1887

Chapter 5 : Regulation of Virulence by Iron in Gram-Positive Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Regulation of Virulence by Iron in Gram-Positive Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap05-2.gif

Abstract:

This chapter discusses the mechanisms by which vertebrates sequester iron from invading pathogens and the response of pathogens to this sequestration. It provides examples of iron-regulated virulence determinants in several clinically important gram-positive bacteria. Iron is crucial to the activity of ribonucleotide reductase, nitrogenase, peroxidase, catalase, and succinic dehydrogenase, and it is therefore required for the vital functions of respiration and several metabolic pathways. During infection, pathogens must rely on their host as the sole source of nutrient iron. Diseases in iron metabolism impact susceptibility to infection, exemplified by an increased frequency of infections caused by , , and in patients with high iron levels. Transcriptional regulation of bacterial genes in response to iron occurs through the activity of metal-dependent regulators. is the causative agent of diphtheria, a contagious upper respiratory tract infection that has been largely eradicated in the last century due to worldwide utilization of the diphtheria vaccines. The iron-containing tetrapyrrole heme is the preferentially bound iron source of . Iron-dependent virulence gene expression in involves a complex regulatory network comprised of Fur and the two-component systems Agr and Sae, which regulate quorum sensing and secreted virulence factors, respectively.

Citation: Farrand A, Skaar E. 2013. Regulation of Virulence by Iron in Gram-Positive Bacteria, p 79-105. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch5
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Nutritional immunity: host-mediated iron sequestration and theft of iron by pathogens. Vertebrate hosts employ several mechanisms to withhold nutrient iron from invading pathogens during infection. Most iron is located intracellularly, complexed to hemoglobin in erythrocytes or stored within ferritin inside host cells. Lactoferrin (Lf) and transferrin (Tf) transport iron to cells throughout the body and are internalized through the transferrin receptor (Tf R) on host cells. Invading pathogens respond by producing dedicated systems to steal host iron. In some pathogens, hemoglobin is released from erythrocytes following lysis of the cells by bacterial hemolysins and can be imported through the bacterial membrane via heme transporters (HT) or bound by host haptoglobin (Hap) or hemopexin (HP). Host iron can be obtained by the pathogen through direct import via iron transporters (Fe T) or through iron-chelating siderophores (SP), which are secreted from the pathogen to scavenge available extracellular iron. In response, the host produces siderocalin (SC), which can bind some siderophores and prevent them from being utilized by the pathogen. doi:10.1128/9781555818524.ch5f5

Citation: Farrand A, Skaar E. 2013. Regulation of Virulence by Iron in Gram-Positive Bacteria, p 79-105. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

The Fenton reaction. Ferrous iron catalyzes the reaction, in which hydrogen peroxide is broken down into a hydroxyl radical and hydroxyl anion and the metal is oxidized to ferric iron. Hydroxyl radicals are a form of oxidative stress that damages DNA, proteins, and lipids within a cell. doi:10.1128/9781555818524.ch5f2

Citation: Farrand A, Skaar E. 2013. Regulation of Virulence by Iron in Gram-Positive Bacteria, p 79-105. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Mechanism of iron-dependent regulation in gram-positive bacteria. The metalloregulators Fur and DtxR regulate expression of a subset of genes in response to the availability of iron. Under iron-rich conditions, the metal binds to the regulator and activates it, allowing the protein to dimerize and bind to iron boxes in the promoter regions of genes within its regulon. Dimers bind to both strands of the double helix and prevent transcription. When iron levels are low, the regulators are not iron bound and no longer remain bound to the consensus sequence, and transcription is allowed to proceed. doi:10.1128/9781555818524.ch5f3

Citation: Farrand A, Skaar E. 2013. Regulation of Virulence by Iron in Gram-Positive Bacteria, p 79-105. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Structural characteristics of gram-positive metalloregulators. The crystal structures of the two primary iron-dependent metalloregulators in gram-positive bacteria are shown in ribbon diagram ( ). The ferric uptake regulator, Fur, and diphtheria toxin regulator, DtxR, share very little sequence homology but contain similar tertiary structures. The DNA binding domain of both regulators, shown in red, interacts with the consensus iron box sequence in the promoter of Fur- or DtxR-regulated genes. The dimerization domain, shown in blue, allows for two regulator subunits to interact with each other and the DNA strand. The dimerization domain also contains two metal binding sites, shown in green and orange, which bind iron or manganese to activate the regulator and promote DNA binding. DtxR also contains a unique SH3-like domain, shown in yellow, which is attached to the dimerization domain by a flexible linker and is believed to stabilize the molecule while it is bound to DNA. doi:10.1128/9781555818524.ch5f4

Citation: Farrand A, Skaar E. 2013. Regulation of Virulence by Iron in Gram-Positive Bacteria, p 79-105. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818524.chap5
1. Adilakshmi, T.,, P. D. Ayling,, and C. Ratledge. 2000. Mutational analysis of a role for salicylic acid in iron metabolism of Mycobacterium smegmatis. J. Bacteriol. 182: 264 271.
2. Allard, M.,, H. Moisan,, E. Brouillette,, A. L. Gervais,, M. Jacques,, P. Lacasse,, M. S. Diarra,, and F. Malouin. 2006. Transcriptional modulation of some Staphylococcus aureus iron-regulated genes during growth in vitro and in a tissue cage model in vivo. Microbes Infect. 8: 1679 1690.
3. Andrade, M. A.,, F. D. Ciccarelli,, C. Perez-Iratxeta,, and P. Bork. 2002. NEAT: a domain duplicated in genes near the components of a putative Fe 3+ siderophore transporter from Gram-positive pathogenic bacteria. Genome Biol. 3:RESEARCH0047.
4. Aranda, J.,, M. E. Garrido,, N. Fittipaldi,, P. Cortés,, M. Llagostera,, M. Gottschalk,, and J. Barbé. 2010. The cation-uptake regulators AdcR and Fur are necessary for full virulence of Streptococcus suis. Vet. Microbiol. 144: 246 249.
5. Arends, J. P.,, and H. C. Zanen. 1988. Meningitis caused by Streptococcus suis in humans. Rev. Infect. Dis. 10: 131 137.
6. Ashbaugh, C. D.,, and M. R. Wessels. 2001. Absence of a cysteine protease effect on bacterial virulence in two murine models of human invasive group A streptococcal infection. Infect. Immun. 69: 6683 6688.
7. Bacon, J.,, L. G. Dover,, K. A. Hatch,, Y. Zhang,, J. M. Gomes,, S. Kendall,, L. Wernisch,, N. G. Stoker,, P. D. Butcher,, G. S. Besra, et al. 2007. Lipid composition and transcriptional response of Mycobacterium tuberculosis grown under iron-limitation in continuous culture: identification of a novel wax ester. Microbiology 153: 1435 1444.
8. Baichoo, N.,, and J. D. Helmann. 2002. Recognition of DNA by Fur: a reinterpretation of the Fur box consensus sequence. J. Bacteriol. 184: 5826 5832.
9. Baichoo, N.,, T. Wang,, R. Ye,, and J. D. Helmann. 2002. Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon. Mol. Microbiol. 45: 1613 1629.
10. Bates, C.,, G. Montanez,, C. Woods,, R. Vincent,, and Z. Eichenbaum. 2003. Identification and characterization of a Streptococcus pyogenes operon involved in binding of hemoproteins and acquisition of iron. Infect. Immun. 71: 1042 1055.
11. Bates, C. S.,, C. Toukoki,, M. N. Neely,, and Z. Eichenbaum. 2005. Characterization of MtsR, a new metal regulator in group A streptococcus, involved in iron acquisition and virulence. Infect. Immun. 73: 5743 5753.
12. Batey, R. G. 1986. Pathogenesis of caseous lymphadenitis in sheep and goats. Aust. Vet. J. 63: 269 272.
13. Beasley, F. C.,, C. L. Marolda,, J. Cheung,, S. Buac,, and D. E. Heinrichs. 2011. Staphylococcus aureus transporters Hts, Sir, and Sst capture iron liberated from human transferrin by staphyloferrin A, staphyloferrin B, and catecholamine stress hormones, respectively, and contribute to virulence. Infect. Immun. 79: 2345 2355.
14. Beasley, F. C.,, E. D. Vinés,, J. C. Grigg,, Q. Zheng,, S. Liu,, G. A. Lajoie,, M. E. P. Murphy,, and D. E. Heinrichs. 2009. Characterization of staphyloferrin A biosynthetic and transport mutants in Staphylococcus aureus. Mol. Microbiol. 72: 947 963.
15. Bierne, H.,, C. Sabet,, N. Personnic,, and P. Cossart. 2007. Internalins: a complex family of leucine-rich repeat-containing proteins in Listeria monocytogenes. Microbes Infect. 9: 1156 1166.
16. Billington, S. J.,, P. A. Esmay,, J. G. Songer,, and B. H. Jost. 2002. Identification and role in virulence of putative iron acquisition genes from Corynebacterium pseudotuberculosis. FEMS Microbiol. Lett. 208: 41 45.
17. Borezee, E.,, E. Pellegrini,, and P. Berche. 2000. OppA of Listeria monocytogenes, an oligopeptide-binding protein required for bacterial growth at low temperature and involved in intracellular survival. Infect. Immun. 68: 7069 7077.
18. Boyd, J.,, and J. R. Murphy. 1988. Analysis of the diphtheria tox promoter by site-directed mutagenesis. J. Bacteriol. 170: 5949 5952.
19. Braun, V. 1999. Active transport of siderophore-mimicking antibacterials across the outer membrane. Drug Resist. Updates 2: 363 369.
20. Braun, V.,, A. Pramanik,, T. Gwinner,, M. Köberle,, and E. Bohn. 2009. Sideromycins: tools and antibiotics. BioMetals 22: 3 13.
21. Bray, B.,, I. Sutcliffe,, and D. Harrington. 2009. Expression of the MtsA lipoprotein of Streptococcus agalactiae A909 is regulated by manganese and iron. Antonie van Leeuwenhoek 95: 101 109.
22. Brenot, A.,, K. Y. King,, and M. G. Caparon. 2005. The PerR regulon in peroxide resistance and virulence of Streptococcus pyogenes. Mol. Microbiol. 55: 221 234.
23. Brenot, A.,, B. F. Weston,, and M. G. Caparon. 2007. A PerR-regulated metal transporter (PmtA) is an interface between oxidative stress and metal homeostasis in Streptococcus pyogenes. Mol. Microbiol. 63: 1185 1196.
24. Brown, J. S.,, S. M. Gilliland,, and D. W. Holden. 2001. A Streptococcus pneumoniae pathogenicity island encoding an ABC transporter involved in iron uptake and virulence. Mol. Microbiol. 40: 572 585.
25. Brown, J. S.,, S. M. Gilliland,, J. Ruiz-Albert,, and D. W. Holden. 2002. Characterization of Pit, a Streptococcus pneumoniae iron uptake ABC transporter. Infect. Immun. 70: 4389 4398.
26. Brüggemann, H.,, R. Bauer,, S. Raffestin,, and G. Gottschalk. 2004. Characterization of a heme oxygenase of Clostridium tetani and its possible role in oxygen tolerance. Arch. Microbiol. 182: 259 263.
27. Bsat, N.,, L. Chen,, and J. Helmann. 1996. Mutation of the Bacillus subtilis alkyl hydroperoxide reductase ( ahpCF) operon reveals compensatory interactions among hydrogen peroxide stress genes. J. Bacteriol. 178: 6579 6586.
28. Bsat, N.,, and J. D. Helmann. 1999. Interaction of Bacillus subtilis Fur (ferric uptake repressor) with the dhb operator in vitro and in vivo. J. Bacteriol. 181: 4299 4307.
29. Cabrera, G.,, A. Xiong,, M. Uebel,, V. K. Singh,, and R. K. Jayaswal. 2001. Molecular characterization of the iron-hydroxamate uptake system in Staphylococcus aureus. Appl. Environ. Microbiol. 67: 1001 1003.
30. Calder, K. M.,, and M. A. Horwitz. 1998. Identification of iron-regulated proteins of Mycobacterium tuberculosis and cloning of tandem genes encoding a low iron-induced protein and a metal transporting ATPase with similarities to two-component metal transport systems. Microb. Pathog. 24: 133 143.
31. Calderwood, S. B.,, and J. J. Mekalanos. 1988. Confirmation of the Fur operator site by insertion of a synthetic oligonucleotide into an operon fusion plasmid. J. Bacteriol. 170: 1015 1017.
32. Camacho, L. R.,, D. Ensergueix,, E. Perez,, B. Gicquel,, and C. Guilhot. 1999. Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol. Microbiol. 34: 257 267.
33. Canneva, F.,, M. Branzoni,, G. Riccardi,, R. Provvedi,, and A. Milano. 2005. Rv2358 and FurB: two transcriptional regulators from Mycobacterium tuberculosis which respond to zinc. J. Bacteriol. 187: 5837 5840.
34. Caparon, M. G.,, R. T. Geist,, J. Perez-Casal,, and J. R. Scott. 1992. Environmental regulation of virulence in group A streptococci: transcription of the gene encoding M protein is stimulated by carbon dioxide. J. Bacteriol. 174: 5693 5701.
35. Carlson, P. E., Jr.,, K. A. Carr,, B. K. Janes,, E. C. Anderson,, and P. C. Hanna. 2009. Transcriptional profiling of Bacillus anthracis Sterne (34F2) during iron starvation. PLoS One 4: e6988.
36. Casiano-Colón, A.,, and R. E. Marquis. 1988. Role of the arginine deiminase system in protecting oral bacteria and an enzymatic basis for acid tolerance. Appl. Environ. Microbiol. 54: 1318 1324.
37. Cendrowski, S.,, W. MacArthur,, and P. Hanna. 2004. Bacillus anthracis requires siderophore biosynthesis for growth in macrophages and mouse virulence. Mol. Microbiol. 51: 407 417.
38. Chavakis, T.,, M. Hussain,, S. M. Kanse,, G. Peters,, R. G. Bretzel,, J.-I. Flock,, M. Herrmann,, and K. T. Preissner. 2002. Staphylococcus aureus extracellular adherence protein serves as anti-inflammatory factor by inhibiting the recruitment of host leukocytes. Nat. Med. 8: 687 693.
39. Chavakis, T.,, K. Wiechmann,, K. T. Preissner,, and M. Herrmann. 2005. Staphylococcus aureus interactions with the endothelium: the role of bacterial “secretable expanded repertoire adhesive molecules” (SERAM) in disturbing host defense systems. Thromb. Haemost. 94: 278 285.
40. Chen, L.,, and J. D. Helmann. 1995. Bacillus subtilis MrgA is a Dps(PexB) homologue: evidence for metalloregulation of an oxidative-stress gene. Mol. Microbiol. 18: 295 300.
41. Chen, L.,, L. P. James,, and J. D. Helmann. 1993. Metalloregulation in Bacillus subtilis: isolation and characterization of two genes differentially repressed by metal ions. J. Bacteriol. 175: 5428 5437.
42. Cheung, J.,, F. C. Beasley,, S. Liu,, G. A. Lajoie,, and D. E. Heinrichs. 2009. Molecular characterization of staphyloferrin B biosynthesis in Staphylococcus aureus. Mol. Microbiol. 74: 594 608.
43. Chu, G. C.,, K. Katakura,, X. Zhang,, T. Yoshida,, and M. Ikeda-Saito. 1999. Heme degradation as catalyzed by a recombinant bacterial heme oxygenase (Hmu O) from Corynebacterium diphtheriae. J. Biol. Chem. 274: 21319 21325.
44. Clarke, S. R.,, M. D. Wiltshire,, and S. J. Foster. 2004. IsdA of Staphylococcus aureus is a broad spectrum, iron-regulated adhesin. Mol. Microbiol. 51: 1509 1519.
45. Clemens, D. L.,, and M. A. Horwitz. 1996. The Mycobacterium tuberculosis phagosome interacts with early endosomes and is accessible to exogenously administered transferrin. J. Exp. Med. 184: 1349 1355.
46. Clifton-Hadley, F. A. 1983. Streptococcus suis type 2 infections. Br. Vet. J. 139: 1 5.
47. Cole, S. T.,, R. Brosch,, J. Parkhill,, T. Garnier,, C. Churcher,, D. Harris,, S. V. Gordon,, K. Eiglmeier,, S. Gas,, C. E. Barry, et al. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537 544.
48. Conte, M.,, C. Longhi,, M. Polidoro,, G. Petrone,, V. Buonfiglio,, S. Di Santo,, E. Papi,, L. Seganti,, P. Visca,, and P. Valenti. 1996. Iron availability affects entry of Listeria monocytogenes into the enterocytelike cell line Caco-2. Infect. Immun. 64: 3925 3929.
49. Conte, M. P.,, C. Longhi,, G. Petrone,, M. Polidoro,, P. Valenti,, and L. Seganti. 2000. Modulation of actA gene expression in Listeria monocytogenes by iron. J. Med. Microbiol. 49: 681 683.
50. Cossart, P. 1995. Actin-based bacterial motility. Curr. Opin. Cell Biol. 7: 94 101.
51. Cotton, J. L.,, J. Tao,, and C. J. Balibar. 2009. Identification and characterization of the Staphylococcus aureus gene cluster coding for staphyloferrin A. Biochemistry 48: 1025 1035.
52. Cowart, R. E.,, and B. G. Foster. 1981. The role of iron in the production of haemolysin by Listeria monocytogenes. Curr. Microbiol. 6: 287 290.
53. Cox, J. S.,, B. Chen,, M. McNeil,, and W. R. Jacobs. 1999. Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402: 79 83.
54. Crosa, J. 1997. Signal transduction and transcriptional and posttranscriptional control of iron-regulated genes in bacteria. Microbiol. Mol. Biol. Rev. 61: 319 336.
55. Cunningham, M. 2000. Pathogenesis of group A streptococcal infections. Clin. Microbiol. Rev. 13: 470 511.
56. Dale, S. E.,, A. Doherty-Kirby,, G. Lajoie,, and D. E. Heinrichs. 2004. Role of siderophore biosynthesis in virulence of Staphylococcus aureus: identification and characterization of genes involved in production of a siderophore. Infect. Immun. 72: 29 37.
57. Dall, L. H.,, and B. L. Herndon. 1990. Association of cell-adherent glycocalyx and endocarditis production by viridans group streptococci. J. Clin. Microbiol. 28: 1698 1700.
58. Davenport, D. S.,, R. M. Massanari,, M. A. Pfaller,, M. J. Bale,, S. A. Streed,, and W. J. Hierholzer. 1986. Usefulness of a test for slime production as a marker for clinically significant infections with coagulase-negative staphylococci. J. Infect. Dis. 153: 332 339.
59. De Domenico, I.,, D. M. Ward,, C. Langelier,, M. B. Vaughn,, E. Nemeth,, W. I. Sundquist,, T. Ganz,, G. Musci,, and J. Kaplan. 2007. The molecular mechanism of hepcidin-mediated ferroportin down-regulation. Mol. Biol. Cell 18: 2569 2578.
60. Degnan, B. A.,, M. C. Fontaine,, A. H. Doebereiner,, J. J. Lee,, P. Mastroeni,, G. Dougan,, J. A. Goodacre,, and M. A. Kehoe. 2000. Characterization of an isogenic mutant of Streptococcus pyogenes Manfredo lacking the ability to make streptococcal acid glycoprotein. Infect. Immun. 68: 2441 2448.
61. Deighton, M.,, and R. Borland. 1993. Regulation of slime production in Staphylococcus epidermidis by iron limitation. Infect. Immun. 61: 4473 4479.
62. de Lorenzo, V.,, S. Wee,, M. Herrero,, and J. B. Neilands. 1987. Operator sequences of the aerobactin operon of plasmid ColV-K30 binding the ferric uptake regulation ( fur) repressor. J. Bacteriol. 169: 2624 2630.
63. De Voss, J. J.,, K. Rutter,, B. G. Schroeder,, H. Su,, Y. Zhu,, and C. E. Barry. 2000. The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc. Natl. Acad. Sci. USA 97: 1252 1257.
64. Dintilhac, A.,, G. Alloing,, C. Granadel,, and J.-P. Claverys. 1997. Competence and virulence of Streptococcus pneumoniae: Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases. Mol. Microbiol. 25: 727 739.
65. Drabkin, D. L. 1951. Metabolism of the hemin chromoproteins. Physiol. Rev. 31: 345 431.
66. Drazek, E. S.,, C. A. Hammack, Sr,, and M. P. Schmitt. 2000. Corynebacterium diphtheriae genes required for acquisition of iron from haemin and haemoglobin are homologous to ABC haemin transporters. Mol. Microbiol. 36: 68 84.
67. Drechsel, H.,, and G. Jung. 1998. Peptide siderophores. J. Pept. Sci. 4: 147 181.
68. Dussurget, O.,, M. Rodriguez,, and I. Smith. 1996. An ideR mutant of Mycobacterium smegmatis has derepressed siderophore production and an altered oxidative-stress response. Mol. Microbiol. 22: 535 544.
69. Dussurget, O.,, J. Timm,, M. Gomez,, B. Gold,, S. Yu,, S. Z. Sabol,, R. K. Holmes, W. R. Jacobs, Jr., and I. Smith. 1999. Transcriptional control of the iron-responsive fxbA gene by the mycobacterial regulator IdeR. J. Bacteriol. 181: 3402 3408.
70. Ellen, R. P.,, D. W. Banting,, and E. D. Fillery. 1985. CLINICAL SCIENCE longitudinal microbiological investigation of a hospitalized population of older adults with a high root surface caries risk. J. Dent. Res. 64: 1377 1381.
71. Ernst, J. F.,, R. L. Bennett,, and L. I. Rothfield. 1978. Constitutive expression of the iron-enterochelin and ferrichrome uptake systems in a mutant strain of Salmonella typhimurium. J. Bacteriol. 135: 928 934.
72. Escolar, L.,, J. Pérez-Martín,, and V. de Lorenzo. 1999. Opening the iron box: transcriptional metalloregulation by the Fur protein. J. Bacteriol. 181: 6223 6229.
73. Escolar, L.,, J. Pérez-Martín,, and V. de Lorenzo. 1998. Binding of the Fur (ferric uptake regulator) repressor of Escherichia coli to arrays of the GATAAT sequence. J. Mol. Biol. 283: 537 547.
74. Fabian, M.,, E. Solomaha,, J. S. Olson,, and A. W. Maresso. 2009. Heme transfer to the bacterial cell envelope occurs via a secreted hemophore in the Gram-positive pathogen Bacillus anthracis. J. Biol. Chem. 284: 32138 32146.
75. Farber, J. M.,, and P. I. Peterkin. 1991. Listeria monocytogenes, a food-borne pathogen. Microbiol. Rev. 55: 476 511.
76. Fermi, G.,, M. F. Perutz,, B. Shaanan,, and R. Fourme. 1984. The crystal structure of human deoxyhaemoglobin at 1.74 Å resolution. J. Mol. Biol. 175: 159 174.
77. Ferreras, J. A.,, J.-S. Ryu,, F. Di Lello,, D. S. Tan,, and L. E. N. Quadri. 2005. Small-molecule inhibition of siderophore biosynthesis in Mycobacterium tuberculosis and Yersinia pestis. Nat. Chem. Biol. 1: 29 32.
78. Fiorini, F.,, S. Stefanini,, P. Valenti,, E. Chiancone,, and D. De Biase. 2008. Transcription of the Listeria monocytogenes fri gene is growth-phase dependent and is repressed directly by Fur, the ferric uptake regulator. Gene 410: 113 121.
79. Fischetti, V. A. 1989. Streptococcal M protein: molecular design and biological behavior. Clin. Microbiol. Rev. 2: 285 314.
80. Fischetti, V. A.,, D. A. Parry,, B. L. Trus,, S. K. Hollingshead,, J. R. Scott,, and B. N. Manjula. 1988. Conformational characteristics of the complete sequence of group A streptococcal M6 protein. Proteins 3: 60 69.
81. Flo, T. H.,, K. D. Smith,, S. Sato,, D. J. Rodriguez,, M. A. Holmes,, R. K. Strong, S. Akira, and A. Aderem. 2004. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432: 917 921.
82. Fourel, G.,, A. Phalipon,, and M. Kaczorek. 1989. Evidence for direct regulation of diphtheria toxin gene transcription by an Fe 2+-dependent DNA-binding repressor, DtoxR, in Corynebacterium diphtheriae. Infect. Immun. 57: 3221 3225.
83. Fuangthong, M.,, A. F. Herbig,, N. Bsat,, and J. D. Helmann. 2002. Regulation of the Bacillus subtilis fur and perR genes by PerR: not all members of the PerR regulon are peroxide inducible. J. Bacteriol. 184: 3276 3286.
84. Gaballa, A.,, H. Antelmann,, C. Aguilar,, S. K. Khakh,, K.-B. Song,, G. T. Smaldone,, and J. D. Helmann. 2008. The Bacillus subtilis iron-sparing response is mediated by a Fur-regulated small RNA and three small, basic proteins. Proc. Natl. Acad. Sci. USA 105: 11927 11932.
85. Gaballa, A.,, and J. D. Helmann. 1998. Identification of a zinc-specific metalloregulatory protein, Zur, controlling zinc transport operons in Bacillus subtilis. J. Bacteriol. 180: 5815 5821.
86. Gangaidzo, I. T.,, V. M. Moyo,, E. Mvundura,, G. Aggrey,, N. L. Murphree,, H. Khumalo,, T. Saungweme,, I. Kasvosve,, Z. A. R. Gomo,, T. Rouault, et al. 2001. Association of pulmonary tuberculosis with increased dietary iron. J. Infect. Dis. 184: 936 939.
87. Gat, O.,, G. Zaide,, I. Inbar,, H. Grosfeld,, T. Chitlaru,, H. Levy,, and A. Shafferman. 2008. Characterization of Bacillus anthracis iron-regulated surface determinant (Isd) proteins containing NEAT domains. Mol. Microbiol. 70: 983 999.
88. Glickman, M. S.,, and W. R. Jacobs. 2001. Microbial pathogenesis of Mycobacterium tuberculosis: dawn of a discipline. Cell 104: 477 485.
89. Gobin, J.,, and M. A. Horwitz. 1996. Exochelins of Mycobacterium tuberculosis remove iron from human iron-binding proteins and donate iron to mycobactins in the M. tuberculosis cell wall. J. Exp. Med. 183: 1527 1532.
90. Gold, B.,, G. M. Rodriguez,, S. A. E. Marras,, M. Pentecost,, and I. Smith. 2001. The Mycobacterium tuberculosis IdeR is a dual functional regulator that controls transcription of genes involved in iron acquisition, iron storage and survival in macrophages. Mol. Microbiol. 42: 851 865.
91. Gomme, P. T.,, K. B. McCann,, and J. Bertolini. 2005. Transferrin: structure, function and potential therapeutic actions. Drug Disc. Today 10: 267 273.
92. Gupta, R.,, P. Shah,, P., and E. Swiatlo. 2009. Differential gene expression in Streptococcus pneumoniae in response to various iron sources. Microb. Pathog. 47: 101 109.
93. Haggar, A.,, M. Hussain,, H. Lonnies,, M. Herrmann,, A. Norrby-Teglund,, and J.-I. Flock. 2003. Extracellular adherence protein from Staphylococcus aureus enhances internalization into eukaryotic cells. Infect. Immun. 71: 2310 2317.
94. Hammerschmidt, S.,, G. Bethe,, P. H. Remane,, and G. S. Chhatwal. 1999. Identification of pneumococcal surface protein A as a lactoferrin-binding protein of Streptococcus pneumoniae. Infect. Immun. 67: 1683 1687.
95. Hammond, C. R., 2004. The elements, p. 4 32. In D. R. Lide (ed.), CRC Handbook of Chemistry and Physics, 85th ed. CRC Press, Boca Raton, FL.
96. Hanks, T.,, M. Liu,, M. McClure,, and B. Lei. 2005. ABC transporter FtsABCD of Streptococcus pyogenes mediates uptake of ferric ferrichrome. BMC Microbiol. 5: 62.
97. Hanks, T. S.,, M. Liu,, M. J. McClure,, M. Fukumura,, A. Duffy,, and B. Lei. 2006. Differential regulation of iron- and manganese-specific MtsABC and heme-specific HtsABC transporters by the metalloregulator MtsR of group A streptococcus. Infect. Immun. 74: 5132 5139.
98. Haralalka, S.,, S. Nandi,, and R. K. Bhadra. 2003. Mutation in the relA gene of Vibrio cholerae affects in vitro and in vivo expression of virulence factors. J. Bacteriol. 185: 4672 4682.
99. Hard, G. C. 1972. Examination by electron microscopy of the interaction between peritoneal phagocytes and Corynebacterium ovis. J. Med. Microbiol. 5: 483 491.
100. Harrison, S. C.,, and A. K. Aggarwal. 1990. DNA recognition by proteins with the helix-turn-helix motif. Annu. Rev. Biochem. 59: 933 969.
101. Harvie, D. R.,, S. Vílchez,, J. R. Steggles,, and D. J. Ellar. 2005. Bacillus cereus Fur regulates iron metabolism and is required for full virulence. Microbiology 151: 569 577.
102. Hassan, S.,, K. Ohtani,, R. Wang,, Y. Yuan,, Y. Wang,, Y. Yamaguchi,, and T. Shimizu. 2010. Transcriptional regulation of hemO encoding heme oxygenase in Clostridium perfringens. J. Microbiol. 48: 96 101.
103. He, Q. Y.,, A. B. Mason,, V. Nguyen,, R. T. MacGillivray,, and R. C. Woodworth. 2000. The chloride effect is related to anion binding in determining the rate of iron release from the human transferrin N-lobe. Biochem J. 350: 909 915.
104. Heinrichs, J. H.,, L. E. Gatlin,, C. Kunsch,, G. H. Choi,, and M. S. Hanson. 1999. Identification and characterization of SirA, an iron-regulated protein from Staphylococcus aureus. J. Bacteriol. 181: 1436 1443.
105. Henle, E. S.,, and S. Linn. 1997. Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide. J. Biol. Chem. 272: 19095 19098.
106. Herbig, A. F.,, and J. D. Helmann. 2001. Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA. Mol. Microbiol. 41: 849 859.
107. Herbig, A. F.,, and J. D. Helmann,. 2002. Metal ion uptake and oxidative stress, p. 405 414. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Its Closest Relatives. ASM Press, Washington, DC.
108. Hill, P. J.,, A. Cockayne,, P. Landers,, J. A. Morrissey,, C. M. Sims,, and P. Williams. 1998. SirR, a novel iron-dependent repressor in Staphylococcus epidermidis. Infect. Immun. 66: 4123 4129.
109. Hoffmaster, A. R.,, J. Ravel,, D. A. Rasko,, G. D. Chapman,, M. D. Chute,, C. K. Marston,, B. K. De,, C. T. Sacchi,, C. Fitzgerald,, L. W. Mayer, et al. 2004. Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proc. Natl. Acad. Sci. USA 101: 8449 8454.
110. Horsburgh, M. J.,, M. O. Clements,, H. Crossley,, E. Ingham,, and S. J. Foster. 2001a. PerR controls oxidative stress resistance and iron storage proteins and is required for virulence in Staphylococcus aureus. Infect. Immun. 69: 3744 3754.
111. Horsburgh, M. J.,, E. Ingham,, and S. J. Foster. 2001b. In Staphylococcus aureus, Fur is an interactive regulator with PerR, contributes to virulence, and is necessary for oxidative stress resistance through positive regulation of catalase and iron homeostasis. J. Bacteriol. 183: 468 475.
112. Horsburgh, M. J.,, S. J. Wharton,, A. G. Cox,, E. Ingham,, S. Peacock,, and S. J. Foster. 2002. MntR modulates expression of the PerR regulon and superoxide resistance in Staphylococcus aureus through control of manganese uptake. Mol. Microbiol. 44: 1269 1286.
113. Hussain, M.,, K. Becker,, C. von Eiff,, J. Schrenzel,, G. Peters,, and M. Herrmann. 2001. Identification and characterization of a novel 38.5-kilodalton cell surface protein of Staphylococcus aureus with extended-spectrum binding activity for extracellular matrix and plasma proteins. J. Bacteriol. 183: 6778 6786.
114. Imlay, J. A.,, S. M. Chin,, and S. Linn. 1988. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240: 640 642.
115. Jain, V.,, R. Saleem-Batcha,, A. China,, and D. Chatterji. 2006. Molecular dissection of the mycobacterial stringent response protein Rel. Protein Sci. 15: 1449 1464.
116. Janulczyk, R.,, J. Pallon,, and L. Bjorck. 1999. Identification and characterization of a Streptococcus pyogenes ABC transporter with multiple specificity for metal cations. Mol. Microbiol. 34: 596 606.
117. Janulczyk, R.,, S. Ricci,, and L. Bjorck. 2003. MtsABC is important for manganese and iron transport, oxidative stress resistance, and virulence of Streptococcus pyogenes. Infect. Immun. 71: 2656 2664.
118. Jin, B.,, S. M. C. Newton,, Y. Shao,, X. Jiang,, A. Charbit,, and P. E. Klebba. 2006. Iron acquisition systems for ferric hydroxamates, haemin and haemoglobin in Listeria monocytogenes. Mol. Microbiol. 59: 1185 1198.
119. Johnson, M.,, A. Cockayne,, P. H. Williams,, and J. A. Morrissey. 2005. Iron-responsive regulation of biofilm formation in Staphylococcus aureus involves Fur-dependent and Fur-independent mechanisms. J. Bacteriol. 187: 8211 8215.
120. Johnson, M.,, M. Sengupta,, J. Purves,, E. Tarrant,, P. H. Williams,, A. Cockayne,, A. Muthaiyan,, R. Stephenson,, N. Ledala,, B. J. Wilkinson, et al. 2011. Fur is required for the activation of virulence gene expression through the induction of the sae regulatory system in Staphylococcus aureus. Int. J. Med. Microbiol. 301: 44 52.
121. Johri, A. K.,, L. C. Paoletti,, P. Glaser,, M. Dua,, P. K. Sharma,, G. Grandi,, and R. Rappuoli. 2006. Group B streptococcus: global incidence and vaccine development. Nat. Rev. Microbiol. 4: 932 942.
122. Kansal, R. G.,, R. K. Aziz,, and M. Kotb. 2005. Modulation of expression of superantigens by human transferrin and lactoferrin: a novel mechanism in host-streptococcus interactions. J. Infect. Dis. 191: 2121 2129.
123. Kazmi, S. U.,, R. Kansal,, R. K. Aziz,, M. Hooshdaran,, A. Norrby-Teglund,, D. E. Low,, A.-B. Halim,, and M. Kotb. 2001. Reciprocal, temporal expression of SpeA and SpeB by invasive M1T1 group A streptococcal isolates in vivo. Infect. Immun. 69: 4988 4995.
124. Kitten, T.,, C. L. Munro,, S. M. Michalek,, and F. L. Macrina. 2000. Genetic characterization of a Streptococcus mutans LraI family operon and role in virulence. Infect. Immun. 68: 4441 4451.
125. Kotb, M. 1995. Bacterial pyrogenic exotoxins as superantigens. Clin. Microbiol. Rev. 8: 411 426.
126. Kotiranta, A.,, K. Lounatmaa,, and M. Haapasalo. 2000. Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect. 2: 189 198.
127. Kramer, J. M.,, and R. J. Gilbert,. 1989. Bacillus cereus and other Bacillus species, p. 21 70. In M. P. Doyle (ed.), Foodborne Bacterial Pathogens. Marcel Dekker, New York, NY.
128. Kristiansen, M.,, J. H. Graversen,, C. Jacobsen,, O. Sonne,, H.-J. Hoffman,, S. K. A. Law,, and S. K. Moestrup. 2001. Identification of the haemoglobin scavenger receptor. Nature 409: 198 201.
129. Kunkle, C. A.,, and M. P. Schmitt. 2003. Analysis of the Corynebacterium diphtheriae DtxR regulon: identification of a putative siderophore synthesis and transport system that is similar to the Yersinia high-pathogenicity island-encoded yersiniabactin synthesis and uptake system. J. Bacteriol. 185: 6826 6840.
130. Lancefield, R. C. 1962. Current knowledge of type-specific M antigens of group A streptococci. J. Immunol. 89: 307 313.
131. Lee, J.-W.,, and J. D. Helmann. 2006. The PerR transcription factor senses H 2O2 by metal-catalysed histidine oxidation. Nature 440: 363 367.
132. Lereclus, D.,, H. Agaisse,, C. Grandvalet,, S. Salamitou,, and M. Gominet. 2000. Regulation of toxin and virulence gene transcription in Bacillus thuringiensis. Int. J. Med. Microbiol. 290: 295 299.
133. Li, W.,, L. Liu,, H. Chen,, and R. Zhou. 2009. Identification of Streptococcus suis genes preferentially expressed under iron starvation by selective capture of transcribed sequences. FEMS Microbiol. Lett. 292: 123 133.
134. Lim, W. S.,, J. T. Macfarlane,, T. C. J. Boswell,, T. G. Harrison,, D. Rose,, M. Leinonen,, and P. Saikku. 2001. Study of community acquired pneumonia aetiology (SCAPA) in adults admitted to hospital: implications for management guidelines. Thorax 56: 296 301.
135. Lincoln, R. E.,, D. R. Hodges,, F. Klein,, B. G. Mahlandt,, W. I. Jones,, B. W. Haines,, M. A. Rhian,, and J. S. Walker. 1965. Role of the lymphatics in the pathogenesis of anthrax. J. Infect. Dis. 115: 481 494.
136. Lindsay, J. A.,, and S. J. Foster. 2001. zur: a Zn 2+-responsive regulatory element of Staphylococcus aureus. Microbiology 147: 1259 1266.
137. Litwin, C. M.,, S. A. Boyko,, and S. B. Calderwood. 1992. Cloning, sequencing, and transcriptional regulation of the Vibrio cholerae fur gene. J. Bacteriol. 174: 1897 1903.
138. Litwin, C. M.,, and S. B. Calderwood. 1993. Role of iron in regulation of virulence genes. Clin. Microbiol. Rev. 6: 137 149.
139. Lucarelli, D.,, M. L. Vasil,, W. Meyer-Klaucke,, and E. Pohl. 2008. The metal-dependent regulators FurA and FurB from Mycobacterium tuberculosis. Int. J. Mol. Sci. 9: 1548 1560.
140. Luo, Y.,, Z. Han,, S. M. Chin,, and S. Linn. 1994. Three chemically distinct types of oxidants formed by iron-mediated Fenton reactions in the presence of DNA. Proc. Natl. Acad. Sci. USA 91: 12438 12442.
141. Magnus, S. A.,, I. R. Hambleton,, F. Moosdeen,, and G. R. Serjeant. 1999. Recurrent infections in homozygous sickle cell disease. Arch. Dis. Child. 80: 537 541.
142. Manabe, Y. C.,, B. J. Saviola,, L. Sun,, J. R. Murphy,, and W. R. Bishai. 1999. Attenuation of virulence in Mycobacterium tuberculosis expressing a constitutively active iron repressor. Proc. Natl. Acad. Sci. USA 96: 12844 12848.
143. Maresso, A. W.,, G. Garufi,, and O. Schneewind. 2008. Bacillus anthracis secretes proteins that mediate heme acquisition from hemoglobin. PLoS Pathog. 4: e1000132.
144. Marra, A.,, J. Asundi,, M. Bartilson,, S. Lawson,, F. Fang,, J. Christine,, C. Wiesner,, D. Brigham,, W. P. Schneider,, and A. E. Hromockyj. 2002. Differential fluorescence induction analysis of Streptococcus pneumoniae identifies genes involved in pathogenesis. Infect. Immun. 70: 1422 1433.
145. Maskell, J. P. 1980. The functional interchangeability of enterobacterial and staphylococcal iron chelators. Antonie van Leeuwenhoek 46: 343 351.
146. McIver, K.,, A. Heath,, and J. Scott. 1995. Regulation of virulence by environmental signals in group A streptococci: influence of osmolarity, temperature, gas exchange, and iron limitation on emm transcription. Infect. Immun. 63: 4540 4542.
147. McNamara, P. J.,, G. A. Bradley,, and J. G. Songer. 1994. Targeted mutagenesis of the phospholipase D gene results in decreased virulence of Corynebacterium pseudotuberculosis. Mol. Microbiol. 12: 921 930.
148. Miller, M. J.,, and F. Malouin. 1993. Microbial iron chelators as drug delivery agents: the rational design and synthesis of siderophore-drug conjugates. Accounts Chem. Res. 26: 241 249.
149. Minnikin, D. E.,, L. Kremer,, L. G. Dover,, and G. S. Besra. 2002. The methyl-branched fortifications of Mycobacterium tuberculosis. Chem. Biol. 9: 545 553.
150. Moelling, C.,, R. Oberschlacke,, P. Ward,, J. Karijolich,, K. Borisova,, N. Bjelos,, and L. Bergeron. 2007. Metal-dependent repression of siderophore and biofilm formation in Actinomyces naeslundii. FEMS Microbiol. Lett. 275: 214 220.
151. Montanez, G. E.,, M. N. Neely,, and Z. Eichenbaum. 2005. The streptococcal iron uptake (Siu) transporter is required for iron uptake and virulence in a zebrafish infection model. Microbiology 151: 3749 3757.
152. Moreira, L. D. O.,, A. F. B. Andrade,, M. D. Vale,, S. M. S. Souza,, R. Hirata, Jr.,, L. M. O. B. Asad,, N. R. Asad,, L. H. Monteiro-Leal,, J. O. Previato,, and A. L. Mattos-Guaraldi. 2003. Effects of iron limitation on adherence and cell surface carbohydrates of Corynebacterium diphtheriae strains. Appl. Environ. Microbiol. 69: 5907 5913.
153. Morgan, J. W.,, and E. Anders. 1980. Chemical composition of Earth, Venus, and Mercury. Proc. Natl. Acad. Sci. USA 77: 6973 6977.
154. Morrissey, J. A.,, A. Cockayne,, P. J. Hill,, and P. Williams. 2000. Molecular cloning and analysis of a putative siderophore ABC transporter from Staphylococcus aureus. Infect. Immun. 68: 6281 6288.
155. Moyo, V. M.,, I. T. Gangaidzo,, V. R. Gordeuk,, C. F. Kiire,, and A. P. Macphail. 1997. Tuberculosis and iron overload in Africa: a review. Cent. Afr. J. Med. 43: 334 339.
156. Murray, M. J.,, A. B. Murray,, M. B. Murray,, and C. J. Murray. 1978. The adverse effect of iron repletion on the course of certain infections. Br. Med. J. 2: 1113 1115.
157. Nelson, A. L.,, J. M. Barasch,, R. M. Bunte,, and J. N. Weiser. 2005. Bacterial colonization of nasal mucosa induces expression of siderocalin, an iron-sequestering component of innate immunity. Cell. Microbiol. 7: 1404 1417.
158. Newton, S. M. C.,, P. E. Klebba,, C. Raynaud,, Y. Shao,, X. Jiang,, I. Dubail,, C. Archer,, C. Frehel,, and A. Charbit. 2005. The svpA- srtB locus of Listeria monocytogenes: Fur-mediated iron regulation and effect on virulence. Mol. Microbiol. 55: 927 940.
159. Nikaido, H.,, and J. A. Hall. 1998. Overview of bacterial ABC transporters. Methods Enzymol. 292: 3 20.
160. Olsen, K. N.,, M. H. Larsen,, C. G. M. Gahan,, B. Kallipolitis,, X. A. Wolf,, R. Rea,, C. Hill,, and H. Ingmer. 2005. The Dps-like protein Fri of Listeria monocytogenes promotes stress tolerance and intracellular multiplication in macrophage-like cells. Microbiology 151: 925 933.
161. Oram, D. M.,, A. Avdalovic,, and R. K. Holmes. 2002. Construction and characterization of transposon insertion mutations in Corynebacterium diphtheriae that affect expression of the diphtheria toxin repressor (DtxR). J. Bacteriol. 184: 5723 5732.
162. Osaki, M.,, D. Takamatsu,, Y. Shimoji,, and T. Sekizaki. 2002. Characterization of Streptococcus suis genes encoding proteins homologous to sortase of gram-positive bacteria. J. Bacteriol. 184: 971 982.
163. Palma, M.,, A. Haggar,, and J. I. Flock. 1999. Adherence of Staphylococcus aureus is enhanced by an endogenous secreted protein with broad binding activity. J. Bacteriol. 181: 2840 2845.
164. Peters, G.,, R. Locci,, and G. Pulverer. 1982. Adherence and growth of coagulase-negative staphylococci on surfaces of intravenous catheters. J. Infect. Dis. 146: 479 482.
165. Pfleger, B. F.,, Y. Kim,, T. D. Nusca,, N. Maltseva,, J. Y. Lee,, C. M. Rath,, J. B. Scaglione,, B. K. Janes,, E. C. Anderson,, N. H. Bergman, et al. 2008. Structural and functional analysis of AsbF: origin of the stealth 3,4-dihydroxybenzoic acid subunit for petrobactin biosynthesis. Proc. Natl. Acad. Sci. USA 105: 17133 17138.
166. Pohl, E.,, J. C. Haller,, A. Mijovilovich,, W. Meyer-Klaucke,, E. Garman,, and M. L. Vasil. 2003. Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator. Mol. Microbiol. 47: 903 915.
167. Pohl, E.,, R. K. Holmes,, and W. G. Hol. 1998. Motion of the DNA-binding domain with respect to the core of the diphtheria toxin repressor (DtxR) revealed in the crystal structure of apo- and holo-DtxR. J. Biol. Chem. 273: 22420 22427.
168. Polidoro, M.,, D. De Biase,, B. Montagnini,, L. Guarrera,, S. Cavallo,, P. Valenti,, S. Stefanini,, and E. Chiancone. 2002. The expression of the dodecameric ferritin in Listeria spp. is induced by iron limitation and stationary growth phase. Gene 296: 121 128.
169. Posey, J. E.,, and F. C. Gherardini. 2000. Lack of a role for iron in the Lyme disease pathogen. Science 288: 1651 1653.
170. Poulos, T. L. 2007. The Janus nature of heme. Nat. Prod. Rep. 24: 504 510.
171. Primm, T. P.,, S. J. Andersen,, V. Mizrahi,, D. Avarbock,, H. Rubin,, and C. E. Barry III. 2000. The stringent response of Mycobacterium tuberculosis is required for long-term survival. J. Bacteriol. 182: 4889 4898.
172. Pym, A. S.,, P. Domenech,, N. Honoré,, J. Song,, V. Deretic,, and S. T. Cole. 2001. Regulation of catalase-peroxidase (KatG) expression, isoniazid sensitivity and virulence by furA of Mycobacterium tuberculosis. Mol. Microbiol. 40: 879 889.
173. Qian, Y.,, J. H. Lee,, and R. K. Holmes. 2002. Identification of a DtxR-regulated operon that is essential for siderophore-dependent iron uptake in Corynebacterium diphtheriae. J. Bacteriol. 184: 4846 4856.
174. Que, Q.,, and J. D. Helmann. 2000. Manganese homeostasis in Bacillus subtilis is regulated by MntR, a bifunctional regulator related to the diphtheria toxin repressor family of proteins. Mol. Microbiol. 35: 1454 1468.
175. Rachman, H.,, M. Strong,, U. Schaible,, J. Schuchhardt,, K. Hagens,, H. Mollenkopf,, D. Eisenberg,, and S. H. E. Kaufmann. 2006. Mycobacterium tuberculosis gene expression profiling within the context of protein networks. Microbes Infect. 8: 747 757.
176. Ratledge, C., 1999. Iron metabolism, p. 260 286. In C. Ratledge, and J. Dale (ed.), Mycobacteria: Molecular Biology and Virulence. Blackwell Science, London, United Kingdom.
177. Ratledge, C.,, and F. G. Winder. 1962. The accumulation of salicylic acid by mycobacteria during growth on an iron-deficient medium. Biochem. J. 84: 501 506.
178. Rea, R. B.,, C. G. M. Gahan,, and C. Hill. 2004. Disruption of putative regulatory loci in Listeria monocytogenes demonstrates a significant role for Fur and PerR in virulence. Infect. Immun. 72: 717 727.
179. Read, T. D.,, S. N. Peterson,, N. Tourasse,, L. W. Baillie,, I. T. Paulsen,, K. E. Nelson,, H. Tettelin,, D. E. Fouts,, J. A. Eisen,, S. R. Gill, et al. 2003. The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 423: 81 86.
180. Reed, M. B.,, P. Domenech,, C. Manca,, H. Su,, A. K. Barczak,, B. N. Kreiswirth,, G. Kaplan,, and C. E. Barry. 2004. A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature 431: 84 87.
181. Ricci, S.,, R. Janulczyk,, and L. Bjorck. 2002. The regulator PerR is involved in oxidative stress response and iron homeostasis and is necessary for full virulence of Streptococcus pyogenes. Infect. Immun. 70: 4968 4976.
182. Rodriguez, G. M. 2006. Control of iron metabolism in Mycobacterium tuberculosis. Trends Microbiol. 14: 320 327.
183. Rodriguez, G. M.,, B. Gold,, M. Gomez,, O. Dussurget,, and I. Smith. 1999. Identification and characterization of two divergently transcribed iron regulated genes in Mycobacterium tuberculosis. Tuber. Lung Dis. 79: 287 298.
184. Rodriguez, G. M.,, and I. Smith. 2003. Mechanisms of iron regulation in mycobacteria: role in physiology and virulence. Mol. Microbiol. 47: 1485 1494.
185. Rodriguez, G. M.,, and I. Smith. 2006. Identification of an ABC transporter required for iron acquisition and virulence in Mycobacterium tuberculosis. J. Bacteriol. 188: 424 430.
186. Rodriguez, G. M.,, M. I. Voskuil,, B. Gold,, G. K. Schoolnik,, and I. Smith. 2002. ideR, an essential gene in Mycobacterium tuberculosis: role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect. Immun. 70: 3371 3381.
187. Rolerson, E.,, A. Swick,, L. Newlon,, C. Palmer,, Y. Pan,, B. Keeshan,, and G. Spatafora. 2006. The SloR/Dlg metalloregulator modulates Streptococcus mutans virulence gene expression. J. Bacteriol. 188: 5033 5044.
188. Roosenberg, J. M. N.,, Y. M. Lin,, Y. Lu,, and M. J. Miller. 2000. Studies and syntheses of siderophores, microbial iron chelators, and analogs as potential drug delivery agents. Curr. Med. Chem. 7: 159 197.
189. Russell, L. M.,, S. J. Cryz, Jr.,, and R. K. Holmes. 1984. Genetic and biochemical evidence for a siderophore-dependent iron transport system in Corynebacterium diphtheriae. Infect. Immun. 45: 143 149.
190. Sala, C.,, F. Forti,, E. Di Florio,, F. Canneva,, A. Milano,, G. Riccardi,, and D. Ghisotti. 2003. Mycobacterium tuberculosis FurA autoregulates its own expression. J. Bacteriol. 185: 5357 5362.
191. Schaible, U. E.,, H. L. Collins,, F. Priem,, and S. H. E. Kaufmann. 2002. Correction of the iron overload defect in beta-2-microglobulin knockout mice by lactoferrin abolishes their increased susceptibility to tuberculosis. J. Exp. Med. 196: 1507 1513.
192. Schiering, N.,, X. Tao,, H. Zeng,, J. R. Murphy,, G. A. Petsko,, and D. Ringe. 1995. Structures of the apo- and the metal ion-activated forms of the diphtheria tox repressor from Corynebacterium diphtheriae. Proc. Natl. Acad. Sci. USA 92: 9843 9850.
193. Schmitt, M. 1997. Transcription of the Corynebacterium diphtheriae hmuO gene is regulated by iron and heme. Infect. Immun. 65: 4634 4641.
194. Schmitt, M. P. 1999. Identification of a two-component signal transduction system from Corynebacterium diphtheriae that activates gene expression in response to the presence of heme and hemoglobin. J. Bacteriol. 181: 5330 5340.
195. Schmitt, M. P.,, and R. K. Holmes. 1993. Analysis of diphtheria toxin repressor-operator interactions and characterization of a mutant repressor with decreased binding activity for divalent metals. Mol. Microbiol. 9: 173 181.
196. Schneider, R.,, and K. Hantke. 1993. Iron-hydroxamate uptake systems in Bacillus subtilis: identification of a lipoprotein as part of a binding protein-dependent transport system. Mol. Microbiol. 8: 111 121.
197. Schüpbach, P.,, V. Osterwalder,, and B. Guggenheim. 1995. Human root caries: microbiota in plaque covering sound, carious and arrested carious root surfaces. Caries Res. 29: 382 395.
198. Sebulsky, M. T.,, and D. E. Heinrichs. 2001. Identification and characterization of fhuD1 and fhuD2, two genes involved in iron-hydroxamate uptake in Staphylococcus aureus. J. Bacteriol. 183: 4994 5000.
199. Sebulsky, M. T.,, D. Hohnstein,, M. D. Hunter,, and D. E. Heinrichs. 2000. Identification and characterization of a membrane permease involved in iron-hydroxamate transport in Staphylococcus aureus. J. Bacteriol. 182: 4394 4400.
200. Siegrist, M. S.,, M. Unnikrishnan,, M. J. McConnell,, M. Borowsky,, T. Y. Cheng,, N. Siddiqi,, S. M. Fortune,, D. B. Moody,, and E. J. Rubin. 2009. Mycobacterial Esx-3 is required for mycobactin-mediated iron acquisition. Proc. Natl. Acad. Sci. USA 106: 18792 18797.
201. Simon, N.,, V. Coulanges,, P. Andre,, and D. J. Vidon. 1995. Utilization of exogenous siderophores and natural catechols by Listeria monocytogenes. Appl. Environ. Microbiol. 61: 1643 1645.
202. Skaar, E. P.,, A. H. Gaspar,, and O. Schneewind. 2004b. IsdG and IsdI, heme-degrading enzymes in the cytoplasm of Staphylococcus aureus. J. Biol. Chem. 279: 436 443.
203. Skaar, E. P.,, A. H. Gaspar,, and O. Schneewind. 2006. Bacillus anthracis IsdG, a heme-degrading monooxygenase. J. Bacteriol. 188: 1071 1080.
204. Skaar, E. P.,, M. Humayun,, T. Bae,, K. L. DeBord,, and O. Schneewind. 2004a. Iron-source preference of Staphylococcus aureus infections. Science 305: 1626 1628.
205. Skaar, E. P.,, and O. Schneewind. 2004. Iron-regulated surface determinants (Isd) of Staphylococcus aureus: stealing iron from heme. Microbes Infect. 6: 390 397.
206. Smith, G. A.,, and D. A. Portnoy. 1997. How the Listeria monocytogenes ActA protein converts actin polymerization into a motile force. Trends Microbiol. 5: 272 276.
207. Smith, H.,, J. Keppie,, and J. L. Stanley. 1954. Observations on the cause of death in experimental anthrax. Lancet 267: 474 476.
208. Sow, F. B.,, W. C. Florence,, A. R. Satoskar,, L. S. Schlesinger,, B. S. Zwilling,, and W. P. Lafuse. 2007. Expression and localization of hepcidin in macrophages: a role in host defense against tuberculosis. J. Leukoc. Biol. 82: 934 945.
209. Speziali, C. D.,, S. E. Dale,, J. A. Henderson,, E. D. Vines,, and D. E. Heinrichs. 2006. Requirement of Staphylococcus aureus ATP-binding cassette-ATPase FhuC for iron-restricted growth and evidence that it functions with more than one iron transporter. J. Bacteriol. 188: 2048 2055.
210. Stojiljkovic, I.,, and K. Hantke. 1995. Functional domains of the Escherichia coli ferric uptake regulator protein (Fur). Mol. Gen. Genet. 247: 199 205.
211. Sturgill-Koszycki, S.,, U. E. Schaible,, and D. G. Russell. 1996. Mycobacterium-containing phagosomes are accessible to early endosomes and reflect a transitional state in normal phagosome biogenesis. EMBO J. 15: 6960 6968.
212. Tai, S.-P. S.,, A. E. Krafft,, P. Nootheti,, and R. K. Holmes. 1990. Coordinate regulation of siderophore and diphtheria toxin production by iron in Corynebacterium diphtheriae. Microb. Pathog. 9: 267 273.
213. Tai, S. S.,, C. J. Lee,, and R. E. Winter. 1993. Hemin utilization is related to virulence of Streptococcus pneumoniae. Infect. Immun. 61: 5401 5405.
214. Tao, X.,, J. Boyd,, and J. R. Murphy. 1992. Specific binding of the diphtheria tox regulatory element DtxR to the tox operator requires divalent heavy metal ions and a 9-base-pair interrupted palindromic sequence. Proc. Natl. Acad. Sci. USA 89: 5897 5901.
215. Tarlovsky, Y.,, M. Fabian,, E. Solomaha,, E. Honsa,, J. S. Olson,, and A. W. Maresso. 2010. A Bacillus anthracis S-layer homology protein that binds heme and mediates heme delivery to IsdC. J. Bacteriol. 192: 3503 3511.
216. Tashjian, J. J.,, and S. G. Campbell. 1983. Interaction between caprine macrophages and Corynebacterium pseudotuberculosis: an electron microscopic study. Am. J. Vet. Res. 44: 690 693.
217. Taylor, C. M.,, M. Beresford,, H. A. S. Epton,, D. C. Sigee,, G. Shama,, P. W. Andrew,, and I. S. Roberts. 2002. Listeria monocytogenes relA and hpt mutants are impaired in surface-attached growth and virulence. J. Bacteriol. 184: 621 628.
218. Tettelin, H.,, K. E. Nelson,, I. T. Paulsen,, J. A. Eisen,, T. D. Read,, S. Peterson,, J. Heidelberg,, R. T. DeBoy,, D. H. Haft,, R. J. Dodson, et al. 2001. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293: 498 506.
219. Throup, J. P.,, K. K. Koretke,, A. P. Bryant,, K. A. Ingraham,, A. F. Chalker,, Y. Ge,, A. Marra,, N. G. Wallis,, J. R. Brown,, D. J. Holmes, et al. 2000. A genomic analysis of two-component signal transduction in Streptococcus pneumoniae. Mol. Microbiol. 35: 566 576.
220. Tilney, L. G.,, and D. A. Portnoy. 1989. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol. 109: 1597 1608.
221. Timmins, G. S.,, and V. Deretic. 2006. Mechanisms of action of isoniazid. Mol. Microbiol. 62: 1220 1227.
222. Tolosano, E.,, and F. Altruda. 2002. Hemopexin: structure, function, and regulation. DNA Cell Biol. 21: 297 306.
223. Torres, V. J.,, A. S. Attia,, W. J. Mason,, M. I. Hood,, B. D. Corbin,, F. C. Beasley,, K. L. Anderson,, D. L. Stauff,, W. H. McDonald,, L. J. Zimmerman, et al. 2010. Staphylococcus aureus Fur regulates the expression of virulence factors that contribute to the pathogenesis of pneumonia. Infect. Immun. 78: 1618 1628.
224. Torres, V. J.,, G. Pishchany,, M. Humayun,, O. Schneewind,, and E. P. Skaar. 2006. Staphylococcus aureus IsdB is a hemoglobin receptor required for heme iron utilization. J. Bacteriol. 188: 8421 8429.
225. Toukoki, C.,, K. M. Gold,, K. S. McIver,, and Z. Eichenbaum. 2010. MtsR is a dual regulator that controls virulence genes and metabolic functions in addition to metal homeostasis in the group A streptococcus. Mol. Microbiol. 76: 971 989.
226. Uchida, T.,, D. M. Gill,, and A. M. Pappenheimer, Jr. 1971. Mutation in the structural gene for diphtheria toxin carried by temperate phage. Nat. New Biol. 233: 8 11.
227. Ulijasz, A. T.,, D. R. Andes,, J. D. Glasner,, and B. Weisblum. 2004. Regulation of iron transport in Streptococcus pneumoniae by RitR, an orphan response regulator. J. Bacteriol. 186: 8123 8136.
228. Vértesy, L.,, W. Aretz,, H.-W. Fehlhaber,, and H. Kogler. 1995. Salmycin A-D, Antibiotika aus Streptomyces violaceus, DSM 8286, mit Siderophor-Aminoglycosid-Struktur. Helv. Chim. Acta 78: 46 60.
229. von Eiff, C.,, R. A. Proctor,, and G. Peters. 2001. Coagulase-negative staphylococci. Pathogens have major role in nosocomial infections. Postgrad. Med. 110: 63 64, 69 70, 73 76.
230. Voyich, J. M.,, K. R. Braughton,, D. E. Sturdevant,, A. R. Whitney,, B. Saïd-Salim,, S. F. Porcella,, R. D. Long,, D. W. Dorward,, D. J. Gardner,, B. N. Kreiswirth, et al. 2005. Insights into mechanisms used by Staphylococcus aureus to avoid destruction by human neutrophils. J. Immunol. 175: 3907 3919.
231. Voyich, J. M.,, C. Vuong,, M. DeWald,, T. K. Nygaard,, S. Kocianova,, S. Griffith,, J. Jones,, C. Iverson,, D. E. Sturdevant,, K. R. Braughton, et al. 2009. The SaeR/S gene regulatory system is essential for innate immune evasion by Staphylococcus aureus. J. Infect. Dis. 199: 1698 1706.
232. Wandersman, C.,, and P. Delepelaire. 2004. Bacterial iron sources: from siderophores to hemophores. Annu. Rev. Microbiol. 58: 611 647.
233. Wang, L.,, and B. J. Cherayil. 2009. Ironing out the wrinkles in host defense: interactions between iron homeostasis and innate immunity. J. Innate Immun. 1: 455 464.
234. Wang, Z.,, C. Li,, M. Ellenburg,, E. Soistman,, J. Ruble,, B. Wright,, J. X. Ho,, and D. C. Carter. 2006. Structure of human ferritin L chain. Acta Crystallogr. D 62: 800 806.
235. Weems, J. J., Jr. 2001. The many faces of Staphylococcus aureus infection. Recognizing and managing its life-threatening manifestations. Postgrad. Med. 110, 24 26, 29 31, 35 36.
236. Welcher, B. C.,, J. H. Carra,, L. DaSilva,, J. Hanson,, C. S. David,, M. J. Aman,, and S. Bavari. 2002. Lethal shock induced by streptococcal pyrogenic exotoxin A in mice transgenic for human leukocyte antigen and human CD4 receptors: implications for development of vaccines and therapeutics. J. Infect. Dis. 186: 501 510.
237. White, A.,, X. Ding,, J. C. vanderSpek,, J. R. Murphy,, and D. Ringe. 1998. Structure of the metal-ion-activated diphtheria toxin repressor/ tox operator complex. Nature 394: 502 506.
238. Winston, D. J.,, D. V. Dudnick,, M. Chapin,, W. G. Ho,, R. P. Gale,, and W. J. Martin. 1983. Coagulase-negative staphylococcal bacteremia in patients receiving immunosuppressive therapy. Arch. Intern. Med. 143: 32 36.
239. Wylie, G. P.,, V. Rangachari,, E. A. Bienkiewicz,, V. Marin,, N. Bhattacharya,, J. F. Love,, J. R. Murphy,, and T. M. Logan. 2004. Prolylpeptide binding by the prokaryotic SH3-like domain of the diphtheria toxin repressor: a regulatory switch. Biochemistry 44: 40 51.
240. Xiao, Q.,, X. Jiang,, K. J. Moore,, Y. Shao,, H. Pi,, I. Dubail,, A. Charbit,, S. M. Newton,, and P. E. Klebba. 2011. Sortase independent and dependent systems for acquisition of haem and haemoglobin in Listeria monocytogenes. Mol. Microbiol. 80: 1581 1597.
241. Xiong, A.,, V. K. Singh,, G. Cabrera,, and R. K. Jayaswal. 2000. Molecular characterization of the ferric-uptake regulator, Fur, from Staphylococcus aureus. Microbiology 146: 659 668.
242. Yu, G. 2009. Pathogenic Bacillus anthracis in the progressive gene losses and gains in adaptive evolution. BMC Bioinformatics 10: S3.
243. Zahrt, T. C.,, and V. Deretic. 2000. An essential two-component signal transduction system in Mycobacterium tuberculosis. J. Bacteriol. 182: 3832 3838.

Tables

Generic image for table
Table 1

Virulence determinants regulated by iron-dependent metalloregulators in gram-positive bacteria

Citation: Farrand A, Skaar E. 2013. Regulation of Virulence by Iron in Gram-Positive Bacteria, p 79-105. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch5
Generic image for table
Table 2

Consensus sequences recognized by iron-dependent regulators in gram-positive bacteria

Citation: Farrand A, Skaar E. 2013. Regulation of Virulence by Iron in Gram-Positive Bacteria, p 79-105. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch5
Generic image for table
Table 3

Preferred iron sources of extracellular and intracellular pathogens

Citation: Farrand A, Skaar E. 2013. Regulation of Virulence by Iron in Gram-Positive Bacteria, p 79-105. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch5

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error