Reiser. 1995. Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 92:64246428.
129. Park, J. H.,, J. Hwang,, J. W. Kim,, S. O. Lee,, B. A. Conway,, E. P. Greenberg,, and K. Lee. 2001. Characterization of quorum-sensing signaling molecules produced by Burkholderia cepacia G4. Microbiol. Biotechnol. 11:804811.
130. Parsek, M. R.,, and E. P. Greenberg. 2000. Acyl-homoserine lactone quorum sensing in gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc. Natl. Acad. Sci. USA 97:87898793.
131. Parsek, M. R.,, D. L. Val,, B. L. Hanzelka,, J. E. Cronan, Jr.,, and E. P. Greenberg. 1999. Acyl homoserine-lactone quorum-sensing signal generation. Proc. Natl. Acad. Sci. USA 96:43604365.
132. Passador, L.,, J. M. Cook,, M. J. Gambello,, L. Rust,, and B. H. Iglewski. 1993. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260:11271130.
133. Patankar, A. V.,, and J. E. Gonzalez. 2009. Orphan LuxR regulators of quorum sensing. FEMS Microbiol. Rev. 33:739756.
134. Pearson, J. P.,, K. M. Gray,, L. Passador,, K. D. Tucker,, A. Eberhard,, B. H. Iglewski,, and E. P. Greenberg. 1994. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc. Natl. Acad. Sci. USA 91:197201.
135. Pearson, J. P.,, L. Passador,, B. H. Iglewski,, and E. P. Greenberg. 1995. A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 92:14901494.
136. Pearson, J. P.,, E. C. Pesci,, and B. H. Iglewski. 1997. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J. Bacteriol. 179:57565767.
137. Penalver, C. G.,, F. Cantet,, D. Morin,, D. Haras,, and J. A. Vorholt. 2006. A plasmid-borne truncated luxI homolog controls quorum-sensing systems and extracellular carbohydrate production in Methylobacterium extorquens AM1. J. Bacteriol. 188:73217324.
138. Peterson, K. M.,, and J. J. Mekalanos. 1988. Characterization of the Vibrio cholerae ToxR regulon: identification of novel genes involved in intestinal colonization. Infect. Immun. 56:28222829.
139. Pierson, L. S., III,, V. D. Keppenne,, and D. W. Wood. 1994. Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30-84 is regulated by PhzR in response to cell density. J. Bacteriol. 176:39663974.
140. Piper, K. R.,, S. Beck von Bodman,, and S. K. Farrand. 1993. Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature 362:448450.
141. Pirhonen, M.,, D. Flego,, R. Heikinheimo,, and E. T. Palva. 1993. A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. EMBO J. 12:24672476.
142. Poonguzhali, S.,, M. Madhaiyan,, and T. Sa. 2007. Production of acyl-homoserine lactone quorum-sensing signals is wide-spread in Gram-negative Methylobacterium. J. Microbiol. Biotechnol. 17:226233.
143. Puskas, A.,, E. P. Greenberg,, S. Kaplan,, and A. L. Schaefer. 1997. A quorum-sensing system in the free-living photosynthetic bacterium Rhodobacter sphaeroides. J. Bacteriol. 179:75307537.
144. Rahme, L. G.,, E. J. Stevens,, S. F. Wolfort,, J. Shao,, R. G. Tompkins,, and F. M. Ausubel. 1995. Common virulence factors for bacterial pathogenicity in plants and animals. Science 268:18991902.
145. Rambow-Larsen, A. A.,, G. Rajashekara,, E. Petersen,, and G. Splitter. 2008. Putative quorum-sensing regulator BlxR of Brucella melitensis regulates virulence factors including the type IV secretion system and flagella. J. Bacteriol. 190:32743282.
146. Redfield, R. J. 2002. Is quorum sensing a side effect of diffusion sensing? Trends Microbiol. 10:365370.
147. Richau, J. A.,, J. H. Leitao,, M. Correia,, L. Lito,, M. J. Salgado,, C. Barreto,, P. Cescutti,, and I. Sa-Correia. 2000. Molecular typing and exopolysaccharide biosynthesis of Burkholderia cepacia isolates from a Portuguese cystic fibrosis center. J. Clin. Microbiol. 38:16511655.
148. Rivas, M.,, M. Seeger,, D. S. Holmes,, and E. Jedlicki. 2005. A Lux-like quorum sensing system in the extreme acidophile Acidithiobacillus ferrooxidans. Biol. Res. 38:283297.
149. Ruby, E. G. 1996. Lessons from a cooperative, bacterial-animal association: the Vibrio fischeri-Euprymna scolopes light organ symbiosis. Annu. Rev. Microbiol. 50:591624.
150. Ruby, E. G.,, and M. J. McFall-Ngai. 1992. A squid that glows in the night: development of an animal-bacterial mutualism. J. Bacteriol. 174:48654870.
151. Ruby, E. G.,, and M. J. McFall-Ngai. 1999. Oxygen-utilizing reactions and symbiotic colonization of the squid light organ by Vibrio fischeri. Trends Microbiol. 7:414420.
152. Rumbaugh, K. P.,, S. P. Diggle,, C. M. Watters,, A. Ross-Gillespie,, A. S. Griffin,, and S. A. West. 2009. Quorum sensing and the social evolution of bacterial virulence. Curr. Biol. 19:341345.
153. Rumbaugh, K. P.,, J. A. Griswold,, and A. N. Hamood. 1999. Contribution of the regulatory gene lasR to the pathogenesis of Pseudomonas aeruginosa infection of burned mice. J. Burn Care Rehabil. 20:4249.
154. Sandoz, K. M.,, S. M. Mitzimberg,, and M. Schuster. 2007. Social cheating in Pseudomonas aeruginosa quorum sensing. Proc. Natl. Acad. Sci. USA 104:1587615881.
155. Sawasdidoln, C.,, S. Taweechaisupapong,, R. W. Sermswan,, U. Tattawasart,, S. Tungpradabkul,, and S. Wongratanacheewin. 2010. Growing Burkholderia pseudomallei in biofilm stimulating conditions significantly induces antimicrobial resistance. PLoS One 5:e9196.
156. Schaefer, A. L.,, E. P. Greenberg,, C. M. Oliver,, Y. Oda,, J. J. Huang,, G. Bittan-Banin,, C. M. Peres,, S. Schmidt,, K. Juhaszova,, J. R. Sufrin,, and C. S. Harwood. 2008. A new class of homoserine lactone quorum-sensing signals. Nature 454:595599.
157. Schaefer, A. L.,, B. L. Hanzelka,, M. R. Parsek,, and E. P. Greenberg. 2000. Detection,purification, and structural elucidation of the acylhomoserine lactone inducer of Vibriofischeri luminescence and other related molecules. MethodsEnzymol. 305:288301.
158. Schaefer, A. L.,, D. L. Val,, B. L. Hanzelka,, J. E. Cronan, Jr.,, and E. P. Greenberg. 1996. Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. Proc. Natl. Acad. Sci. USA 93:95059509.
159. Schuster, M.,, and E. P. Greenberg. 2006. A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int. J. Med. Microbiol. 296:7381.
160. Schuster, M.,, C. P. Lostroh,, T. Ogi,, and E. P. Greenberg. 2003. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J. Bacteriol. 185:20662079.
161. Schuster, M.,, M. L. Urbanowski,, and E. P. Greenberg. 2004. Promoter specificity in Pseudomonas aeruginosa quorum sensing revealed by DNA binding of purified LasR. Proc. Natl. Acad. Sci. USA 101:1583315839.
162. Seed, P. C.,, L. Passador,, and B. H. Iglewski. 1995. Activation of the Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas autoinducer PAI: an autoinduction regulatory hierarchy. J. Bacteriol. 177:654659.
163. Seyedsayamdost, M. R.,, J. R. Chandler,, J. A. Blodgett,, P. S. Lima,, B. A. Duerkop,, K. Oinuma,, E. P. Greenberg,, and J. Clardy. 2010. Quorum-sensing-regulated bactobolin production by Burkholderia thailandensis E264. Org. Lett. 12:716719.
164. Smith, E. E.,, D. G. Buckley,, Z. Wu,, C. Saenphimmachak,, L. R. Hoffman,, D. A. D’Argenio,, S. I. Miller,, B. W. Ramsey,, D. P. Speert,, S. M. Moskowitz,, J. L. Burns,, R. Kaul,, and M. V. Olson. 2006. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc. Natl. Acad. Sci. USA 103:84878492.
165. Smith, J. N.,, J. L. Dyszel,, J. A. Soares,, C. D. Ellermeier,, C. Altier,, S. D. Lawhon,, L. G. Adams,, V. Konjufca,, R. Curtiss III,, J. M. Slauch,, and B. M. Ahmer. 2008. SdiA, an N-acylhomoserine lactone receptor, becomes active during the transit of Salmonella enterica through the gastrointestinal tract of turtles. PLoS One 3:e2826.
166. Smith, R. S.,, and B. H. Iglewski. 2003. P. aeruginosa quorum-sensing systems and virulence. Curr. Opin. Microbiol. 6:5660.
167. Sokol, P. A.,, U. Sajjan,, M. B. Visser,, S. Gingues,, J. Forstner,, and C. Kooi. 2003. The CepIR quorum-sensing system contributes to the virulence of Burkholderia cenocepacia respiratory infections. Microbiology 149:36493658.
168. Song, H.,, J. Hwang,, H. Yi,, R. L. Ulrich,, Y. Yu,, W. C. Nierman,, and H. S. Kim. 2010. The early stage of bacterial genome-reductive evolution in the host. PLoS Pathog. 6:e1000922.
169. Song, Y.,, C. Xie,, Y. M. Ong,, Y. H. Gan,, and K. L. Chua. 2005. The BpsIR quorum-sensing system of Burkholderia pseudomallei. J. Bacteriol. 187:785790.
170. Sousa, S. A.,, M. Ulrich,, A. Bragonzi,, M. Burke,, D. Worlitzsch,, J. H. Leitao,, C. Meisner,, L. Eberl,, I. Sa-Correia,, and G. Doring. 2007. Virulence of Burkholderia cepacia complex strains in gp91phox-/- mice. Cell. Microbiol. 9:28172825.
171. Stevens, A. M.,, K. M. Dolan,, and E. P. Greenberg. 1994. Synergistic binding of the Vibrio fischeri LuxR transcriptional activator domain and RNA polymerase to the lux promoter region. Proc. Natl. Acad. Sci. USA 91:1261912623.
172. Stintzi, A.,, K. Evans,, J. M. Meyer,, and K. Poole. 1998. Quorum-sensing and siderophore biosynthesis in Pseudomonas aeruginosa: lasR/lasI mutants exhibit reduced pyoverdine biosynthesis. FEMS Microbiol. Lett. 166:341345.
173. Suarez-Moreno, Z. R.,, J. Caballero-Mellado,, and V. Venturi. 2008. The new group of non-pathogenic plant-associated nitrogen-fixing Burkholderia spp. shares a conserved quorum-sensing system, which is tightly regulated by the RsaL repressor. Microbiology 154:20482059.
174. Suputtamongkol, Y.,, W. Chaowagul,, P. Chetchotisakd,, N. Lertpatanasuwun,, S. Intaranongpai,, T. Ruchutrakool,, D. Budhsarawong,, P. Mootsikapun,, V. Wuthiekanun,, N. Teerawatasook,, and A. Lulitanond. 1999. Risk factors for melioidosis and bacteremic melioidosis. Clin. Infect. Dis. 29:408413.
175. Taminiau, B.,, M. Daykin,, S. Swift,, M. L. Boschiroli,, A. Tibor,, P. Lestrate,, X. De Bolle,, D. O’Callaghan,, P. Williams,, and J. J. Letesson. 2002. Identification of a quorum-sensing signal molecule in the facultative intracellular pathogen Brucella melitensis. Infect. Immun. 70:30043011.
176. Tan, M. W.,, S. Mahajan-Miklos,, and F. M. Ausubel. 1999a. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc. Natl. Acad. Sci. USA 96:715–720.
177. Tan, M. W.,, L. G. Rahme,, J. A. Sternberg,, R. G. Tompkins,, and F. M. Ausubel. 1999b. Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc. Natl. Acad. Sci. USA 96:24082413.
178. Tang, H. B.,, E. DiMango,, R. Bryan,, M. Gambello,, B. H. Iglewski,, J. B. Goldberg,, and A. Prince. 1996. Contribution of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in a neonatal mouse model of infection. Infect. Immun. 64:3743.
179. Taweechaisupapong, S.,, C. Kaewpa,, C. Arunyanart,, P. Kanla,, P. Homchampa,, S. Sirisinha,, T. Proungvitaya,, and S. Wongratanacheewin. 2005. Virulence of Burkholderia pseudomallei does not correlate with biofilm formation. Microb. Pathog. 39:7785.
180. Tingpej, P.,, L. Smith,, B. Rose,, H. Zhu,, T. Conibear,, K. Al Nassafi,, J. Manos,, M. Elkins,, P. Bye,, M. Willcox,, S. Bell,, C. Wainwright,, and C. Harbour. 2007. Phenotypic characterization of clonal and nonclonal Pseudomonas aeruginosa strains isolated from lungs of adults with cystic fibrosis. J. Clin. Microbiol. 45:16971704.
181. Tsai, C. S.,, and S. C. Winans. 2010. LuxR-type quorum-sensing regulators that are detached from common scents. Mol. Microbiol. 77:10721082.
182. Tuanyok, A.,, M. Tom,, J. Dunbar,, and D. E. Woods. 2006. Genome-wide expression analysis of Burkholderia pseudomallei infection in a hamster model of acute melioidosis. Infect. Immun. 74:54655476.
183. Ulrich, R. L. 2004. Quorum quenching: enzymatic disruption of N-acylhomoserine lactone-mediated bacterial communication in Burkholderia thailandensis. Appl. Environ. Microbiol. 70:61736180.
184. Ulrich, R. L.,, D. Deshazer,, E. E. Brueggemann,, H. B. Hines,, P. C. Oyston,, and J. A. Jeddeloh. 2004a. Role of quorum sensing in the pathogenicity of Burkholderia pseudomallei. J. Med. Microbiol. 53:10531064.
185. Ulrich, R. L.,, D. Deshazer,, H. B. Hines,, and J. A. Jeddeloh. 2004b. Quorum sensing: a transcriptional regulatory system involved in the pathogenicity of Burkholderia mallei. Infect. Immun. 72:65896596.
186. Ulrich, R. L.,, H. B. Hines,, N. Parthasarathy,, and J. A. Jeddeloh. 2004c. Mutational analysis and biochemical characterization of the Burkholderia thailandensis DW503 quorum-sensing network. J. Bacteriol. 186:43504360.
187. Valade, E.,, F. M. Thibault,, Y. P. Gauthier,, M. Palencia,, M. Y. Popoff,, and D. R. Vidal. 2004. The PmlI-PmlR quorum-sensing system in Burkholderia pseudomallei plays a key role in virulence and modulates production of the MprA protease. J. Bacteriol. 186:2288–2294.
188. Venturi, V.,, A. Friscina,, I. Bertani,, G. Devescovi,, and C. Aguilar. 2004. Quorum sensing in the Burkholderia cepacia complex. Res. Microbiol. 155:238244.
189. Vial, L.,, M. C. Groleau,, V. Dekimpe,, and E. Deziel. 2007. Burkholderia diversity and versatility: an inventory of the extracellular products. J. Microbiol. Biotechnol. 17:14071429.
190. Visick, K. L.,, J. Foster,, J. Doino,, M. McFall-Ngai,, and E. G. Ruby. 2000. Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. J. Bacteriol. 182:45784586.
191. Visick, K. L.,, and M. J. McFall-Ngai. 2000. An exclusive contract: specificity in the Vibrio fischeri-Euprymna scolopes partnership. J. Bacteriol. 182:17791787.
192. von Bodman, S. B.,, D. R. Majerczak,, and D. L. Coplin. 1998. A negative regulator mediates quorum-sensing control of exopolysaccharide production in Pantoea stewartii subsp. stewartii. Proc. Natl. Acad. Sci. USA 95:76877692.
193. Wagner, V. E.,, D. Bushnell,, L. Passador,, A. I. Brooks,, and B. H. Iglewski. 2003. Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J. Bacteriol. 185:20802095.
194. Waters, C. M.,, and B. L. Bassler. 2005. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21:319346.
195. Weeks, J. N.,, C. L. Galindo,, K. L. Drake,, G. L. Adams,, H. R. Garner,, and T. A. Ficht. 2010. Brucella melitensis VjbR and C12-HSL regulons: contributions of the N-dodecanoyl homoserine lactone signaling molecule and LuxR homologue VjbR to gene expression. BMC Microbiol. 10:167.
196. Wenbin, N.,, Z. Dejuan,, L. Feifan,, Y. Lei,, C. Peng,, Y. Xiaoxuan,, and L. Hongyu. 2011. Quorum-sensing system in Acidithiobacillus ferrooxidans involved in its resistance to Cu+. Lett. Appl. Microbiol. 53:8491.
197. West, S. A.,, A. S. Griffin,, A. Gardner,, and S. P. Diggle. 2006. Social evolution theory for microorganisms. Nat. Rev. Microbiol. 4:597607.
198. West, T. E.,, C. W. Frevert,, H. D. Liggitt,, and S. J. Skerrett. 2008. Inhalation of Burkholderia thailandensis results in lethal necrotizing pneumonia in mice: a surrogate model for pneumonic melioidosis. Trans. R. Soc. Trop. Med. Hyg. 102(Suppl. 1):S119S126.
199. Whitehead, N. A.,, A. M. Barnard,, H. Slater,, N. J. Simpson,, and G. P. Salmond. 2001. Quorum-sensing in Gram-negative bacteria. FEMS Microbiol. Rev. 25:365404.
200. Whiteley, M.,, K. M. Lee,, and E. P. Greenberg. 1999. Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 96:1390413909.
201. Wiersinga, W. J.,, A. F. de Vos,, R. de Beer,, C. W. Wieland,, J. J. Roelofs,, D. E. Woods,, and T. van der Poll. 2008. Inflammation patterns induced by different Burkholderia species in mice. Cell. Microbiol. 10:8187.
202. Wilder, C. N.,, G. Allada,, and M. Schuster. 2009. Instantaneous within-patient diversity of Pseudomonas aeruginosa quorum-sensing populations from cystic fibrosis lung infections. Infect. Immun. 77:56315639.
203. Yu, Y.,, H. S. Kim,, H. H. Chua,, C. H. Lin,, S. H. Sim,, D. Lin,, A. Derr,, R. Engels,, D. DeShazer,, B. Birren,, W. C. Nierman,, and P. Tan. 2006. Genomic patterns of pathogen evolution revealed by comparison of Burkholderia pseudomallei, the causative agent of melioidosis, to avirulent Burkholderia thailandensis. BMC Microbiol. 6:46.
204. Zhang, L.,, Y. Jia,, L. Wang,, and R. Fang. 2007. A proline iminopeptidase gene upregulated in planta by a LuxR homologue is essential for pathogenicity of Xanthomonas campestris pv. campestris. Mol. Microbiol. 65:121136.
205. Zhang, L.,, P. J. Murphy,, A. Kerr,, and M. E. Tate. 1993. Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones. Nature 362:446448.
206. Zhang, R. G.,, T. Pappas,, J. L. Brace,, P. C. Miller,, T. Oulmassov,, J. M. Molyneaux,, J. C. Anderson,, J. K. Bashkin,, S. C. Winans,, and A. Joachimiak. 2002. Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA. Nature 417:971974.

Tables

Generic image for table
Table 1

Some AHL quorum sensing-regulated processes in diverse

Citation: Majerczyk C, Greenberg E, Chandler J. 2013. Quorum Sensing in , p 40-57. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch3

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error