1887

Chapter 3 : Quorum Sensing in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Quorum Sensing in , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap03-2.gif

Abstract:

This chapter focuses on quorum sensing in , specifically , , and (the Bptm group). This group has highly conserved quorum sensing systems, yet each species occupies strikingly different environments. Quorum sensing systems have been found in all of the species studied to date. Prior to discussing the quorum sensing components of the Bptm group, it is important to understand the evolutionary history and lifestyle of each species. and are saprophytic bacteria found in the soil and water in tropical regions common to Southeast Asia, northern Australia, South America, the Middle East, and some regions in Africa. Diagnosis and treatment of melioidosis are challenging because the disease presents with various symptoms and is intrinsically multidrug-resistant. Quorum sensing was first described to occur in the Bptm group within the past decade. The quorum sensing circuits in these bacteria are among the most complex acylated homoserine lactone (AHL) systems described. A summary of the quorum sensing components and AHL signals for each species is discussed in the chapter. Quorum sensing in has many parallels with quorum sensing in . Bacterial adherence, aggregation into microcolonies, and biofilm formation are important survival factors during the saprophytic and host-associated lifestyle of many opportunistic pathogens. The quorum sensing-controlled phenotypes observed in are consistent with the idea that this bacterium uses quorum sensing during its saprophytic lifestyle.

Citation: Majerczyk C, Greenberg E, Chandler J. 2013. Quorum Sensing in , p 40-57. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch3
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Some examples of AHL quorum sensing signals. The AHL structures and corresponding names are shown, organized by chain length or complexity. The signal made by RhII of is C4-HSL. LuxI of makes 3OC6-HSL. The Bptm signals of QS-1, QS-2, and QS-3 are C8-HSL, 3OHC10-HSL, and 3OHC8-HSL, respectively. LasI of produces 3OC12- HSL, and RpaI of synthesizes coumaroyl-HSL (C-HSL). doi:10.1128/9781555818524.ch3f1

Citation: Majerczyk C, Greenberg E, Chandler J. 2013. Quorum Sensing in , p 40-57. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

AHL signaling in (A) and (B). AHL signals (see Fig. 1 ) are made by members of the LuxI family of signal synthases and specifically interact with LuxR family transcription factors. At high cell density, AHLs accumulate and interact with LuxR homologs. AHL interaction causes the LuxR protein to change conformation and become active, which induces target gene regulation. (A) In , LuxI and LuxR produce and respond to 3OC6-HSL (red stars), respectively. (B) In , the LasIR system produces and responds to 3OC12-HSL (purple stars), and the RhlR system produces and responds to C4-HSL (green stars). QscR is an orphan LuxR receptor that is not genetically linked to a synthase gene. QscR responds to 3OC12-HSL produced by LasI. Each quorum sensing regulon is shown as a distinct entity in the figure, but in reality there exists some overlapping regulation among the controlled genes. doi:10.1128/9781555818524.ch3f2

Citation: Majerczyk C, Greenberg E, Chandler J. 2013. Quorum Sensing in , p 40-57. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Quorum sensing circuits of , , and . Shown are the genetic context of the homologous quorum sensing circuits (QS-1, QS-2, and QS-3) in (), (), and (). The cognate signal of each system is shown below the QS designation, and each structure can be found in Fig. 1 . The signals that bind the orphan LuxR homologs have not been determined (nd). The genes for the QS-1 LuxIR homologs are separated by a small region that contains one or two open reading frames of unknown function. The genes coding for the QS-2 LuxIR homologs are found within the bactobolin biosynthetic gene cluster and are separated by three open reading frames predicted to contribute to bactobolin synthesis. The genes coding for the LuxIR homologs of the QS-3 system are separated by a small intergenic region that does not contain additional open reading frames. doi:10.1128/9781555818524.ch3f3

Citation: Majerczyk C, Greenberg E, Chandler J. 2013. Quorum Sensing in , p 40-57. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818524.chap3
1. Adachi, H.,, and Y. Nishimura. 2003. Synthesis and biological activity of bactobolin glucosides. Nat. Prod. Res. 17: 253 257.
2. Adar, Y. Y.,, and S. Ulitzur. 1993. GroESL proteins facilitate binding of externally added inducer by LuxR protein-containing E. coli cells. J. Biolumin. Chemilumin. 8: 261 266.
3. Aendekerk, S.,, B. Ghysels,, P. Cornelis,, and C. Baysse. 2002. Characterization of a new efflux pump, MexGHI-OpmD, from Pseudomonas aeruginosa that confers resistance to vanadium. Microbiology 148: 2371 2381.
4. Aguilar, C.,, A. Friscina,, G. Devescovi,, M. Kojic,, and V. Venturi. 2003. Identification of quorum-sensing-regulated genes of Burkholderia cepacia. J. Bacteriol. 185: 6456 6462.
5. Ahlgren, N. A.,, C. S. Harwood,, A. L. Schaefer,, E. Giraud,, and E. P. Greenberg. 2011. Aryl-homoserine lactone quorum sensing in stem-nodulating photosynthetic bradyrhizobia. Proc. Natl. Acad. Sci. USA 108: 7183 7188.
6. Ahmer, B. M.,, J. van Reeuwijk,, C. D. Timmers,, P. J. Valentine,, and F. Heffron. 1998. Salmonella typhimurium encodes an SdiA homolog, a putative quorum sensor of the LuxR family, that regulates genes on the virulence plasmid. J. Bacteriol. 180: 1185 1193.
7. An, D.,, T. Danhorn,, C. Fuqua,, and M. R. Parsek. 2006. Quorum sensing and motility mediate interactions between Pseudomonas aeruginosa and Agrobacterium tumefaciens in biofilm cocultures. Proc. Natl. Acad. Sci. USA 103: 3828 3833.
8. Andersson, R. A.,, A. R. Eriksson,, R. Heikinheimo,, A. Mae,, M. Pirhonen,, V. Koiv,, H. Hyytiainen,, A. Tuikkala,, and E. T. Palva. 2000. Quorum sensing in the plant pathogen Erwinia carotovora subsp. carotovora: the role of expR Ecc. Mol. Plant-Microbe Interact. 13: 384 393.
9. Antunes, L. C.,, A. L. Schaefer,, R. B. Ferreira,, N. Qin,, A. M. Stevens,, E. G. Ruby,, and E. P. Greenberg. 2007. Transcriptome analysis of the Vibrio fischeri LuxR-LuxI regulon. J. Bacteriol. 189: 8387 8391.
10. Bainton, N. J.,, B. W. Bycroft,, S. R. Chhabra,, P. Stead,, L. Gledhill,, P. J. Hill,, C. E. Rees,, M. K. Winson,, G. P. Salmond,, G. S. Stewart, et al. 1992a. A general role for the lux autoinducer in bacterial cell signalling: control of antibiotic biosynthesis in Erwinia. Gene 116: 87 91.
11. Bainton, N. J.,, P. Stead,, S. R. Chhabra,, B. W. Bycroft,, G. P. Salmond,, G. S. Stewart,, and P. Williams. 1992b. N-(3-Oxohexanoyl)-L-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora. Biochem. J. 288( Pt. 3): 997 1004.
12. Bose, J. L.,, U. Kim,, W. Bartkowski,, R. P. Gunsalus,, A. M. Overley,, N. L. Lyell,, K. L. Visick,, and E. V. Stabb. 2007. Bioluminescence in Vibrio fischeri is controlled by the redox-responsive regulator ArcA. Mol. Microbiol. 65: 538 553.
13. Brett, P. J.,, D. DeShazer,, and D. E. Woods. 1998. Burkholderia thailandensis sp. nov., a Burkholderia pseudomallei-like species. Int. J. Syst. Bacteriol. 48( Pt. 1): 317 320.
14. Caballero-Mellado, J.,, J. Onofre-Lemus,, P. Estrada-de Los Santos,, and L. Martinez-Aguilar. 2007. The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Appl. Environ. Microbiol. 73: 5308 5319.
15. Cabrol, S.,, A. Olliver,, G. B. Pier,, A. Andremont,, and R. Ruimy. 2003. Transcription of quorum-sensing system genes in clinical and environmental isolates of Pseudomonas aeruginosa. J. Bacteriol. 185: 7222 7230.
16. Callahan, S. M.,, and P. V. Dunlap. 2000. LuxR- and acyl-homoserine-lactone-controlled non- lux genes define a quorum-sensing regulon in Vibrio fischeri. J. Bacteriol. 182: 2811 2822.
17. Carr, G.,, M. R. Seyedsayamdost,, J. R. Chandler,, E. P. Greenberg,, and J. Clardy. 2011. Sources of diversity in bactobolin biosynthesis by Burkholderia thailandensis E264. Org. Lett. 13: 3048 3051.
18. Chan, Y. Y.,, H. S. Bian,, T. M. Tan,, M. E. Mattmann,, G. D. Geske,, J. Igarashi,, T. Hatano,, H. Suga,, H. E. Blackwell,, and K. L. Chua. 2007. Control of quorum sensing by a Burkholderia pseudomallei multidrug efflux pump. J. Bacteriol. 189: 4320 4324.
19. Chan, Y. Y.,, and K. L. Chua. 2005. The Burkholderia pseudomallei BpeAB-OprB efflux pump: expression and impact on quorum sensing and virulence. J. Bacteriol. 187: 4707 4719.
20. Chandler, J. R.,, B. A. Duerkop,, A. Hinz,, T. E. West,, J. P. Herman,, M. E. Churchill,, S. J. Skerrett,, and E. P. Greenberg. 2009. Mutational analysis of Burkholderia thailandensis quorum sensing and self-aggregation. J. Bacteriol. 191: 5901 5909.
21. Chantratita, N.,, V. Wuthiekanun,, K. Boonbumrung,, R. Tiyawisutsri,, M. Vesaratchavest,, D. Limmathurotsakul,, W. Chierakul,, S. Wongratanacheewin,, S. Pukritiyakamee,, N. J. White,, N. P. Day,, and S. J. Peacock. 2007. Biological relevance of colony morphology and phenotypic switching by Burkholderia pseudomallei. J. Bacteriol. 189: 807 817.
22. Cheng, A. C.,, and B. J. Currie. 2005. Melioidosis: epidemiology, pathophysiology, and management. Clin. Microbiol. Rev. 18: 383 416.
23. Chugani, S. A.,, M. Whiteley,, K. M. Lee,, D. D’Argenio,, C. Manoil,, and E. P. Greenberg. 2001. QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 98: 2752 2757.
24. Conway, B. A.,, K. K. Chu,, J. Bylund,, E. Altman,, and D. P. Speert. 2004. Production of exopolysaccharide by Burkholderia cenocepacia results in altered cell-surface interactions and altered bacterial clearance in mice. J. Infect. Dis. 190: 957 966.
25. Costerton, J. W.,, Z. Lewandowski,, D. E. Caldwell,, D. R. Korber,, and H. M. Lappin-Scott. 1995. Microbial biofilms. Annu. Rev. Microbiol. 49: 711 745.
26. Costerton, J. W.,, P. S. Stewart,, and E. P. Greenberg. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284: 1318 1322.
27. Cunha, M. V.,, S. A. Sousa,, J. H. Leitao,, L. M. Moreira,, P. A. Videira,, and I. Sa-Correia. 2004. Studies on the involvement of the exopolysaccharide produced by cystic fibrosis-associated isolates of the Burkholderia cepacia complex in biofilm formation and in persistence of respiratory infections. J. Clin. Microbiol. 42: 3052 3058.
28. Currie, B. J.,, L. Ward,, and A. C. Cheng. 2010. The epidemiology and clinical spectrum of melioidosis: 540 cases from the 20 year Darwin prospective study. PLoS Negl. Trop. Dis. 4: e900.
29. D’Argenio, D. A.,, M. Wu,, L. R. Hoffman,, H. D. Kulasekara,, E. Deziel,, E. E. Smith,, H. Nguyen,, R. K. Ernst,, T. J. Larson Freeman,, D. H. Spencer,, M. Brittnacher,, H. S. Hayden,, S. Selgrade,, M. Klausen,, D. R. Goodlett,, J. L. Burns,, B. W. Ramsey,, and S. I. Miller. 2007. Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients. Mol. Microbiol. 64: 512 533.
30. Delrue, R. M.,, C. Deschamps,, S. Leonard,, C. Nijskens,, I. Danese,, J. M. Schaus,, S. Bonnot,, J. Ferooz,, A. Tibor,, X. De Bolle,, and J. J. Letesson. 2005. A quorum-sensing regulator controls expression of both the type IV secretion system and the flagellar apparatus of Brucella melitensis. Cell. Microbiol. 7: 1151 1161.
31. DeShazer, D.,, P. J. Brett,, M. N. Burtnick,, and D. E. Woods. 1999. Molecular characterization of genetic loci required for secretion of exoproducts in Burkholderia pseudomallei. J. Bacteriol. 181: 4661 4664.
32. Devine, J. H.,, G. S. Shadel,, and T. O. Baldwin. 1989. Identification of the operator of the lux regulon from the Vibrio fischeri strain ATCC7744. Proc. Natl. Acad. Sci. USA 86: 5688 5692.
33. Diggle, S. P.,, A. Gardner,, S. A. West,, and A. S. Griffin. 2007a. Evolutionary theory of bacterial quorum sensing: when is a signal not a signal? Philos. Trans. R. Soc. Lond. B 362: 1241 1249.
34. Diggle, S. P.,, A. S. Griffin,, G. S. Campbell,, and S. A. West. 2007b. Cooperation and conflict in quorum-sensing bacterial populations. Nature 450: 411 414.
35. Drevinek, P.,, and E. Mahenthiralingam. 2010. Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence. Clin. Microbiol. Infect. 16: 821 830.
36. Duerkop, B. A.,, J. P. Herman,, R. L. Ulrich,, M. E. Churchill,, and E. P. Greenberg. 2008. The Burkholderia mallei BmaR3-BmaI3 quorum-sensing system produces and responds to N-3-hydroxy-octanoyl homoserine lactone. J. Bacteriol. 190:5137–5141.
37. Duerkop, B. A.,, R. L. Ulrich,, and E. P. Greenberg. 2007. Octanoyl-homoserine lactone is the cognate signal for Burkholderia mallei BmaR1-BmaI1 quorum sensing. J. Bacteriol. 189: 5034 5040.
38. Duerkop, B. A.,, J. Varga,, J. R. Chandler,, S. B. Peterson,, J. P. Herman,, M. E. Churchill,, M. R. Parsek,, W. C. Nierman,, and E. P. Greenberg. 2009. Quorum-sensing control of antibiotic synthesis in Burkholderia thailandensis. J. Bacteriol. 191: 3909 3918.
39. Dyszel, J. L.,, J. N. Smith,, D. E. Lucas,, J. A. Soares,, M. C. Swearingen,, M. A. Vross,, G. M. Young,, and B. M. Ahmer. 2010. Salmonella enterica serovar Typhimurium can detect acyl homoserine lactone production by Yersinia enterocolitica in mice. J. Bacteriol. 192: 29 37.
40. Eberhard, A.,, A. L. Burlingame,, C. Eberhard,, G. L. Kenyon,, K. H. Nealson,, and N. J. Oppenheimer. 1981. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20: 2444 2449.
41. Engebrecht, J.,, K. Nealson,, and M. Silverman. 1983. Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell 32: 773 781.
42. Engebrecht, J.,, and M. Silverman. 1984. Identification of genes and gene products necessary for bacterial bioluminescence. Proc. Natl. Acad. Sci. USA 81: 4154 4158.
43. Ferluga, S.,, J. Bigirimana,, M. Hofte,, and V. Venturi. 2007. A LuxR homologue of Xanthomonas oryzae pv. oryzae is required for optimal rice virulence. Mol. Plant Pathol. 8: 529 538.
44. Ferreira, A. S.,, J. H. Leitao,, I. N. Silva,, P. F. Pinheiro,, S. A. Sousa,, C. G. Ramos,, and L. M. Moreira. 2010. Distribution of cepacian biosynthesis genes among environmental and clinical Burkholderia strains and role of cepacian exopolysaccharide in resistance to stress conditions. Appl. Environ. Microbiol. 76: 441 450.
45. Fothergill, J. L.,, S. Panagea,, C. A. Hart,, M. J. Walshaw,, T. L. Pitt,, and C. Winstanley. 2007. Widespread pyocyanin over-production among isolates of a cystic fibrosis epidemic strain. BMC Microbiol. 7: 45.
46. Fritz, D. L.,, P. Vogel,, D. R. Brown,, D. Deshazer,, and D. M. Waag. 2000. Mouse model of sublethal and lethal intraperitoneal glanders ( Burkholderia mallei). Vet. Pathol. 37: 626 636.
47. Fritz, D. L.,, P. Vogel,, D. R. Brown,, and D. M. Waag. 1999. The hamster model of intraperitoneal Burkholderia mallei (glanders). Vet. Pathol. 36: 276 291.
48. Fuqua, C. 2006. The QscR quorum-sensing regulon of Pseudomonas aeruginosa: an orphan claims its identity. J. Bacteriol. 188: 3169 3171.
49. Fuqua, C.,, and E. P. Greenberg. 2002. Listening in on bacteria: acyl-homoserine lactone signalling. Nat. Rev. Mol. Cell Biol. 3: 685 695.
50. Fuqua, C.,, M. R. Parsek,, and E. P. Greenberg. 2001. Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu. Rev. Genet. 35: 439 468.
51. Fuqua, W. C.,, and S. C. Winans. 1994. A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. J. Bacteriol. 176: 2796 2806.
52. Fuqua, W. C.,, S. C. Winans,, and E. P. Greenberg. 1994. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176: 269 275.
53. Galyov, E. E.,, P. J. Brett,, and D. DeShazer. 2010. Molecular insights into Burkholderia pseudomallei and Burkholderia mallei pathogenesis. Annu. Rev. Microbiol. 64: 495 517.
54. Gamage, A. M.,, G. Shui,, M. R. Wenk,, and K. L. Chua. 2011. N-Octanoyl homoserine lactone signaling mediated by the BpsI-BpsR quorum sensing system plays a major role in biofilm formation of Burkholderia pseudomallei. Microbiology 157: 1176 1186.
55. Gambello, M. J.,, and B. H. Iglewski. 1991. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J. Bacteriol. 173: 3000 3009.
56. Gauthier, Y. P.,, R. M. Hagen,, G. S. Brochier,, H. Neubauer,, W. D. Splettstoesser,, E. J. Finke,, and D. R. Vidal. 2001. Study on the pathophysiology of experimental Burkholderia pseudomallei infection in mice. FEMS Immunol. Med. Microbiol. 30: 53 63.
57. Gauthier, Y. P.,, F. M. Thibault,, J. C. Paucod,, and D. R. Vidal. 2000. Protease production by Burkholderia pseudomallei and virulence in mice. Acta Trop. 74: 215 220.
58. Gilad, J.,, I. Harary,, T. Dushnitsky,, D. Schwartz,, and Y. Amsalem. 2007. Burkholderia mallei and Burkholderia pseudomallei as bioterrorism agents: national aspects of emergency preparedness. Isr. Med. Assoc. J. 9: 499 503.
59. Gilbert, K. B.,, T. H. Kim,, R. Gupta,, E. P. Greenberg,, and M. Schuster. 2009. Global position analysis of the Pseudomonas aeruginosa quorum-sensing transcription factor LasR. Mol. Microbiol. 73: 1072 1085.
60. Gilson, L.,, A. Kuo,, and P. V. Dunlap. 1995. AinS and a new family of autoinducer synthesis proteins. J. Bacteriol. 177: 6946 6951.
61. Glass, M. B.,, J. E. Gee,, A. G. Steigerwalt,, D. Cavuoti,, T. Barton,, R. D. Hardy,, D. Godoy,, B. G. Spratt,, T. A. Clark,, and P. P. Wilkins. 2006. Pneumonia and septicemia caused by Burkholderia thailandensis in the United States. J. Clin. Microbiol. 44: 4601 4604.
62. Godoy, D.,, G. Randle,, A. J. Simpson,, D. M. Aanensen,, T. L. Pitt,, R. Kinoshita,, and B. G. Spratt. 2003. Multilocus sequence typing and evolutionary relationships among the causative agents of melioidosis and glanders, Burkholderia pseudomallei and Burkholderia mallei. J. Clin. Microbiol. 41: 2068 2079.
63. Graf, J.,, and E. G. Ruby. 1998. Host-derived amino acids support the proliferation of symbiotic bacteria. Proc. Natl. Acad. Sci. USA 95: 1818 1822.
64. Green, S. K.,, M. N. Schroth,, J. J. Cho,, S. K. Kominos,, and V. B. Vitanza-jack. 1974. Agricultural plants and soil as a reservoir for Pseudomonas aeruginosa. Appl. Microbiol. 28: 987 991.
65. Gregory, B. C.,, and D. M. Waag,. 2007. Glanders, p. 121 146. In Z. F. Dembek (ed.), Medical Aspects of Biological Warfare. Office of the Surgeon General, Washington, DC.
66. Hanzelka, B. L.,, and E. P. Greenberg. 1995. Evidence that the N-terminal region of the Vibrio fischeri LuxR protein constitutes an autoinducer-binding domain. J. Bacteriol. 177: 815 817.
67. Hardalo, C.,, and S. C. Edberg. 1997. Pseudomonas aeruginosa: assessment of risk from drinking water. Crit. Rev. Microbiol. 23: 47 75.
68. Hassett, D. J.,, J. F. Ma,, J. G. Elkins,, T. R. McDermott,, U. A. Ochsner,, S. E. West,, C. T. Huang,, J. Fredericks,, S. Burnett,, P. S. Stewart,, G. McFeters,, L. Passador,, and B. H. Iglewski. 1999. Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol. Microbiol. 34: 1082 1093.
69. Hentzer, M.,, H. Wu,, J. B. Andersen,, K. Riedel,, T. B. Rasmussen,, N. Bagge,, N. Kumar,, M. A. Schembri,, Z. Song,, P. Kristoffersen,, M. Manefield,, J. W. Costerton,, S. Molin,, L. Eberl,, P. Steinberg,, S. Kjelleberg,, N. Hoiby,, and M. Givskov. 2003. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J. 22: 3803 3815.
70. Heurlier, K.,, V. Denervaud,, and D. Haas. 2006. Impact of quorum sensing on fitness of Pseudomonas aeruginosa. Int. J. Med. Microbiol. 296: 93 102.
71. Heurlier, K.,, V. Denervaud,, M. Haenni,, L. Guy,, V. Krishnapillai,, and D. Haas. 2005. Quorum-sensing-negative ( lasR) mutants of Pseudomonas aeruginosa avoid cell lysis and death. J. Bacteriol. 187: 4875 4883.
72. Hibbing, M. E.,, C. Fuqua,, M. R. Parsek,, and S. B. Peterson. 2010. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8: 15 25.
73. Hoffman, L. R.,, H. D. Kulasekara,, J. Emerson,, L. S. Houston,, J. L. Burns,, B. W. Ramsey,, and S. I. Miller. 2009. Pseudomonas aeruginosa lasR mutants are associated with cystic fibrosis lung disease progression. J. Cyst. Fibros. 8: 66 70.
74. Holden, M. T.,, R. W. Titball,, S. J. Peacock,, A. M. Cerdeno-Tarraga,, T. Atkins,, L. C. Crossman,, T. Pitt,, C. Churcher,, K. Mungall,, S. D. Bentley,, M. Sebaihia,, N. R. Thomson,, N. Bason,, I. R. Beacham,, K. Brooks,, K. A. Brown,, N. F. Brown,, G. L. Challis,, I. Cherevach,, T. Chillingworth,, A. Cronin,, B. Crossett,, P. Davis,, D. DeShazer,, T. Feltwell,, A. Fraser,, Z. Hance,, H. Hauser,, S. Holroyd,, K. Jagels,, K. E. Keith,, M. Maddison,, S. Moule,, C. Price,, M. A. Quail,, E. Rabbinowitsch,, K. Rutherford,, M. Sanders,, M. Simmonds,, S. Songsivilai,, K. Stevens,, S. Tumapa,, M. Vesaratchavest,, S. Whitehead,, C. Yeats,, B. G. Barrell,, P. C. Oyston,, and J. Parkhill. 2004. Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc. Natl. Acad. Sci. USA 101: 14240 14245.
75. Hoppe, I.,, B. Brenneke,, M. Rohde,, A. Kreft,, S. Haussler,, A. Reganzerowski,, and I. Steinmetz. 1999. Characterization of a murine model of melioidosis: comparison of different strains of mice. Infect. Immun. 67: 2891 2900.
76. Hori, M.,, K. Suzukake,, C. Ishikawa,, H. Asakura,, and H. Umezawa. 1981. Biochemical studies on bactobolin in relation to actinobolin. J. Antibiot. (Tokyo) 34: 465 468.
77. Huber, B.,, K. Riedel,, M. Hentzer,, A. Heydorn,, A. Gotschlich,, M. Givskov,, S. Molin,, and L. Eberl. 2001. The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology 147: 2517 2528.
78. Jones, S.,, B. Yu,, N. J. Bainton,, M. Birdsall,, B. W. Bycroft,, S. R. Chhabra,, A. J. Cox,, P. Golby,, P. J. Reeves,, S. Stephens, et al. 1993. The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa. EMBO J. 12: 2477 2482.
79. Kanamaru, K.,, I. Tatsuno,, T. Tobe,, and C. Sasakawa. 2000. SdiA, an Escherichia coli homologue of quorum-sensing regulators, controls the expression of virulence factors in enterohaemorrhagic Escherichia coli O157:H7. Mol. Microbiol. 38: 805 816.
80. Kaplan, H. B.,, and E. P. Greenberg. 1985. Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system. J. Bacteriol. 163: 1210 1214.
81. Kim, H. S.,, M. A. Schell,, Y. Yu,, R. L. Ulrich,, S. H. Sarria,, W. C. Nierman,, and D. DeShazer. 2005. Bacterial genome adaptation to niches: divergence of the potential virulence genes in three Burkholderia species of different survival strategies. BMC Genomics 6: 174.
82. Kim, J.,, J. G. Kim,, Y. Kang,, J. Y. Jang,, G. J. Jog,, J. Y. Lim,, S. Kim,, H. Suga,, T. Nagamatsu,, and I. Hwang. 2004. Quorum sensing and the LysR-type transcriptional activator ToxR regulate toxoflavin biosynthesis and transport in Burkholderia glumae. Mol. Microbiol. 54: 921 934.
83. Kiratisin, P.,, and S. Sanmee. 2008. Roles and interactions of Burkholderia pseudomallei BpsIR quorum-sensing system determinants. J. Bacteriol. 190: 7291 7297.
84. Knappe, T. A.,, U. Linne,, S. Zirah,, S. Rebuffat,, X. Xie,, and M. A. Marahiel. 2008. Isolation and structural characterization of capistruin, a lasso peptide predicted from the genome sequence of Burkholderia thailandensis E264. J. Am. Chem. Soc. 130: 11446 11454.
85. Kohler, T.,, L. K. Curty,, F. Barja,, C. van Delden,, and J. C. Pechere. 2000. Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J. Bacteriol. 182: 5990 5996.
86. Kohler, T.,, C. van Delden,, L. K. Curty,, M. M. Hamzehpour,, and J. C. Pechere. 2001. Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa. J. Bacteriol. 183: 5213 5222.
87. Kohler, T.,, G. G. Perron,, A. Buckling,, and C. van Deldon. 2010. Quorum sensing inhibition selects for virulence and cooperation in Pseudomonas aeruginosa. PLoS Pathog. 6: e1000883.
88. Kondo, S.,, Y. Horiuchi,, M. Hamada,, T. Takeuchi,, and H. Umezawa. 1979. A new antitumor antibiotic, bactobolin produced by Pseudomonas. J. Antibiot. (Tokyo) 32: 1069 1071.
89. Korbsrisate, S.,, N. Suwanasai,, A. Leelaporn,, T. Ezaki,, Y. Kawamura,, and S. Sarasombath. 1999. Cloning and characterization of a nonhemolytic phospholipase C gene from Burkholderia pseudomallei. J. Clin. Microbiol. 37: 3742 3745.
90. Korbsrisate, S.,, A. Tomaras,, S. Damin,, J. Ckumdee,, V. Srinon,, I. Lengwehasatit,, M. Vasil,, and S. Suparak. 2007. Characterization of two distinct phospholipase C enzymes from Burkholderia pseudomallei. Microbiology 153: 1907 1915.
91. Kothe, M.,, M. Antl,, B. Huber,, K. Stoecker,, D. Ebrecht,, I. Steinmetz,, and L. Eberl. 2003. Killing of Caenorhabditis elegans by Burkholderia cepacia is controlled by the cep quorum-sensing system. Cell. Microbiol. 5: 343 351.
92. Latifi, A.,, M. Foglino,, K. Tanaka,, P. Williams,, and A. Lazdunski. 1996. A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol. Microbiol. 21: 1137 1146.
93. Lazar Adler, N. R.,, B. Govan,, M. Cullinane,, M. Harper,, B. Adler,, and J. D. Boyce. 2009. The molecular and cellular basis of pathogenesis in melioidosis: how does Burkholderia pseudomallei cause disease? FEMS Microbiol. Rev. 33: 1079 1099.
94. Lee, J. H.,, Y. Lequette,, and E. P. Greenberg. 2006. Activity of purified QscR, a Pseudomonas aeruginosa orphan quorum-sensing transcription factor. Mol. Microbiol. 59: 602 609.
95. Leelarasamee, A. 2004. Recent development in melioidosis. Curr. Opin. Infect. Dis. 17: 131 136.
96. Lequette, Y.,, J. H. Lee,, F. Ledgham,, A. Lazdunski,, and E. P. Greenberg. 2006. A distinct QscR regulon in the Pseudomonas aeruginosa quorum-sensing circuit. J. Bacteriol. 188: 3365 3370.
97. Lerat, E.,, and N. A. Moran. 2004. The evolutionary history of quorum-sensing systems in bacteria. Mol. Biol. Evol. 21: 903 913.
98. Lertpatanasuwan, N.,, K. Sermsri,, A. Petkaseam,, S. Trakulsomboon,, V. Thamlikitkul,, and Y. Suputtamongkol. 1999. Arabinose-positive Burkholderia pseudomallei infection in humans: case report. Clin. Infect. Dis. 28: 927 928.
99. Lever, M. S.,, M. Nelson,, P. I. Ireland,, A. J. Stagg,, R. J. Beedham,, G. A. Hall,, G. Knight,, and R. W. Titball. 2003. Experimental aerogenic Burkholderia mallei (glanders) infection in the BALB/c mouse. J. Med. Microbiol. 52: 1109 1115.
100. Lewenza, S.,, B. Conway,, E. P. Greenberg,, and P. A. Sokol. 1999. Quorum sensing in Burkholderia cepacia: identification of the LuxRI homologs CepRI. J. Bacteriol. 181: 748 756.
101. Lewenza, S.,, and P. A. Sokol. 2001. Regulation of ornibactin biosynthesis and N-acyl-L-homoserine lactone production by CepR in Burkholderia cepacia. J. Bacteriol. 183: 2212 2218.
102. Limmathurotsakul, D.,, S. Wongratanacheewin,, N. Teerawattanasook,, G. Wongsuvan,, S. Chaisuksant,, P. Chetchotisakd,, W. Chaowagul,, N. P. Day,, and S. J. Peacock. 2010. Increasing incidence of human melioidosis in Northeast Thailand. Am. J. Trop. Med. Hyg. 82: 1113 1117.
103. Loprasert, S.,, W. Whangsuk,, R. Sallabhan,, and S. Mongkolsuk. 2004. DpsA protects the human pathogen Burkholderia pseudomallei against organic hydroperoxide. Arch. Microbiol. 182: 96 101.
104. Losada, L.,, C. M. Ronning,, D. DeShazer,, D. Woods,, N. Fedorova,, H. S. Kim,, S. A. Shabalina,, T. R. Pearson,, L. Brinkac,, P. Tan,, T. Nandi,, J. Crabtree,, J. Badger,, S. Beckstrom-Sternberg,, M. Saqib,, S. E. Schutzer,, P. Keim,, and W. C. Nierman. 2010. Continuing evolution of Burkholderia mallei through genome reduction and large-scale rearrangements. Genome Biol. Evol. 2: 102 116.
105. Loutet, S. A.,, and M. A. Valvano. 2010. A decade of Burkholderia cenocepacia virulence determinant research. Infect. Immun. 78: 4088 4100.
106. Lumjiaktase, P.,, S. P. Diggle,, S. Loprasert,, S. Tungpradabkul,, M. Daykin,, M. Camara,, P. Williams,, and M. Kunakorn. 2006. Quorum sensing regulates dpsA and the oxidative stress response in Burkholderia pseudomallei. Microbiology 152: 3651 3659.
107. Luo, Y.,, E. A. Frey,, R. A. Pfuetzner,, A. L. Creagh,, D. G. Knoechel,, C. A. Haynes,, B. B. Finlay,, and N. C. Strynadka. 2000. Crystal structure of enteropathogenic Escherichia coli intimin-receptor complex. Nature 405: 1073 1077.
108. Lupp, C.,, M. Urbanowski,, E. P. Greenberg,, and E. G. Ruby. 2003. The Vibrio fischeri quorum-sensing systems ain and lux sequentially induce luminescence gene expression and are important for persistence in the squid host. Mol. Microbiol. 50: 319 331.
109. Lutter, E.,, S. Lewenza,, J. J. Dennis,, M. B. Visser,, and P. A. Sokol. 2001. Distribution of quorum-sensing genes in the Burkholderia cepacia complex. Infect. Immun. 69: 4661 4666.
110. Lyczak, J. B.,, C. L. Cannon,, and G. B. Pier. 2000. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect. 2: 1051 1060.
111. Lyczak, J. B.,, C. L. Cannon,, and G. B. Pier. 2002. Lung infections associated with cystic fibrosis. Clin. Microbiol. Rev. 15: 194 222.
112. Mahajan-Miklos, S.,, M. W. Tan,, L. G. Rahme,, and F. M. Ausubel. 1999. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa- Caenorhabditis elegans pathogenesis model. Cell 96: 47 56.
113. Mahenthiralingam, E.,, T. A. Urban,, and J. B. Goldberg. 2005. The multifarious, multireplicon Burkholderia cepacia complex. Nat. Rev. Microbiol. 3: 144 156.
114. Martinez-Aguilar, L.,, R. Diaz,, J. J. Pena-Cabriales,, P. Estrada-de Los Santos,, M. F. Dunn,, and J. Caballero-Mellado. 2008. Multichromosomal genome structure and confirmation of diazotrophy in novel plant-associated Burkholderia species. Appl. Environ. Microbiol. 74: 4574 4579.
115. McFall-Ngai, M. J.,, and E. G. Ruby. 1991. Symbiont recognition and subsequent morphogenesis as early events in an animal-bacterial mutualism. Science 254: 1491 1494.
116. McGowan, S.,, M. Sebaihia,, S. Jones,, B. Yu,, N. Bainton,, P. F. Chan,, B. Bycroft,, G. S. Stewart,, P. Williams,, and G. P. Salmond. 1995. Carbapenem antibiotic production in Erwinia carotovora is regulated by CarR, a homologue of the LuxR transcriptional activator. Microbiology 141( Pt. 3): 541 550.
117. Meyer, J. M.,, A. Neely,, A. Stintzi,, C. Georges,, and I. A. Holder. 1996. Pyoverdin is essential for virulence of Pseudomonas aeruginosa. Infect. Immun. 64: 518 523.
118. Michael, B.,, J. N. Smith,, S. Swift,, F. Heffron,, and B. M. Ahmer. 2001. SdiA of Salmonella enterica is a LuxR homolog that detects mixed microbial communities. J. Bacteriol. 183: 5733 5742.
119. Mima, T.,, and H. P. Schweizer. 2010. The BpeAB-OprB efflux pump of Burkholderia pseudomallei 1026b does not play a role in quorum sensing, virulence factor production, or extrusion of aminoglycosides but is a broad-spectrum drug efflux system. Antimicrob. Agents Chemother. 54: 3113 3120.
120. Minogue, T. D.,, M. Wehland-von Trebra,, F. Bernhard,, and S.B. von Bodman. 2002. The autoregulatory role of EsaR, a quorum-sensing regulator in Pantoea stewartii ssp. stewartii: evidence for a repressor function. Mol. Microbiol. 44: 1625 1635.
121. Molina, L.,, F. Constantinescu,, L. Michel,, C. Reimmann,, B. Duffy,, and G. Defago. 2003. Degradation of pathogen quorum-sensing molecules by soil bacteria: a preventive and curative biological control mechanism. FEMS Microbiol. Ecol. 45: 71 81.
122. More, M. I.,, L. D. Finger,, J. L. Stryker,, C. Fuqua,, A. Eberhard,, and S. C. Winans. 1996. Enzymatic synthesis of a quorum-sensing autoinducer through use of defined substrates. Science 272: 1655 1658.
123. Nasser, W.,, M. L. Bouillant,, G. Salmond,, and S. Reverchon. 1998. Characterization of the Erwinia chrysanthemi expI-expR locus directing the synthesis of two N-acyl-homoserine lactone signal molecules. Mol. Microbiol. 29: 1391 1405.
124. Nealson, K. H.,, and J. W. Hastings. 1979. Bacterial bioluminescence: its control and ecological significance. Microbiol. Rev. 43: 496 518.
125. Nguyen, T.,, K. Ishida,, H. Jenke-Kodama,, E. Dittmann,, C. Gurgui,, T. Hochmuth,, S. Taudien,, M. Platzer,, C. Hertweck,, and J. Piel. 2008. Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection. Nat. Biotechnol. 26: 225 233.
126. Nierman, W. C.,, D. DeShazer,, H. S. Kim,, H. Tettelin,, K. E. Nelson,, T. Feldblyum,, R. L. Ulrich,, C. M. Ronning,, L. M. Brinkac,, S. C. Daugherty,, T. D. Davidsen,, R. T. Deboy,, G. Dimitrov,, R. J. Dodson,, A. S. Durkin,, M. L. Gwinn,, D. H. Haft,, H. Khouri,, J. F. Kolonay,, R. Madupu,, Y. Mohammoud,, W. C. Nelson,, D. Radune,, C. M. Romero,, S. Sarria,, J. Selengut,, C. Shamblin,, S. A. Sullivan,, O. White,, Y. Yu,, N. Zafar,, L. Zhou,, and C. M. Fraser. 2004. Structural flexibility in the Burkholderia mallei genome. Proc. Natl. Acad. Sci. USA 101: 14246 14251.
127. Ochsner, U. A.,, A. K. Koch,, A. Fiechter,, and J. Reiser. 1994. Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J. Bacteriol. 176: 2044 2054.
128. Ochsner, U. A.,, and J. Reiser. 1995. Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 92: 6424 6428.
129. Park, J. H.,, J. Hwang,, J. W. Kim,, S. O. Lee,, B. A. Conway,, E. P. Greenberg,, and K. Lee. 2001. Characterization of quorum-sensing signaling molecules produced by Burkholderia cepacia G4. Microbiol. Biotechnol. 11: 804 811.
130. Parsek, M. R.,, and E. P. Greenberg. 2000. Acyl-homoserine lactone quorum sensing in gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc. Natl. Acad. Sci. USA 97: 8789 8793.
131. Parsek, M. R.,, D. L. Val,, B. L. Hanzelka,, J. E. Cronan, Jr.,, and E. P. Greenberg. 1999. Acyl homoserine-lactone quorum-sensing signal generation. Proc. Natl. Acad. Sci. USA 96: 4360 4365.
132. Passador, L.,, J. M. Cook,, M. J. Gambello,, L. Rust,, and B. H. Iglewski. 1993. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260: 1127 1130.
133. Patankar, A. V.,, and J. E. Gonzalez. 2009. Orphan LuxR regulators of quorum sensing. FEMS Microbiol. Rev. 33: 739 756.
134. Pearson, J. P.,, K. M. Gray,, L. Passador,, K. D. Tucker,, A. Eberhard,, B. H. Iglewski,, and E. P. Greenberg. 1994. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc. Natl. Acad. Sci. USA 91: 197 201.
135. Pearson, J. P.,, L. Passador,, B. H. Iglewski,, and E. P. Greenberg. 1995. A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 92: 1490 1494.
136. Pearson, J. P.,, E. C. Pesci,, and B. H. Iglewski. 1997. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J. Bacteriol. 179: 5756 5767.
137. Penalver, C. G.,, F. Cantet,, D. Morin,, D. Haras,, and J. A. Vorholt. 2006. A plasmid-borne truncated luxI homolog controls quorum-sensing systems and extracellular carbohydrate production in Methylobacterium extorquens AM1. J. Bacteriol. 188: 7321 7324.
138. Peterson, K. M.,, and J. J. Mekalanos. 1988. Characterization of the Vibrio cholerae ToxR regulon: identification of novel genes involved in intestinal colonization. Infect. Immun. 56: 2822 2829.
139. Pierson, L. S., III,, V. D. Keppenne,, and D. W. Wood. 1994. Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30-84 is regulated by PhzR in response to cell density. J. Bacteriol. 176: 3966 3974.
140. Piper, K. R.,, S. Beck von Bodman,, and S. K. Farrand. 1993. Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature 362: 448 450.
141. Pirhonen, M.,, D. Flego,, R. Heikinheimo,, and E. T. Palva. 1993. A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. EMBO J. 12: 2467 2476.
142. Poonguzhali, S.,, M. Madhaiyan,, and T. Sa. 2007. Production of acyl-homoserine lactone quorum-sensing signals is wide-spread in Gram-negative Methylobacterium. J. Microbiol. Biotechnol. 17: 226 233.
143. Puskas, A.,, E. P. Greenberg,, S. Kaplan,, and A. L. Schaefer. 1997. A quorum-sensing system in the free-living photosynthetic bacterium Rhodobacter sphaeroides. J. Bacteriol. 179: 7530 7537.
144. Rahme, L. G.,, E. J. Stevens,, S. F. Wolfort,, J. Shao,, R. G. Tompkins,, and F. M. Ausubel. 1995. Common virulence factors for bacterial pathogenicity in plants and animals. Science 268: 1899 1902.
145. Rambow-Larsen, A. A.,, G. Rajashekara,, E. Petersen,, and G. Splitter. 2008. Putative quorum-sensing regulator BlxR of Brucella melitensis regulates virulence factors including the type IV secretion system and flagella. J. Bacteriol. 190: 3274 3282.
146. Redfield, R. J. 2002. Is quorum sensing a side effect of diffusion sensing? Trends Microbiol. 10: 365 370.
147. Richau, J. A.,, J. H. Leitao,, M. Correia,, L. Lito,, M. J. Salgado,, C. Barreto,, P. Cescutti,, and I. Sa-Correia. 2000. Molecular typing and exopolysaccharide biosynthesis of Burkholderia cepacia isolates from a Portuguese cystic fibrosis center. J. Clin. Microbiol. 38: 1651 1655.
148. Rivas, M.,, M. Seeger,, D. S. Holmes,, and E. Jedlicki. 2005. A Lux-like quorum sensing system in the extreme acidophile Acidithiobacillus ferrooxidans. Biol. Res. 38: 283 297.
149. Ruby, E. G. 1996. Lessons from a cooperative, bacterial-animal association: the Vibrio fischeri- Euprymna scolopes light organ symbiosis. Annu. Rev. Microbiol. 50: 591 624.
150. Ruby, E. G.,, and M. J. McFall-Ngai. 1992. A squid that glows in the night: development of an animal-bacterial mutualism. J. Bacteriol. 174: 4865 4870.
151. Ruby, E. G.,, and M. J. McFall-Ngai. 1999. Oxygen-utilizing reactions and symbiotic colonization of the squid light organ by Vibrio fischeri. Trends Microbiol. 7: 414 420.
152. Rumbaugh, K. P.,, S. P. Diggle,, C. M. Watters,, A. Ross-Gillespie,, A. S. Griffin,, and S. A. West. 2009. Quorum sensing and the social evolution of bacterial virulence. Curr. Biol. 19: 341 345.
153. Rumbaugh, K. P.,, J. A. Griswold,, and A. N. Hamood. 1999. Contribution of the regulatory gene lasR to the pathogenesis of Pseudomonas aeruginosa infection of burned mice. J. Burn Care Rehabil. 20: 42 49.
154. Sandoz, K. M.,, S. M. Mitzimberg,, and M. Schuster. 2007. Social cheating in Pseudomonas aeruginosa quorum sensing. Proc. Natl. Acad. Sci. USA 104: 15876 15881.
155. Sawasdidoln, C.,, S. Taweechaisupapong,, R. W. Sermswan,, U. Tattawasart,, S. Tungpradabkul,, and S. Wongratanacheewin. 2010. Growing Burkholderia pseudomallei in biofilm stimulating conditions significantly induces antimicrobial resistance. PLoS One 5: e9196.
156. Schaefer, A. L.,, E. P. Greenberg,, C. M. Oliver,, Y. Oda,, J. J. Huang,, G. Bittan-Banin,, C. M. Peres,, S. Schmidt,, K. Juhaszova,, J. R. Sufrin,, and C. S. Harwood. 2008. A new class of homoserine lactone quorum-sensing signals. Nature 454: 595 599.
157. Schaefer, A. L.,, B. L. Hanzelka,, M. R. Parsek,, and E. P. Greenberg. 2000. Detection,purification, and structural elucidation of the acylhomoserine lactone inducer of Vibriofischeri luminescence and other related molecules. MethodsEnzymol. 305: 288 301.
158. Schaefer, A. L.,, D. L. Val,, B. L. Hanzelka,, J. E. Cronan, Jr.,, and E. P. Greenberg. 1996. Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. Proc. Natl. Acad. Sci. USA 93: 9505 9509.
159. Schuster, M.,, and E. P. Greenberg. 2006. A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int. J. Med. Microbiol. 296: 73 81.
160. Schuster, M.,, C. P. Lostroh,, T. Ogi,, and E. P. Greenberg. 2003. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J. Bacteriol. 185: 2066 2079.
161. Schuster, M.,, M. L. Urbanowski,, and E. P. Greenberg. 2004. Promoter specificity in Pseudomonas aeruginosa quorum sensing revealed by DNA binding of purified LasR. Proc. Natl. Acad. Sci. USA 101: 15833 15839.
162. Seed, P. C.,, L. Passador,, and B. H. Iglewski. 1995. Activation of the Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas autoinducer PAI: an autoinduction regulatory hierarchy. J. Bacteriol. 177: 654 659.
163. Seyedsayamdost, M. R.,, J. R. Chandler,, J. A. Blodgett,, P. S. Lima,, B. A. Duerkop,, K. Oinuma,, E. P. Greenberg,, and J. Clardy. 2010. Quorum-sensing-regulated bactobolin production by Burkholderia thailandensis E264. Org. Lett. 12: 716 719.
164. Smith, E. E.,, D. G. Buckley,, Z. Wu,, C. Saenphimmachak,, L. R. Hoffman,, D. A. D’Argenio,, S. I. Miller,, B. W. Ramsey,, D. P. Speert,, S. M. Moskowitz,, J. L. Burns,, R. Kaul,, and M. V. Olson. 2006. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc. Natl. Acad. Sci. USA 103: 8487 8492.
165. Smith, J. N.,, J. L. Dyszel,, J. A. Soares,, C. D. Ellermeier,, C. Altier,, S. D. Lawhon,, L. G. Adams,, V. Konjufca,, R. Curtiss III,, J. M. Slauch,, and B. M. Ahmer. 2008. SdiA, an N-acylhomoserine lactone receptor, becomes active during the transit of Salmonella enterica through the gastrointestinal tract of turtles. PLoS One 3: e2826.
166. Smith, R. S.,, and B. H. Iglewski. 2003. P. aeruginosa quorum-sensing systems and virulence. Curr. Opin. Microbiol. 6: 56 60.
167. Sokol, P. A.,, U. Sajjan,, M. B. Visser,, S. Gingues,, J. Forstner,, and C. Kooi. 2003. The CepIR quorum-sensing system contributes to the virulence of Burkholderia cenocepacia respiratory infections. Microbiology 149: 3649 3658.
168. Song, H.,, J. Hwang,, H. Yi,, R. L. Ulrich,, Y. Yu,, W. C. Nierman,, and H. S. Kim. 2010. The early stage of bacterial genome-reductive evolution in the host. PLoS Pathog. 6: e1000922.
169. Song, Y.,, C. Xie,, Y. M. Ong,, Y. H. Gan,, and K. L. Chua. 2005. The BpsIR quorum-sensing system of Burkholderia pseudomallei. J. Bacteriol. 187: 785 790.
170. Sousa, S. A.,, M. Ulrich,, A. Bragonzi,, M. Burke,, D. Worlitzsch,, J. H. Leitao,, C. Meisner,, L. Eberl,, I. Sa-Correia,, and G. Doring. 2007. Virulence of Burkholderia cepacia complex strains in gp91phox-/- mice. Cell. Microbiol. 9: 2817 2825.
171. Stevens, A. M.,, K. M. Dolan,, and E. P. Greenberg. 1994. Synergistic binding of the Vibrio fischeri LuxR transcriptional activator domain and RNA polymerase to the lux promoter region. Proc. Natl. Acad. Sci. USA 91: 12619 12623.
172. Stintzi, A.,, K. Evans,, J. M. Meyer,, and K. Poole. 1998. Quorum-sensing and siderophore biosynthesis in Pseudomonas aeruginosa: lasR/ lasI mutants exhibit reduced pyoverdine biosynthesis. FEMS Microbiol. Lett. 166: 341 345.
173. Suarez-Moreno, Z. R.,, J. Caballero-Mellado,, and V. Venturi. 2008. The new group of non-pathogenic plant-associated nitrogen-fixing Burkholderia spp. shares a conserved quorum-sensing system, which is tightly regulated by the RsaL repressor. Microbiology 154: 2048 2059.
174. Suputtamongkol, Y.,, W. Chaowagul,, P. Chetchotisakd,, N. Lertpatanasuwun,, S. Intaranongpai,, T. Ruchutrakool,, D. Budhsarawong,, P. Mootsikapun,, V. Wuthiekanun,, N. Teerawatasook,, and A. Lulitanond. 1999. Risk factors for melioidosis and bacteremic melioidosis. Clin. Infect. Dis. 29: 408 413.
175. Taminiau, B.,, M. Daykin,, S. Swift,, M. L. Boschiroli,, A. Tibor,, P. Lestrate,, X. De Bolle,, D. O’Callaghan,, P. Williams,, and J. J. Letesson. 2002. Identification of a quorum-sensing signal molecule in the facultative intracellular pathogen Brucella melitensis. Infect. Immun. 70: 3004 3011.
176. Tan, M. W.,, S. Mahajan-Miklos,, and F. M. Ausubel. 1999a. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc. Natl. Acad. Sci. USA 96:715–720.
177. Tan, M. W.,, L. G. Rahme,, J. A. Sternberg,, R. G. Tompkins,, and F. M. Ausubel. 1999b. Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc. Natl. Acad. Sci. USA 96: 2408 2413.
178. Tang, H. B.,, E. DiMango,, R. Bryan,, M. Gambello,, B. H. Iglewski,, J. B. Goldberg,, and A. Prince. 1996. Contribution of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in a neonatal mouse model of infection. Infect. Immun. 64: 37 43.
179. Taweechaisupapong, S.,, C. Kaewpa,, C. Arunyanart,, P. Kanla,, P. Homchampa,, S. Sirisinha,, T. Proungvitaya,, and S. Wongratanacheewin. 2005. Virulence of Burkholderia pseudomallei does not correlate with biofilm formation. Microb. Pathog. 39: 77 85.
180. Tingpej, P.,, L. Smith,, B. Rose,, H. Zhu,, T. Conibear,, K. Al Nassafi,, J. Manos,, M. Elkins,, P. Bye,, M. Willcox,, S. Bell,, C. Wainwright,, and C. Harbour. 2007. Phenotypic characterization of clonal and nonclonal Pseudomonas aeruginosa strains isolated from lungs of adults with cystic fibrosis. J. Clin. Microbiol. 45: 1697 1704.
181. Tsai, C. S.,, and S. C. Winans. 2010. LuxR-type quorum-sensing regulators that are detached from common scents. Mol. Microbiol. 77: 1072 1082.
182. Tuanyok, A.,, M. Tom,, J. Dunbar,, and D. E. Woods. 2006. Genome-wide expression analysis of Burkholderia pseudomallei infection in a hamster model of acute melioidosis. Infect. Immun. 74: 5465 5476.
183. Ulrich, R. L. 2004. Quorum quenching: enzymatic disruption of N-acylhomoserine lactone-mediated bacterial communication in Burkholderia thailandensis. Appl. Environ. Microbiol. 70: 6173 6180.
184. Ulrich, R. L.,, D. Deshazer,, E. E. Brueggemann,, H. B. Hines,, P. C. Oyston,, and J. A. Jeddeloh. 2004a. Role of quorum sensing in the pathogenicity of Burkholderia pseudomallei. J. Med. Microbiol. 53: 1053 1064.
185. Ulrich, R. L.,, D. Deshazer,, H. B. Hines,, and J. A. Jeddeloh. 2004b. Quorum sensing: a transcriptional regulatory system involved in the pathogenicity of Burkholderia mallei. Infect. Immun. 72: 6589 6596.
186. Ulrich, R. L.,, H. B. Hines,, N. Parthasarathy,, and J. A. Jeddeloh. 2004c. Mutational analysis and biochemical characterization of the Burkholderia thailandensis DW503 quorum-sensing network. J. Bacteriol. 186: 4350 4360.
187. Valade, E.,, F. M. Thibault,, Y. P. Gauthier,, M. Palencia,, M. Y. Popoff,, and D. R. Vidal. 2004. The PmlI-PmlR quorum-sensing system in Burkholderia pseudomallei plays a key role in virulence and modulates production of the MprA protease. J. Bacteriol. 186:2288–2294.
188. Venturi, V.,, A. Friscina,, I. Bertani,, G. Devescovi,, and C. Aguilar. 2004. Quorum sensing in the Burkholderia cepacia complex. Res. Microbiol. 155: 238 244.
189. Vial, L.,, M. C. Groleau,, V. Dekimpe,, and E. Deziel. 2007. Burkholderia diversity and versatility: an inventory of the extracellular products. J. Microbiol. Biotechnol. 17: 1407 1429.
190. Visick, K. L.,, J. Foster,, J. Doino,, M. McFall-Ngai,, and E. G. Ruby. 2000. Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. J. Bacteriol. 182: 4578 4586.
191. Visick, K. L.,, and M. J. McFall-Ngai. 2000. An exclusive contract: specificity in the Vibrio fischeri-Euprymna scolopes partnership. J. Bacteriol. 182: 1779 1787.
192. von Bodman, S. B.,, D. R. Majerczak,, and D. L. Coplin. 1998. A negative regulator mediates quorum-sensing control of exopolysaccharide production in Pantoea stewartii subsp. stewartii. Proc. Natl. Acad. Sci. USA 95: 7687 7692.
193. Wagner, V. E.,, D. Bushnell,, L. Passador,, A. I. Brooks,, and B. H. Iglewski. 2003. Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J. Bacteriol. 185: 2080 2095.
194. Waters, C. M.,, and B. L. Bassler. 2005. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21: 319 346.
195. Weeks, J. N.,, C. L. Galindo,, K. L. Drake,, G. L. Adams,, H. R. Garner,, and T. A. Ficht. 2010. Brucella melitensis VjbR and C12-HSL regulons: contributions of the N-dodecanoyl homoserine lactone signaling molecule and LuxR homologue VjbR to gene expression. BMC Microbiol. 10: 167.
196. Wenbin, N.,, Z. Dejuan,, L. Feifan,, Y. Lei,, C. Peng,, Y. Xiaoxuan,, and L. Hongyu. 2011. Quorum-sensing system in Acidithiobacillus ferrooxidans involved in its resistance to Cu +. Lett. Appl. Microbiol. 53: 84 91.
197. West, S. A.,, A. S. Griffin,, A. Gardner,, and S. P. Diggle. 2006. Social evolution theory for microorganisms. Nat. Rev. Microbiol. 4: 597 607.
198. West, T. E.,, C. W. Frevert,, H. D. Liggitt,, and S. J. Skerrett. 2008. Inhalation of Burkholderia thailandensis results in lethal necrotizing pneumonia in mice: a surrogate model for pneumonic melioidosis. Trans. R. Soc. Trop. Med. Hyg. 102( Suppl. 1): S119 S126.
199. Whitehead, N. A.,, A. M. Barnard,, H. Slater,, N. J. Simpson,, and G. P. Salmond. 2001. Quorum-sensing in Gram-negative bacteria. FEMS Microbiol. Rev. 25: 365 404.
200. Whiteley, M.,, K. M. Lee,, and E. P. Greenberg. 1999. Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 96: 13904 13909.
201. Wiersinga, W. J.,, A. F. de Vos,, R. de Beer,, C. W. Wieland,, J. J. Roelofs,, D. E. Woods,, and T. van der Poll. 2008. Inflammation patterns induced by different Burkholderia species in mice. Cell. Microbiol. 10: 81 87.
202. Wilder, C. N.,, G. Allada,, and M. Schuster. 2009. Instantaneous within-patient diversity of Pseudomonas aeruginosa quorum-sensing populations from cystic fibrosis lung infections. Infect. Immun. 77: 5631 5639.
203. Yu, Y.,, H. S. Kim,, H. H. Chua,, C. H. Lin,, S. H. Sim,, D. Lin,, A. Derr,, R. Engels,, D. DeShazer,, B. Birren,, W. C. Nierman,, and P. Tan. 2006. Genomic patterns of pathogen evolution revealed by comparison of Burkholderia pseudomallei, the causative agent of melioidosis, to avirulent Burkholderia thailandensis. BMC Microbiol. 6: 46.
204. Zhang, L.,, Y. Jia,, L. Wang,, and R. Fang. 2007. A proline iminopeptidase gene upregulated in planta by a LuxR homologue is essential for pathogenicity of Xanthomonas campestris pv. campestris. Mol. Microbiol. 65: 121 136.
205. Zhang, L.,, P. J. Murphy,, A. Kerr,, and M. E. Tate. 1993. Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones. Nature 362: 446 448.
206. Zhang, R. G.,, T. Pappas,, J. L. Brace,, P. C. Miller,, T. Oulmassov,, J. M. Molyneaux,, J. C. Anderson,, J. K. Bashkin,, S. C. Winans,, and A. Joachimiak. 2002. Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA. Nature 417: 971 974.

Tables

Generic image for table
Table 1

Some AHL quorum sensing-regulated processes in diverse

Citation: Majerczyk C, Greenberg E, Chandler J. 2013. Quorum Sensing in , p 40-57. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch3

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error