1887

Chapter 6 : Iron Regulation and Virulence in Gram-Negative Bacterial Pathogens with as a Paradigm

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Iron Regulation and Virulence in Gram-Negative Bacterial Pathogens with as a Paradigm, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap06-2.gif

Abstract:

This chapter covers the role of iron regulation in the virulence of gram-negative bacterial pathogens, where possible, using as a paradigm. In most gram-negative bacteria, including , the alterations in mRNA and protein levels in response to iron availability are due to inherent iron requirements and iron homeostasis mechanisms controlled by two primary regulatory systems: the iron (Fe) uptake regulation protein Fur and the small RNA (sRNA) RyhB or its analogs (e.g., PrrF and NrrF). The chapter focuses on these two regulators, their regulons, and their roles in virulence. While Fur and RyhB regulons are often described separately, they are in fact interrelated regulatory networks. In a variation on the mRNA degradation theme for sodB, RyhB selectively promotes degradation of only the 3' portion of the iscRSUA mRNA, while preserving expression of IscR, a transcription factor encoded by the first gene of the operon. The chapter then focuses on the iron transport systems of . A section on RyhB regulatory mechanisms explains that RyhB regulation increases the pools of both shikimate and serine, while indirectly contributing to expression of the enterobactin biosynthesis genes. The mechanisms of Fur activation, Mn-Fur regulation, and apo-Fur regulation as well as the different regulatory mechanisms of RyhB are addressed. However, the complexity of iron regulation mechanisms and their role in microbial pathogenesis will likely provide interesting questions to resolve for decades to come.

Citation: Perry R, McDonough K. 2013. Iron Regulation and Virulence in Gram-Negative Bacterial Pathogens with as a Paradigm, p 106-132. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch6
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Model of Fe-Fur transcriptional repression and Fur box motifs. (A) Fur boxes for Fe-Fur binding generally overlap the −10 region of regulated promoters. During iron limitation, cytoplasmic Fe levels are sufficiently low so that Fur is primarily in its apo form. apo-Fur dimers have a lower affinity for binding to the Fur box, allowing RNA polymerase access, and transcription proceeds. Under iron surplus conditions, Fe in the bacterial cytoplasm is bound by Fur. Fe-Fur dimers bind to Fur boxes, preventing access of RNA polymerase to the promoter region, thereby preventing transcription. (B) Three alternative interpretations of Fur box motifs are shown. Arrows indicate the direct or indirect repeated sequences. The Lavrrar et al. 2002 model and data provided from the crystallographic structure of FurPa support a model in which two Fur dimmers bind on opposite sides of the DNA helix of a single Fur box, in a Fur-dependent promoter, as shown in panel A ( ). This view is also supported by the consistent observation that Fur from and protects no less than 27 to 30 bp in DNase I assays ( ). doi:10.1128/9781555818524.ch6f1

Citation: Perry R, McDonough K. 2013. Iron Regulation and Virulence in Gram-Negative Bacterial Pathogens with as a Paradigm, p 106-132. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Alignment of Fur amino acid sequences from (Ec), (Yp), (Vc), and P. aeruginosa (Pa). The four sequences were aligned using ClustalW2 ( ) and the EMBL-EBI website. α-Helical regions (bold, purple text and [α] labels) and β-strands (bold, green text and [β] labels) are shown for Fur based on X-ray data ( ). A consensus sequence (Con) based on these four sequences is shown. Asterisks indicate identical residues, while colons and periods indicate conservative and semiconservative changes, respectively. Residues involved in Zn binding at the Zn1 structural binding site (underlined, bold, blue text) are shown for all Fur proteins except Fur. Residues for the regulatory site for Fe binding (site 2) are shown as underlined, bold, red text for Fur and Fur. While these residues are conserved in Fur, four different Cys residues (also in underlined, bold, blue text) have been implicated in Zn binding and dimerization. However, Fur has only a single Cys residue, which functions only in dimerization. Zn1, site 1, and the Cys residues are conserved in Fur although no structure/function analyses have been performed on the protein. doi:10.1128/9781555818524.ch6f2

Citation: Perry R, McDonough K. 2013. Iron Regulation and Virulence in Gram-Negative Bacterial Pathogens with as a Paradigm, p 106-132. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Genetic organization of the fur locus. Designated arrows represent , , and (upstream of ) genes and show their direction of transcription. Smaller arrows indicate promoters. Transcriptional regulators CRP, Fur, OxyR, and SoxS are shown “bound” to their binding sites (similarly colored figures on the double DNA strand) within promoter regions. Indirect regulation of translation by RyhB through translation of is not shown here (see Fig. 6C ). The three alternative mRNAs are shown. Genes, transcriptional regulators, and promoter elements are not drawn to scale. doi:10.1128/9781555818524.ch6f3

Citation: Perry R, McDonough K. 2013. Iron Regulation and Virulence in Gram-Negative Bacterial Pathogens with as a Paradigm, p 106-132. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Model of direct transcriptional activation of by Fur. During iron limitation (A), transcription is repressed since apo-Fur does not bind to the five upstream Fur boxes. This allows H-NS to bind at these sites and other sites in the promoter region. Interaction among H-NS proteins bends the DNA, preventing access of RNA polymerase to the promoter region. Under iron surplus conditions (B), Fe-Fur binds to the upstream Fur boxes, preventing H-NS binding and interaction. This prevents occlusion of the promoter region, allowing RNA polymerase to bind and initiate transcription. doi:10.1128/9781555818524.ch6f4

Citation: Perry R, McDonough K. 2013. Iron Regulation and Virulence in Gram-Negative Bacterial Pathogens with as a Paradigm, p 106-132. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Model of indirect regulation of by Fur through RyhB. RyhB is expressed under low-iron conditions (A) because apo-Fur has a low affinity for binding to the Fur box in the promoter and consequently does not repress transcription. RyhB sRNA base-pairs with mRNA, causing downregulation of translation in an Hfq- and RNase E-dependent manner. Under iron-replete conditions (B), Fe-Fur binds to the promoter and prevents its transcription. SodB is expressed in the absence of RyhB-mediated repression. doi:10.1128/9781555818524.ch6f5

Citation: Perry R, McDonough K. 2013. Iron Regulation and Virulence in Gram-Negative Bacterial Pathogens with as a Paradigm, p 106-132. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Models showing various RyhB regulatory mechanisms. (A) RyhB sRNA base-pairs with a region of the mRNA that contains translation initiation signals (green arrow), blocking ribosome access (light blue oblongs). Hfq (purple octagon) binds both RyhB and RNase E (scissors), promoting cleavage of the mRNA by the RNA degradosome (not shown). (B) RyhB base-pairing with the cysE mRNA reduces, but does not eliminate, ribosome binding and translational readthrough to produce low levels of CysE protein (red pentagon). (C) RyhB base-pairing with the open reading frame upstream of in some organisms prevents translational readthrough into , indirectly downregulating translation. (D) RyhB's interaction with the mRNA is similar to that of mRNA, except that it base-pairs with a sequence at the start of an internal cistron rather than the 5′ end. A strong hairpin structure upstream of this binding prevents the first cistron from degradation, leaving only the portion of the mRNA intact. Blue pentagons represent IscR protein that is translated from this truncated message. (E) RyhB base-pairing with mRNA alters the mRNA folding to make the translational start site available for ribosome binding, increasing translation of . Blue pentagons represent ShiA protein. doi:10.1128/9781555818524.ch6f6

Citation: Perry R, McDonough K. 2013. Iron Regulation and Virulence in Gram-Negative Bacterial Pathogens with as a Paradigm, p 106-132. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818524.chap6
1. Alamuri, P.,, N. Mehta,, A. Burk,, and R. J. Maier. 2006. Regulation of the Helicobacter pylori Fe-S cluster synthesis protein NifS by iron, oxidative stress conditions, and Fur. J. Bacteriol. 188: 5325 5330.
2. Alice, A. F.,, H. Naka,, and J. H. Crosa. 2008. Global gene expression as a function of the iron status of the bacterial cell: influence of differentially expressed genes in the virulence of the human pathogen Vibrio vulnificus. Infect. Immun. 76: 4019 4037.
3. Amarasinghe, J. J.,, F. A. Scannapieco,, and E. M. Haase. 2009. Transcriptional and translational analysis of biofilm determinants of Aggregatibacter actinomycetemcomitans in response to environmental perturbation. Infect. Immun. 77: 2896 2907.
4. Andrews, S. C.,, A. K. Robinson,, and F. Rodríguez-Quiñones. 2003. Bacterial iron homeostasis. FEMS Microbiol. Rev. 27: 215 237.
5. Arhin, A.,, and C. Boucher. 2010. The outer membrane protein OprQ and adherence of Pseudomonas aeruginosa to human fibronectin. Microbiology 156: 1415 1423.
6. Bagg, A.,, and J. B. Neilands. 1987. Ferric uptake regulation protein acts as a repressor, employing iron(II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli. Biochemistry 26: 5471 5477.
7. Bagg, A.,, and J. B. Neilands. 1985. Mapping of a mutation affecting regulation of iron uptake systems in Escherichia coli K-12. J. Bacteriol. 161: 450 453.
8. Banin, E.,, M. L. Vasil,, and E. P. Greenberg. 2005. Iron and Pseudomonas aeruginosa biofilm formation. Proc. Natl. Acad. Sci. USA 102: 11076 11081.
9. Bearden, S. W.,, and R. D. Perry. 1999. The Yfe system of Yersinia pestis transports iron and manganese and is required for full virulence of plague. Mol. Microbiol. 32: 403 414.
10. Bearden, S. W.,, T. M. Staggs,, and R. D. Perry. 1998. An ABC transporter system of Yersinia pestis allows utilization of chelated iron by Escherichia coli SAB11. J. Bacteriol. 180: 1135 1147.
11. Bearson, B. L.,, L. Wilson,, and J. W. Foster. 1998. A low pH-inducible, PhoPQ-dependent acid tolerance response protects Salmonella typhimurium against inorganic acid stress. J. Bacteriol. 180: 2409 2417.
12. Belasco, J. G. 2010. All things must pass: contrasts and commonalities in eukaryotic and bacterial mRNA decay. Nat. Rev. Mol. Cell Biol. 11: 467 478.
13. Bennett, R. L.,, and L. I. Rothfield. 1976. Genetic and physiological regulation of intrinsic proteins of the outer membrane of Salmonella typhimurium. J. Bacteriol. 127: 498 504.
14. Bereswill, S.,, S. Greiner,, A. H. M. van Vliet,, B. Waidner,, F. Fassbinder,, E. Schiltz,, J. G. Kusters,, and M. Kist. 2000. Regulation of ferritin-mediated cytoplasmic iron storage by the ferric uptake regulator homolog (Fur) of Helicobacter pylori. J. Bacteriol. 182: 5948 5953.
15. Berish, S. A.,, S. Subbarao,, C.-Y. Chen,, D. L. Trees,, and S. A. Morse. 1993. Identification and cloning of a fur homolog from Neisseria gonorrhoeae. Infect. Immun. 61: 4599 4606.
16. Bijlsma, J. J. E.,, B. Waidner,, A. H. M. van Vliet,, N. J. Hughes,, S. Häg,, S. Bereswill,, D. J. Kelly,, C. M. J. E. Vandenbroucke-Grauls,, M. Kist,, and J. G. Kusters. 2002. The Helicobacter pylori homologue of the ferric uptake regulator is involved in acid resistance. Infect. Immun. 70: 606 611.
17. Bobrov, A. G.,, O. Kirillina,, D. A. Ryjenkov,, C. M. Waters,, P. A. Price,, J. D. Fetherston,, D. Mack,, W. E. Goldman,, M. Gomelsky,, and R. D. Perry. 2011. Systematic analysis of cyclic di-GMP signalling enzymes and their role in biofilm formation and virulence in Yersinia pestis. Mol. Microbiol. 79: 533 551.
18. Bollinger, C. J.,, and P. T. Kallio. 2007. Impact of the small RNA RyhB on growth, physiology and heterologous protein expression in Escherichia coli. FEMS Microbiol. Lett. 275: 221 228.
19. Braun, V.,, S. Mahren,, and A. Sauter. 2006. Gene regulation by transmembrane signaling. BioMetals 19: 103 113.
20. Brennan, R. G.,, and T. M. Link. 2007. Hfq structure, function and ligand binding. Curr. Opin. Microbiol. 10: 125 133.
21. Brickman, T.,, and S. Armstrong. 2009. Temporal signaling and differential expression of Bordetella iron transport systems: the role of ferrimones and positive regulators. BioMetals 22: 33 41.
22. Brickman, T. J.,, and S. K. Armstrong. 1995. Bordetella pertussis fur gene restores iron repressibility of siderophore and protein expression to deregulated Bordetella bronchiseptica mutants. J. Bacteriol. 177: 268 270.
23. Bury-Moné, S.,, J.-M. Thiberge,, M. Contreras,, A. Maitournam,, A. Labigne,, and H. De Reuse. 2004. Responsiveness to acidity via metal ion regulators mediates virulence in the gastric pathogen Helicobacter pylori. Mol. Microbiol. 53: 623 638.
24. Calderwood, S. B.,, and J. J. Mekalanos. 1987. Iron regulation of shiga-like toxin expression in Escherichia coli is mediated by the fur locus. J. Bacteriol. 169: 4759 4764.
25. Calhoun, L. N.,, and Y. M. Kwon. 2011a. The ferritin-like protein Dps protects Salmonella enterica serotype Enteritidis from the Fenton-mediated killing mechanism of bactericidal antibiotics. Int. J. Antimicrob. Agents 37: 261 265.
26. Calhoun, L. N.,, and Y. M. Kwon. 2011b. Structure, function and regulation of the DNA-binding protein Dps and its role in acid and oxidative stress resistance in Escherichia coli: a review. J. Appl. Microbiol. 110: 375 386.
27. Carpenter, B. M.,, H. Gancz,, S. L. Benoit,, S. Evans,, C. H. Olsen,, S. L. J. Michel, R. J. Maier, and D. S. Merrell. 2010. Mutagenesis of conserved amino acids of Helicobacter pylori Fur reveals residues important for function. J. Bacteriol. 192: 5037 5052.
28. Carpenter, B. M.,, J. M. Whitmire,, and D. S. Merrell. 2009. This is not your mother’s repressor: the complex role of Fur in pathogenesis. Infect. Immun. 77: 2590 2601.
29. Carpousis, A. J. 2007. The RNA degradosome of Escherichia coli: an mRNA-degrading machine assembled on RNase E. Annu. Rev. Microbiol. 61: 71 87.
30. Carrondo, M. A. 2003. Ferritins, iron uptake and storage from the bacterioferritin viewpoint. EMBO J. 22: 1959 1968.
31. Carson, S. D. B.,, C. E. Thomas,, and C. Elkins. 1996. Cloning and sequencing of a Haemophilus ducreyi fur homolog. Gene 176: 125 129.
32. Celesnik, H.,, A. Deana,, and J. G. Belasco. 2007. Initiation of RNA decay in Escherichia coli by 5 pyrophosphate removal. Mol. Cell 27: 79 90.
33. Chauvaux, S.,, M.-L. Rosso,, L. Frangeul,, C. Lacroix,, L. Labarre,, A. Schiavo,, M. Marceau,, M.-A. Dillies,, J. Foulon,, J.-Y. Coppée,, C. Médigue,, M. Simonet,, and E. Carniel. 2007. Transcriptome analysis of Yersinia pestis in human plasma: an approach for discovering bacterial genes involved in septicaemic plague. Microbiology 153: 3112 3124.
34. Cornelis, P.,, S. Matthijs,, and L. Van Oeffelen. 2009. Iron uptake regulation in Pseudomonas aeruginosa. BioMetals 22: 15 22.
35. Costerton, J. W.,, P. S. Stewart,, and E. P. Greenberg. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284: 1318 1322.
36. Coy, M.,, C. Doyle,, J. Besser,, and J. B. Neilands. 1994. Site-directed mutagenesis of the ferric uptake regulation gene of Escherichia coli. BioMetals 7: 292 298.
37. Coy, M.,, and J. B. Neilands. 1991. Structural dynamics and functional domains of the Fur protein. Biochemistry 30: 8201 8210.
38. Cui, J.,, H. Piao,, S. Jin,, H. S. Na,, Y. Hong,, H. E. Choy,, and P. Y. Ryu. 2009. Effect of iron on cytolysin A expression in Salmonella enterica serovar Typhi. J. Microbiol. 47: 479 485.
39. Davis, B. M.,, M. Quinones,, J. Pratt,, Y. Ding,, and M. K. Waldor. 2005. Characterization of the small untranslated RNA RyhB and its regulon in Vibrio cholerae. J. Bacteriol. 187: 4005 4014.
40. Deana, A.,, H. Celesnik,, and J. G. Belasco. 2008. The bacterial enzyme RppH triggers messenger RNA degradation by 5 pyrophosphate removal. Nature 451: 355 358.
41. Delany, I.,, R. Ieva,, C. Alaimo,, R. Rappuoli,, and V. Scarlato. 2003. The iron-responsive regulator Fur is transcriptionally autoregulated and not essential in Neisseria meningitidis. J. Bacteriol. 185: 6032 6041.
42. Delany, I.,, R. Ieva,, A. Soragni,, M. Hilleringmann,, R. Rappuoli,, and V. Scarlato. 2005. In vitro analysis of protein-operator interactions of the NikR and Fur metal-responsive regulators of coregulated genes in Helicobacter pylori. J. Bacteriol. 187: 7703 7715.
43. Delany, I.,, R. Rappuoli,, and V. Scarlato. 2004. Fur functions as an activator and as a repressor of putative virulence genes in Neisseria meningitidis. Mol. Microbiol. 52: 1081 1090.
44. Delany, I.,, G. Spohn,, A.-B. F. Pacheco,, R. Ieva,, C. Alaimo,, R. Rappuoli,, and V. Scarlato. 2002. Autoregulation of Helicobacter pylori Fur revealed by functional analysis of the iron-binding site. Mol. Microbiol. 46: 1107 1122.
45. Delany, I.,, G. Spohn,, R. Rappuoli,, and V. Scarlato. 2001. The Fur repressor controls transcription of iron-activated and -repressed genes in Helicobacter pylori. Mol. Microbiol. 42: 1297 1309.
46. de Lorenzo, V.,, M. Herrero,, F. Giovannini,, and J. B. Neilands. 1988. Fur (ferric uptake regulation) protein and CAP (catabolite-activator protein) modulate transcription of fur gene in Escherichia coli. Eur. J. Biochem. 173: 537 546.
47. de Lorenzo, V.,, J. Perez-Martín,, L. Escolar,, G. Pesole,, and G. Bertoni,. 2004. Mode of binding of the Fur protein to target DNA: negative regulation of iron-controlled gene expression, p. 185 196. In J. H. Crosa,, A. R. Mey,, and S. M. Payne (ed.), Iron Transport in Bacteria. ASM Press, Washington, DC.
48. de Lorenzo, V.,, S. Wee,, M. Herrero,, and J. B. Neilands. 1987. Operator sequences of the aerobactin operon of plasmid ColV-K30 binding the ferric uptake regulation ( fur) repressor. J. Bacteriol. 169: 2624 2630.
49. Deng, W.,, V. Burland,, G. Plunkett III,, A. Boutin,, G. F. Mayhew,, P. Liss,, N. T. Perna,, D. J. Rose,, B. Mau,, S. Zhou,, D. C. Schwartz,, J. D. Fetherston,, L. E. Lindler,, R. R. Brubaker,, G. V. Plano,, S. C. Straley, K. A. McDonough, M. L. Nilles, J. S. Matson, F. R. Blattner, and R. D. Perry. 2002. Genome sequence of Yersinia pestis KIM. J. Bacteriol. 184: 4601 4611.
50. Desnoyers, G.,, A. Morissette,, K. Prevost,, and E. Massé. 2009. Small RNA-induced differential degradation of the polycistronic mRNA iscRSUA. EMBO J. 28: 1551 1561.
51. Dubos, R. J.,, and J. W. Geiger. 1946. Preparation and properties of Shiga toxin and toxoid. J. Exp. Med. 84: 143 156.
52. Eisen, R. J.,, S. W. Bearden,, A. P. Wilder,, J. A. Montenieri,, M. F. Antolin,, and K. L. Gage. 2006. Early-phase transmission of Yersinia pestis by unblocked fleas as a mechanism explaining rapidly spreading plague epizootics. Proc. Natl. Acad. Sci. USA 103: 15380 15385.
53. Ellermeier, J. R.,, and J. M. Slauch. 2008. Fur regulates expression of the Salmonella pathogenicity island 1 type III secretion system through HilD. J. Bacteriol. 190: 476 486.
54. Ernst, F. D.,, G. Homuth,, J. Stoof,, U. Mäder,, B. Waidner,, E. J. Kuipers,, M. Kist,, J. G. Kusters,, S. Bereswill,, and A. H. M. van Vliet. 2005. Iron-responsive regulation of the Helicobacter pylori iron-cofactored superoxide dismutase SodB is mediated by Fur. J. Bacteriol. 187: 3687 3692.
55. Ernst, J. F.,, R. L. Bennett,, and L. I. Rothfield. 1978. Constitutive expression of the iron-enterochelin and ferrichrome uptake systems in a mutant strain of Salmonella typhimurium. J. Bacteriol. 135: 928 934.
56. Escolar, L.,, J. Pérez-Martín,, and V. de Lorenzo. 1998. Binding of the Fur (ferric uptake regulator) repressor of Escherichia coli to arrays of the GATAAT sequence. J. Mol. Biol. 283: 537 547.
57. Escolar, L.,, J. Pérez-Martín,, and V. de Lorenzo. 1999. Opening the iron box: transcriptional metalloregulation by the Fur protein. J. Bacteriol. 181: 6223 6229.
58. Escolar, L.,, J. Pérez-Martín,, and V. de Lorenzo. 2000. Evidence of an unusually long operator for the Fur repressor in the aerobactin promoter of Escherichia coli. J. Biol. Chem. 275: 24709 24714.
59. Fetherston, J. D.,, V. J. Bertolino,, and R. D. Perry. 1999. YbtP and YbtQ: two ABC transporters required for iron uptake in Yersinia pestis. Mol. Microbiol. 32: 289 299.
60. Fetherston, J. D.,, O. Kirillina,, A. G. Bobrov,, J. T. Paulley,, and R. D. Perry. 2010. The yersiniabactin transport system is critical for the pathogenesis of bubonic and pneumonic plague. Infect. Immun. 78: 2045 2052.
61. Forman, S.,, M. J. Nagiec,, J. Abney,, R. D. Perry,, and J. D. Fetherston. 2007. Analysis of the aerobactin and ferric hydroxamate uptake systems of Yersinia pestis. Microbiology 153: 2332 2341.
62. Forman, S.,, J. Paulley,, J. Fetherston,, Y.-Q. Cheng,, and R. Perry. 2010. Yersinia ironomics: comparison of iron transporters among Yersinia pestis biotypes and its nearest neighbor, Yersinia pseudotuberculosis. BioMetals 23: 275 294.
63. Fréchon, D.,, and E. Le Cam. 1994. Fur (ferric uptake regulation) protein interaction with target DNA: comparison of gel retardation, footprinting and elecron microscopy analyses. Biochem. Biophys. Res. Commun. 201: 346 355.
64. Frohlich, K. S.,, and J. Vogel. 2009. Activation of gene expression by small RNA. Curr. Opin. Microbiol. 12: 674 682.
65. Gage, K. L.,, and M. Y. Kosoy. 2005. Natural history of plague: perspectives from more than a century of research. Annu. Rev. Entomol. 50: 505 528.
66. Gancz, H.,, S. Censini,, and D. S. Merrell. 2006. Iron and pH homeostasis intersect at the level of Fur regulation in the gastric pathogen Helicobacter pylori. Infect. Immun. 74: 602 614.
67. Gao, H.,, D. Zhou,, Y. Li,, Z. Guo,, Y. Han,, Y. Song,, J. Zhai,, Z. Du,, X. Wang,, J. Lu,, and R. Yang. 2008. The iron-responsive Fur regulon in Yersinia pestis. J. Bacteriol. 190: 3063 3075.
68. Gardner, S. E.,, S. E. Fowlston,, and W. L. George. 1990. Effect of iron on production of a possible virulence factor by Plesiomonas shigelloides. J. Clin. Microbiol. 28: 811 813.
69. Giel, J. L.,, D. Rodionov,, M. Liu,, F. R. Blattner,, and P. J. Kiley. 2006. IscR-dependent gene expression links iron-sulphur cluster assembly to the control of O 2-regulated genes in Escherichia coli. Mol. Microbiol. 60: 1058 1075.
70. Glick, R.,, C. Gilmour,, J. Tremblay,, S. Satanower,, O. Avidan,, E. Déziel,, E. P. Greenberg,, K. Poole,, and E. Banin. 2010. Increase in rhamnolipid synthesis under iron-limiting conditions influences surface motility and biofilm formation in Pseudomonas aeruginosa. J. Bacteriol. 192: 2973 2980.
71. Gong, S.,, S. W. Bearden,, V. A. Geoffroy,, J. D. Fetherston,, and R. D. Perry. 2001. Characterization of the Yersinia pestis Yfu ABC iron transport system. Infect. Immun. 67: 2829 2837.
72. Gottesman, S.,, C. A. McCullen,, M. Guillier,, C. K. Vanderpool,, N. Majdalani,, J. Benhammou,, K. M. Thompson,, P. C. FitzGerald,, N. A. Sowa,, and D. J. FitzGerald. 2006. Small RNA regulators and the bacterial response to stress. Cold Spring Harbor Symp. Quant. Biol. 71: 1 11.
73. Grifantini, R.,, E. Frigimelica,, I. Delany,, E. Bartolini,, S. Giovinazzi,, S. Balloni,, S. Agarwal,, G. Galli,, C. Genco,, and G. Grandi. 2004. Characterization of a novel Neisseria meningitidis Fur and iron-regulated operon required for protection from oxidative stress: utility of DNA microarray in the assignment of the biological role of hypothetical genes. Mol. Microbiol. 54: 962 979.
74. Guina, T.,, S. O. Purvine,, E. C. Yi,, J. Eng,, D. R. Goodlett,, R. Aebersold,, and S. I. Miller. 2003. Quantitative proteomic analysis indicates increased synthesis of a quinolone by Pseudomonas aeruginosa isolates from cystic fibrosis airways. Proc. Natl. Acad. Sci. USA 100: 2771 2776.
75. Gunn, J. S. 2008. The Salmonella PmrAB regulon: lipopolysaccharide modifications, antimicrobial peptide resistance and more. Trends Microbiol. 16: 284 290.
76. Hall, H. K.,, and J. W. Foster. 1996. The role of Fur in the acid tolerance response of Salmonella typhimurium is physiologically and genetically separable from its role in iron acquisition. J. Bacteriol. 178: 5683 5691.
77. Halsey, T. A.,, A. Vazquez-Torres,, D. J. Gravdahl,, F. C. Fang,, and S. J. Libby. 2004. The ferritin-like Dps protein is required for Salmonella enterica serovar Typhimurium oxidative stress resistance and virulence. Infect. Immun. 72: 1155 1158.
78. Han, Y.,, J. Qiu,, Z. Guo,, H. Gao,, Y. Song,, D. Zhou,, and R. Yang. 2007. Comparative transcriptomics in Yersinia pestis: a global view of environmental modulation of gene expression. BMC Microbiol. 7: 96.
79. Hancock, V.,, L. Ferrières,, and P. Klemm. 2008. The ferric yersiniabactin uptake receptor FyuA is required for efficient biofilm formation by urinary tract infectious Escherichia coli in human urine. Microbiology 154: 167 175.
80. Hantke, K. 2005. Bacterial zinc uptake and regulators. Curr. Opin. Microbiol. 8: 196 202.
81. Hantke, K. 1984. Cloning of the repressor protein gene of iron-regulated systems in Escherichia coli K12. Mol. Gen. Genet. 197: 337 341.
82. Hantke, K. 1982. Negative control of iron uptake system in Escherichia coli. FEMS Microbiol. Lett. 15: 83 86.
83. Hantke, K. 1981. Regulation of ferric iron transport in Escherichia coli K12: isolation of a constitutive mutant. Mol. Gen. Genet. 182: 288 292.
84. Hantke, K. 1987. Selection procedure for deregulated iron transport mutants ( fur) in Escherichia coli K 12: fur not only affects iron metabolism. Mol. Gen. Genet. 210: 135 139.
85. Hassett, D. J.,, M. L. Howell,, U. A. Ochsner,, M. L. Vasil,, Z. Johnson,, and G. E. Dean. 1997. An operon containing fumC and sodA encoding fumarase C and manganese superoxide dismutase is controlled by the ferric uptake regulator in Pseudomonas aeruginosa: fur mutants produce elevated alginate levels. J. Bacteriol. 179: 1452 1459.
86. Herold, S.,, J. C. Paton,, P. Srimanote,, and A. W. Paton. 2009. Differential effects of short-chain fatty acids and iron on expression of iha in Shiga-toxigenic Escherichia coli. Microbiology 155: 3554 3563.
87. Herrmann, K. M.,, and L. M. Weaver. 1999. The shikimate pathway. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 473 503.
88. Hickey, E. K.,, and N. P. Cianciotto. 1997. An iron- and Fur-repressed Legionella pneumophila gene that promotes intracellular infection and encodes a protein with similarity to the Escherichia coli aerobactin synthetases. Infect. Immun. 65: 133 143.
89. Hindré, T.,, H. Brüggemann,, C. Buchrieser,, and Y. Héchard. 2008. Transcriptional profiling of Legionella pneumophila biofilm cells and the influence of iron on biofilm formation. Microbiology 154: 30 41.
90. Holmes, K.,, F. Mulholland,, B. M. Pearson,, C. Pin,, J. McNicholl-Kennedy,, J. M. Ketley,, and J. M. Wells. 2005. Campylobacter jejuni gene expression in response to iron limitation and the role of Fur. Microbiology 151: 243 257.
91. Ikeda, J. S.,, A. Janakiraman,, D. G. Kehres,, M. E. Maguire,, and J. M. Slauch. 2005. Transcriptional regulation of sitABCD of Salmonella enterica serovar Typhimurium by MntR and Fur. J. Bacteriol. 187: 912 922.
92. Ikeda, Y.,, M. Yagi,, T. Morita,, and H. Aiba. 2011. Hfq binding at RhlB-recognition region of RNase E is crucial for the rapid degradation of target mRNAs mediated by sRNAs in Escherichia coli. Mol. Microbiol. 79: 419 432.
93. Inglesby, T. V.,, D. T. Dennis,, D. A. Henderson,, J. G. Bartlett,, M. S.Ascher, E. Eitzen, A. D. Fine, A. M. Friedlander, J. Hauer, J. F. Koerner, M. Layton, J. McDade, M. T. Osterholm, T. O’Toole, G. Parker, T. M. Perl, P. K. Russell, M. Schoch-Spana, and K. Tonat. 2000. Plague as a biological weapon: medical and public health management. JAMA 283: 2281 2290.
94. Jackson, S.,, and T. W. Burrows. 1956. The virulence-enhancing effect of iron on non-pigmented mutants of virulent strains of Pasteurella pestis. Br. J. Exp. Pathol. 37: 577 583.
95. Jacobsen, I.,, J. Gerstenberger,, A. D. Gruber,, J. T. Bossé,, P. R. Langford,, I. Hennig-Pauka,, J. Meens,, and G.-F. Gerlach. 2005. Deletion of the ferric uptake regulator Fur impairs the in vitro growth and virulence of Actinobacillus pleuropneumoniae. Infect. Immun. 73: 3740 3744.
96. Jacques, J. F.,, S. Jang,, K. Prevost,, G. Desnoyers,, M. Desmarais,, J. Imlay,, and E. Massé. 2006. RyhB small RNA modulates the free intracellular iron pool and is essential for normal growth during iron limitation in Escherichia coli. Mol. Microbiol. 62: 1181 1190.
97. Johnston, A.,, J. Todd,, A. Curson,, S. Lei,, N. Nikolaidou-Katsaridou,, M. Gelfand,, and D. Rodionov. 2007. Living without Fur: the subtlety and complexity of iron-responsive gene regulation in the symbiotic bacterium Rhizobium and other α-proteobacteria. BioMetals 20: 501 511.
98. Karjalainen, T. K.,, D. G. Evans,, D. J. Evans, Jr., D. Y. Graham, and C.-H. Lee. 1991. Iron represses the expression of CFA/I fimbriae of enterotoxigenic E. coli. Microb. Pathog. 11: 317 323.
99. Kim, J.-S.,, M.-H. Sung,, D.-H. Kho,, and J. K. Lee. 2005. Induction of manganese-containing superoxide dismutase is required for acid tolerance in Vibrio vulnificus. J. Bacteriol. 187: 5984 5995.
100. Kirillina, O.,, A. G. Bobrov,, J. D. Fetherston,, and R. D. Perry. 2006. A hierarchy of iron uptake systems: Yfu and Yiu are functional in Yersinia pestis. Infect. Immun. 74: 6171 6178.
101. Lamont, I. L.,, P. A. Beare,, U. Ochsner,, A. I. Vasil,, and M. L. Vasil. 2002. Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 99: 7072 7077.
102. Lankford, C. E. 1973. Bacterial assimilation of iron. CRC Crit. Rev. Microbiol. 2: 273 331.
103. Larkin, M. A.,, G. Blackshields,, N. P. Brown,, R. Chenna,, P. A. McGettigan,, H. McWilliam,, F. Valentin,, I. M. Wallace,, A. Wilm,, R. Lopez,, J. D. Thompson,, T. J. Gibson,, and D. G. Higgins. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947 2948.
104. Lathem, W. W.,, S. D. Crosby,, V. L. Miller,, and W. E. Goldman. 2005. Progression of primary pneumonic plague: a mouse model of infection, pathology, and bacterial transcriptional activity. Proc. Natl. Acad. Sci. USA 102: 17786 17791.
105. Lavrrar, J. L.,, C. A. Christoffersen,, and M. A. McIntosh. 2002. Fur-DNA interactions at the bidirectional fepDGC-entS promoter region in Escherichia coli. J. Mol. Biol. 322: 983 995.
106. Lease, R. A.,, and M. Belfort. 2000a. Riboregulation by DsrA RNA: trans-actions for global economy. Mol. Microbiol. 38: 667 672.
107. Lease, R. A.,, and M. Belfort. 2000b. A trans-acting RNA as a control switch in Escherichia coli: DsrA modulates function by forming alternative structures. Proc. Natl. Acad. Sci. USA 97: 9919 9924.
108. Lee, H.-J.,, S. H. Bang,, K.-H. Lee,, and S.-J. Park. 2007. Positive regulation of fur gene expression via direct interaction of Fur in a pathogenic bacterium, Vibrio vulnificus. J. Bacteriol. 189: 2629 2636.
109. Lee, H.-J.,, K.-J. Park,, A. Y. Lee,, S. G. Park,, B. C. Park,, K.-H. Lee,, and S.-J. Park. 2003. Regulation of fur expression by RpoS and Fur in Vibrio vulnificus. J. Bacteriol. 185: 5891 5896.
110. Lee, J.-W.,, and J. Helmann. 2007. Functional specialization within the Fur family of metalloregulators. BioMetals 20: 485 499.
111. Lee-Lewis, H.,, and D. M. Anderson. 2010. Absence of inflammation and pneumonia during infection with nonpigmented Yersinia pestis reveals a new role for the pgm locus in pathogenesis. Infect. Immun. 78: 220 230.
112. Lencčo, J.,, M. Hubálek,, P. Larsson,, A. Fucčíková,, M. Brychta,, A. Macela,, and J. Stulík. 2007. Proteomics analysis of the Francisella tularensis LVS response to iron restriction: induction of the F. tularensis pathogenicity island proteins IglABC. FEMS Microbiol. Lett. 269: 11 21.
113. Loprasert, S.,, R. Sallabhan,, W. Whangsuk,, and S. Mongkolsuk. 2000. Characterization and mutagenesis of fur gene from Burkholderia pseudomallei. Gene 254: 129 137.
114. Luke, N. R.,, A. J. Howlett,, J. Shao,, and A. A. Campagnari. 2004. Expression of type IV pili by Moraxella catarrhalis is essential for natural competence and is affected by iron limitation. Infect. Immun. 72: 6262 6270.
115. Lymberopoulos, M. H.,, S. Houle,, F. Daigle,, S. Léveillé,, A. Brée,, M. Moulin-Schouleur,, J. R. Johnson,, and C. M. Dozois. 2006. Characterization of Stg fimbriae from an avian pathogenic Escherichia coli O78:K80 strain and assessment of their contribution to colonization of the chicken respiratory tract. J. Bacteriol. 188: 6449 6459.
116. Maki, K.,, K. Uno,, T. Morita,, and H. Aiba. 2008. RNA, but not protein partners, is directly responsible for translational silencing by a bacterial Hfq-binding small RNA. Proc. Natl. Acad. Sci. USA 105: 10332 10337.
117. Massé, E.,, F. E. Escorcia,, and S. Gottesman. 2003. Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev. 17: 2374 2383.
118. Massé, E.,, and S. Gottesman. 2002. A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc. Natl. Acad. Sci. USA 99: 4620 4625.
119. Massé, E.,, C. K. Vanderpool,, and S. Gottesman. 2005. Effect of RyhB small RNA on global iron use in Escherichia coli. J. Bacteriol. 187: 6962 6971.
120. Merrell, D. S.,, L. J. Thompson,, C. C. Kim,, H. Mitchell,, L. S. Tompkins,, A. Lee,, and S. Falkow. 2003. Growth phase-dependent response of Helicobacter pylori to iron starvation. Infect. Immun. 71: 6510 6525.
121. Mey, A. R.,, S. A. Craig,, and S. M. Payne. 2005a. Characterization of Vibrio cholerae RyhB: the RyhB regulon and role of ryhB in biofilm formation. Infect. Immun. 73: 5706 5719.
122. Mey, A. R.,, E. E. Wyckoff,, V. Kanukurthy,, C. R. Fisher,, and S. M. Payne. 2005b. Iron and Fur regulation in Vibrio cholerae and the role of Fur in virulence. Infect. Immun. 73: 8167 8178.
123. Mey, A. R.,, E. E. Wyckoff,, A. G. Oglesby,, E. Rab,, R. K. Taylor,, and S. M. Payne. 2002. Identification of the Vibrio cholerae enterobactin receptors VctA and IrgA: IrgA is not required for virulence. Infect. Immun. 70: 3419 3426.
124. Mills, S. A.,, and M. A. Marletta. 2005. Metal binding characteristics and role of iron oxidation in the ferric uptake regulator from Escherichia coli. Biochemistry 44: 13553 13559.
125. Mitarai, N.,, J. A. Benjamin,, S. Krishna,, S. Semsey,, Z. Csiszovszki,, E. Massé,, and K. Sneppen. 2009. Dynamic features of gene expression control by small regulatory RNAs. Proc. Natl. Acad. Sci. USA 106: 10655 10659.
126. Moll, I.,, T. Afonyushkin,, O. Vytvytska,, V. R. Kaberdin,, and U. Blasi. 2003. Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulatory RNAs. RNA 9: 1308 1314.
127. Morita, T.,, and H. Aiba. 2011. RNase E action at a distance: degradation of target mRNAs mediated by an Hfq-binding small RNA in bacteria. Genes Dev. 25: 294 298.
128. Morita, T.,, K. Maki,, and H. Aiba. 2005. RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. Genes Dev. 19: 2176 2186.
129. Murphy, E. R.,, and S. M. Payne. 2007. RyhB, an iron-responsive small RNA molecule, regulates Shigella dysenteriae virulence. Infect. Immun. 75: 3470 3477.
130. Musk, D. J.,, D. A. Banko,, and P. J. Hergenrother. 2005. Iron salts perturb biofilm formation and disrupt existing biofilms of Pseudomonas aeruginosa. Chem. Biol. 12: 789 796.
131. Najimi, M.,, M. L. Lemos,, and C. R. Osorio. 2009. Identification of iron regulated genes in the fish pathogen Aeromonas salmonicida subsp. salmonicida: genetic diversity and evidence of conserved iron uptake systems. Vet. Microbiol. 133: 377 382.
132. Nandal, A.,, C. C. O. Huggins,, M. R. Woodhall,, J. McHugh,, F. Rodríguez-Quiñones,, M. A. Quail,, J. R. Guest,, and S. C. Andrews. 2010. Induction of the ferritin gene ( ftnA) of Escherichia coli by Fe 2+-Fur is mediated by reversal of H-NS silencing and is RyhB independent. Mol. Microbiol. 75: 637 657.
133. Niederhoffer, E. C.,, C. M. Naranjo,, K. L. Bradley,, and J. A. Fee. 1990. Control of Escherichia coli superoxide dismutase ( sodA and sodB) genes by the ferric uptake regulation ( fur) locus. J. Bacteriol. 172: 1930 1938.
134. Ochsner, U. A.,, A. I. Vasil,, and M. L. Vasil. 1995. Role of the ferric uptake regulator of Pseudomonas aeruginosa in the regulation of siderophores and exotoxin A expression: purification and activity on iron-regulated promoters. J. Bacteriol. 177: 7194 7201.
135. Ochsner, U. A.,, and M. L. Vasil. 1996. Gene repression by the ferric uptake regulator in Pseudomonas aeruginosa: cycle selection of iron-regulated genes. Proc. Natl. Acad. Sci. USA 93: 4409 4414.
136. Ochsner, U. A.,, P. J. Wilderman,, A. I. Vasil,, and M. L. Vasil. 2002. GeneChip® expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes. Mol. Microbiol. 45: 1277 1287.
137. Oglesby, A. G.,, J. M. Farrow III,, J.-H. Lee,, A. P. Tomaras,, E. P. Greenberg,, E. C. Pesci,, and M. L. Vasil. 2008. The influence of iron on Pseudomonas aeruginosa physiology: a regulatory link between iron and quorum sensing. J. Biol. Chem. 283: 15558 15567.
138. Oglesby, A. G.,, E. R. Murphy,, V. R. Iyer,, and S. M. Payne. 2005. Fur regulates acid resistance in Shigella flexneri via RyhB and ydeP. Mol. Microbiol. 58: 1354 1367.
139. Outten, F. W.,, O. Djaman,, and G. Storz. 2004. A suf operon requirement for Fe-S cluster assembly during iron starvation in Escherichia coli. Mol. Microbiol. 52: 861 872.
140. Padalon-Brauch, G.,, R. Hershberg,, M. Elgrably-Weiss,, K. Baruch,, I. Rosenshine,, H. Margalit,, and S. Altuvia. 2008. Small RNAs encoded within genetic islands of Salmonella typhimurium show host-induced expression and role in virulence. Nucleic Acids Res. 36: 1913 1927.
141. Palyada, K.,, D. Threadgill,, and A. Stintzi. 2004. Iron acquisition and regulation in Campylobacter jejuni. J. Bacteriol. 186: 4714 4729.
142. Patzer, S. I.,, and K. Hantke. 2001. Dual repression by Fe 2+-Fur and Mn 2+-MntR of the mntH gene, encoding an NRAMP-Like Mn 2+ transporter in Escherichia coli. J. Bacteriol. 183: 4806 4813.
143. Payne, S. M. 1988. Iron and virulence in the family Enterobacteriaceae. CRC Crit. Rev. Microbiol. 16: 81 111.
144. Payne, S. M.,, E. E. Wyckoff,, E. R. Murphy,, A. G. Oglesby,, M. L.Boulette, and N. M. Davies. 2006. Iron and pathogenesis of Shigella: iron acquisition in the intracellular environment. BioMetals 19: 173 180.
145. Pecqueur, L.,, B. D’Autréaux,, J. Dupuy,, Y. Nicolet,, L. Jacquamet,, B. Brutscher,, I. Michaud-Soret,, and B. Bersch. 2006. Structural changes of Escherichia coli ferric uptake regulator during metal-dependent dimerization and activation explored by NMR and X-ray crystallography. J. Biol. Chem. 281: 21286 21295.
146. Perry, R. D.,, J. Abney,, I. Mier, Jr., Y. Lee, S. W. Bearden, and J. D. Fetherston. 2003. Regulation of the Yersinia pestis Yfe and Ybt iron transport systems. Adv. Exp. Med. Biol. 529: 275 283.
147. Perry, R. D.,, A. G. Bobrov,, O. Kirillina,, and J. D. Fetherston. Yersinia pestis transition metal divalent cation transporters. Adv. Exp. Med. Biol., in press.
148. Perry, R. D.,, A. G. Bobrov,, O. Kirillina,, H. A. Jones,, L. L. Pedersen,, J. Abney,, and J. D. Fetherston. 2004. Temperature regulation of the hemin storage (Hms +) phenotype of Yersinia pestis is posttranscriptional. J. Bacteriol. 186: 1638 1647.
149. Perry R. D.,, S. K. Craig,, J. Abney,, A. G. Bobrov,, O. Kirillina,, I. Mier, Jr.,, H. Truszczynska,, and J. D. Fetherston. 2012. Manganese transporters Yfe and Mnth are Fur-regulated and important for the virulence of Yersinia pestis. Microbiology 158: 804 815.
150. Perry, R. D.,, and J. D. Fetherston. 1997. Yersinia pestis—etiologic agent of plague. Clin. Microbiol. Rev. 10: 35 66.
151. Perry, R. D.,, and J. D. Fetherston. 2011. Yersiniabactin iron uptake: mechanisms and role in Yersinia pestis pathogenesis. Microbes Infect. 13: 808 817.
152. Perry, R. D.,, I. Mier, Jr., and J. D. Fetherston. 2007. Roles of the Yfe and Feo transporters of Yersinia pestis in iron uptake and intracellular growth. BioMetals 20: 699 703.
153. Pieper, R.,, S.-T. Huang,, P. P. Parmar,, D. J. Clark,, H. Alami,, R. D. Fleischmann,, R. D. Perry,, and S. N. Peterson. 2010. Proteomic analysis of iron acquisition, metabolic and regulatory responses of Yersinia pestis to iron starvation. BMC Microbiol. 10: 30.
154. Pohl, E.,, J. C. Haller,, A. Mijovilovich,, W. Meyer-Klaucke,, E. Garman,, and M. L. Vasil. 2003. Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator. Mol. Microbiol. 47: 903 915.
155. Preston, M. J.,, S. M. Fleiszig,, T. S. Zaidi,, J. B. Goldberg,, V. D. Shortridge,, M. L. Vasil,, and G. B. Pier. 1995. Rapid and sensitive method for evaluating Pseudomonas aeruginosa virulence factors during corneal infections in mice. Infect. Immun. 63: 3497 3501.
156. Prevost, K.,, H. Salvail,, G. Desnoyers,, J. F. Jacques,, E. Phaneuf,, and E. Massé. 2007. The small RNA RyhB activates the translation of shiA mRNA encoding a permease of shikimate, a compound involved in siderophore synthesis. Mol. Microbiol. 64: 1260 1273.
157. Prince, R. W.,, C. D. Cox,, and M. L. Vasil. 1993. Coordinate regulation of siderophore and exotoxin A production: molecular cloning and sequencing of the Pseudomonas aeruginosa fur gene. J. Bacteriol. 175: 2589 2598.
158. Prince, R. W.,, D. G. Storey,, A. I. Vasil,, and M. L. Vasil. 1991. Regulation of toxA and regA by the Escherichia coli fur gene and identification of a Fur homologue in Pseudomonas aeruginosa PA103 and PA01. Mol. Microbiol. 5: 2823 2831.
159. Privalle, C. T.,, and I. Fridovich. 1993. Iron specificity of the Fur-dependent regulation of the biosynthesis of the manganese-containing superoxide dismutase in Escherichia coli. J. Biol. Chem. 268: 5178 5181.
160. Rashid, R. A.,, P. I. Tarr,, and S. L. Moseley. 2006. Expression of the Escherichia coli IrgA homolog adhesin is regulated by the ferric uptake regulation protein. Microb. Pathog. 41: 207 217.
161. Rossi, M.-S.,, J. D. Fetherston,, S. Létoffé,, E. Carniel,, R. D. Perry,, and J.-M. Ghigo. 2001. Identification and characterization of the hemophore-dependent heme acquisition system of Yersinia pestis. Infect. Immun. 69: 6707 6717.
162. Runyen-Janecky, L.,, E. Dazenski,, S. Hawkins,, and L. Warner. 2006. Role and regulation of the Shigella flexneri Sit and MntH systems. Infect. Immun. 74: 4666 4672.
163. Salvail, H.,, P. Lanthier-Bourbonnais,, J. M. Sobota,, M. Caza,, J. A. Benjamin,, M. E. Mendieta,, F. Lepine,, C. M. Dozois,, J. Imlay,, and E. Massé. 2010. A small RNA promotes siderophore production through transcriptional and metabolic remodeling. Proc. Natl. Acad. Sci. USA 107: 15223 15228.
164. Santos, J. A.,, C. J. González,, T. M. López,, A. Otero,, and M. L. García-López. 1999. Hemolytic and elastolytic activities influenced by iron in Plesiomonas shigelloides. J. Food Prot. 62: 1475 1477.
165. Schäffer, S.,, K. Hantke,, and V. Braun. 1985. Nucleotide sequence of the iron regulatory gene fur. Mol. Gen. Genet. 200: 110 113.
166. Schmitt, M. P.,, and S. M. Payne. 1988. Genetics and regulation of enterobactin genes in Shigella flexneri. J. Bacteriol. 170: 5579 5587.
167. Sebastian, S.,, S. Agarwal,, J. R. Murphy,, and C. A. Genco. 2002. The gonococcal Fur regulon: identification of additional genes involved in major catabolic, recombination, and secretory pathways. J. Bacteriol. 184: 3965 3974.
168. Sebbane, F.,, N. Lemaître,, D. E. Sturdevant,, R. Rebeil,, K. Virtaneva,, S. F. Porcella,, and B. J. Hinnebusch. 2006. Adaptive response of Yersinia pestis to extracellular effectors of innate immunity during bubonic plague. Proc. Natl. Acad. Sci. USA 103: 11766 11771.
169. Sha, J.,, M. Lu,, and A. K. Chopra. 2001. Regulation of the cytotoxic enterotoxin gene in Aeromonas hydrophila: characterization of an iron uptake regulator. Infect. Immun. 69: 6370 6381.
170. Sheikh, M. A.,, and G. L. Taylor. 2009. Crystal structure of the Vibrio cholerae ferric uptake regulator (Fur) reveals insights into metal co-ordination. Mol. Microbiol. 72: 1208 1220.
171. Singh, P. K. 2004. Iron sequestration by human lactoferrin stimulates P. aeruginosa surface motility and blocks biofilm formation. BioMetals 17: 267 270.
172. Smith, A.,, N. I. Hooper,, N. Shipulina,, and W. T. Morgan. 1996. Heme binding by a bacterial repressor protein, the gene product of the ferric uptake regulation ( fur) gene of Escherichia coli. J. Protein Chem. 15: 575 583.
173. Staggs, T. M.,, J. D. Fetherston,, and R. D. Perry. 1994. Pleiotropic effects of a Yersinia pestis fur mutation. J. Bacteriol. 176: 7614 7624.
174. Staggs, T. M.,, and R. D. Perry. 1991. Identification and cloning of a fur regulatory gene in Yersinia pestis. J. Bacteriol. 173: 417 425.
175. Stoebner, J. A.,, and S. M. Payne. 1988. Iron-regulated hemolysin production and utilization of heme and hemoglobin by Vibrio cholerae. Infect. Immun. 56: 2891 2895.
176. Stojiljkovic, I.,, and K. Hantke. 1995. Functional domains of the Escherichia coli ferric uptake regulator protein (Fur). Mol. Gen. Genet. 247: 199 205.
177. Tardat, B.,, and D. Touati. 1993. Iron and oxygen regulation of Escherichia coli MnSOD expression: competition between the global regulators Fur and ArcA for binding to DNA. Mol. Microbiol. 9: 53 63.
178. Thomas, C. E.,, and P. F. Sparling. 1994. Identification and cloning of fur homologue from Neisseria meningitidis. Mol. Microbiol. 11: 725 737.
179. Thompson, J. M.,, H. A. Jones,, and R. D. Perry. 1999. Molecular characterization of the hemin uptake locus ( hmu) from Yersinia pestis and analysis of hmu mutants for hemin and hemoprotein utilization. Infect. Immun. 67: 3879 3892.
180. Tolmasky, M. E.,, A. M. Wertheimer,, L. A. Actis,, and J. H. Crosa. 1994. Characterization of the Vibrio anguillarum fur gene: role in regulation of expression of the FatA outer membrane protein and catechols. J. Bacteriol. 176: 213 220.
181. Tomich, M.,, and C. D. Mohr. 2004. Transcriptional and posttranscriptional control of cable pilus gene expression in Burkholderia cenocepacia. J. Bacteriol. 186: 1009 1020.
182. Torres, A. G.,, L. Milflores-Flores,, J. G. Garcia-Gallegos,, S. D. Patel,, A. Best,, R. M. La Ragione,, Y. Martinez-Laguna,, and M. J.Woodward. 2007. Environmental regulation and colonization attributes of the long polar fimbriae (LPF) of Escherichia coli O157:H7. Int. J. Med. Microbiol. 297: 177 185.
183. Touati, D.,, M. Jacques,, B. Tardat,, L. Bouchard,, and S. Despied. 1995. Lethal oxidative damage and mutagenesis are generated by iron in Δ fur mutants of Escherichia coli: protective role of superoxide dismutase. J. Bacteriol. 177: 2305 2314.
184. Troxell, B.,, M. L. Sikes,, R. C. Fink,, A. Vazquez-Torres,, J. Jones-Carson,, and H. M. Hassan. 2011. Fur negatively regulates hns and is required for the expression of HilA and virulence in Salmonella enterica serovar Typhimurium. J. Bacteriol. 193: 497 505.
185. Valentin-Hansen, P.,, M. Eriksen,, and C. Udesen. 2004. The bacterial Sm-like protein Hfq: a key player in RNA transactions. Mol. Microbiol. 51: 1525 1533.
186. Valenzuela, M.,, J. P. Albar,, A. Paradela,, and H. Toledo. 2011. Helicobacter pylori exhibits a Fur-dependent acid tolerance response. Helicobacter 16: 189 199.
187. Vasil, M. L. 2007. How we learnt about iron acquisition in Pseudomonas aeruginosa: a series of very fortunate events. BioMetals 20: 587 601.
188. Vasil, M. L.,, and U. A. Ochsner. 1999. The response of Pseudomonas aeruginosa to iron: genetics, biochemistry and virulence. Mol. Microbiol. 34: 399 413.
189. Večerek, B.,, I. Moll,, and U. Bläsi. 2007. Control of Fur synthesis by the non-coding RNA RyhB and iron-responsive decoding. EMBO J. 26: 965 975.
190. Venturi, V.,, C. Ottevanger,, M. Bracke,, and P. Weisbeek. 1995. Iron regulation of siderophore biosynthesis and transport in Pseudomonas putida WCS358: involvement of a transcriptional activator and of the Fur protein. Mol. Microbiol. 15: 1081 1093.
191. Vetter, S. M.,, R. J. Eisen,, A. M. Schotthoefer,, J. A. Montenieri,, J. L.Holmes, A. G. Bobrov, S. W. Bearden, R. D. Perry, and K. L. Gage. 2010. Biofilm formation is not required for early-phase transmission of Yersinia pestis. Microbiology 156: 2216 2225.
192. Waidner, B.,, S. Greiner,, S. Odenbreit,, H. Kavermann,, J. Velayudhan,, F. Stähler,, J. Guhl,, E. Bissé,, A. H. M. van Vliet,, S. C. Andrews,, J. G.Kusters, D. J. Kelly, R. Haas, M. Kist, and S. Bereswill. 2002. Essential role of ferritin Pfr in Helicobacter pylori iron metabolism and gastric colonization. Infect. Immun. 70: 3923 3929.
193. Wang, F.,, S. Cheng,, K. Sun,, and L. Sun. 2008. Molecular analysis of the fur (ferric uptake regulator) gene of a pathogenic Edwardsiella tarda strain. J. Microbiol. 46: 350 355.
194. Watnick, P. I.,, T. Eto,, H. Takahashi,, and S. B. Calderwood. 1997. Purification of Vibrio cholerae Fur and estimation of its intracellular abundance by antibody sandwich enzyme-linked immunosorbent assay. J. Bacteriol. 179: 243 247.
195. Wilderman, P. J.,, N. A. Sowa,, D. J. FitzGerald,, P. C. FitzGerald,, S. Gottesman,, U. A. Ochsner,, and M. L. Vasil. 2004. Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis. Proc. Natl. Acad. Sci. USA 101: 9792 9797.
196. Wilmes-Riesenberg, M. R.,, B. Bearson,, J. W. Foster,, and R. Curtis III. 1996. Role of the acid tolerance response in virulence of Salmonella typhimurium. Infect. Immun. 64: 1085 1092.
197. Wu, Y.,, and F. W. Outten. 2009. IscR controls iron-dependent biofilm formation in Escherichia coli by regulating type I fimbria expression. J. Bacteriol. 191: 1248 1257.
198. Wyckoff, E. E.,, A. R. Mey,, and S. M. Payne. 2007. Iron acquisition in Vibrio cholerae. BioMetals 20: 405 416.
199. Xiong, Y. Q.,, M. L. Vasil,, Z. Johnson,, U. A. Ochsner,, and A. S. Bayer. 2000. The oxygen- and iron-dependent sigma factor pvdS of Pseudomonas aeruginosa is an important virulence factor in experimental infective endocarditis. J. Infect. Dis. 181: 1020 1026.
200. Yang, Y.,, D. P. Harris,, F. Luo,, L. Wu,, A. B. Parsons,, A. V. Palumbo,, and J. Zhou. 2008. Characterization of the Shewanella oneidensis Fur gene: roles in iron and acid tolerance response. BMC Genomics 9: S11.
201. Zheng, M.,, B. Doan,, T. D. Schneider,, and G. Storz. 1999. OxyR and SoxRS regulation of fur. J. Bacteriol. 181: 4639 4643.
202. Zhou, D.,, L. Qin,, Y. Han,, J. Qiu,, Z. Chen,, B. Li,, Y. Song,, J. Wang,, Z. Guo,, J. Zhai,, Z. Du,, X. Wang,, and R. Yang. 2006. Global analysis of iron assimilation and fur regulation in Yersinia pestis. FEMS Microbiol. Lett. 258: 9 17.
203. Zhu, C.,, M. Ngeleka,, A. A. Potter,, and B. J. Allan. 2002. Effect of fur mutation on acid-tolerance response and in vivo virulence of avian septicemic Escherichia coli. Can. J. Microbiol. 48: 458 462.

Tables

Generic image for table
Table 1

Iron transport systems of

Citation: Perry R, McDonough K. 2013. Iron Regulation and Virulence in Gram-Negative Bacterial Pathogens with as a Paradigm, p 106-132. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch6

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error