1887

Chapter 9 : Regulation of Exopolysaccharide Biosynthesis in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Regulation of Exopolysaccharide Biosynthesis in , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap09-2.gif

Abstract:

Alginate is arguably the best-characterized exopolysaccharide produced by , and several excellent reviews have been written on the molecular biology of its production and clinical ramifications. This chapter reviews the transcriptional factor and posttranscriptional factor involved in controlling and inducing alginate production. The gene encoding the cognate histidine kinase for the response regulator AlgB is (PA5484 on the PAO1 chromosome), located directly downstream of on the PAO1 chromosome. Deletion of also affected other known cyclic dimeric-GMP (c-di-GMP) processes in , including swarming motility, biofilm formation, and alginate production. It additionally showed, through the use of and fusions, that the predicted amino-terminal MHYT domain of MucR resides on the inner membrane. MHYT domains are proposed to bind O, NO, or CO. A model for c-di-GMP regulation of alginate production was proposed whereby the guanylate cyclase of MucR is stimulated by a yet-to-be-identified signal, which binds to a predicted MHYT domain in the amino terminus of MucR. The current state of knowledge indicates that Psl and Pel are likely involved with the initial stages of biofilm development, whereas alginate is the stress response exopolysaccharide. The levels of alginate produced by newly generated MucA, MucB, MucC, or MucD mutants of PAO1 and other nonmucoid clinical isolates (i.e., non-CF isolates) was found to be inversely related to biologically relevant concentrations (e.g., <5 to 100 μM) of iron present in the media used in this study.

Citation: Schurr M, Okkotsu Y, Pritchett C. 2013. Regulation of Exopolysaccharide Biosynthesis in , p 171-189. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch9
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Biochemical pathways that leads to Pel, alginate, and Psl exopolysaccharide production. Alginate production requires fructose-6-phosphate as the precursor for GDP-mannuronic acid. AlgA, AlgC, and AlgD perform this conversion. Since lacks enzymes required for glycolysis, carbon sources must be converted into tricarboxylic acid (TCA) cycle intermediates before being processed to fructose-6-phosphate via gluconeogenesis. GDP-mannuronic acid is polymerized (Alg8, Alg44, AlgX, and AlgK) and modified (AlgI, AlgJ, AlgF, AlgG, and AlgL) before being exported (AlgE) out to the extracellular space. Several enzymes required for alginate production overlap with Psl and Pel production. The precursors for Psl are sugar nucleotides, including GDP-mannose, UDP-glucose, and dTDP-l-rhamnose, which are derived from fructose-6-phosphate and glucose-6- phosphate from the activity of AlgC, a Psl-specific enzyme PslB, the AlgA homolog WbpW, and an enzyme involved with rhamnose production, RmlC. These precursors are polymerized (PslA, PslE, PslF, PslC, PslH, and PslI), modified (PslG), and exported (PslD). Pel is thought to consist of linear chains of sugar moieties. Sugar nucleotides produced by the metabolic pathway are, again, polymerized (PelF), modified (PelA), and exported (PelB). Currently, the roles of PelG, PelE, and PelC have not been elucidated. c-di-GMP also activates alginate and Pel production. MucR contains a GGDEF domain to synthesize c-di-GMP. c-di-GMP, in turn, binds to the PilZ domain of Alg44 to enhance alginate polymerization. PelD also contains a PilZ domain. Acetyl-CoA, acetyl coenzyme A; IM, inner membrane; OM, outer membrane; PDG, peptidoglycan layer. doi:10.1128/9781555818524.ch9f1

Citation: Schurr M, Okkotsu Y, Pritchett C. 2013. Regulation of Exopolysaccharide Biosynthesis in , p 171-189. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Transcriptional regulation of alginate biosynthetic genes. The transcription of the major operon (, , , , , , , , , , , and ) encoding the biosynthetic enzymes and membrane-associated polymerization, modification, and export proteins is regulated by the promoter region of (A). Transcriptional regulators (AlgR, AlgB, AmrZ, CysB, and CRP [from ]), histone-like proteins (Hp-1 and IHF), and two sigma factors (AlgU/T and RpoN) associate with the DNA and are involved with P transcription. Numbers underneath the regulator name indicate the regions of the DNA (relative to the transcriptional start site) that have been found to bind the regulator through experimental evidence. Binding sites of the regulators are shaded with their respective colors. Hp-1 binding regions are underlined. Sigma factor consensus sequences are boxed. (B and C) Models showing AlgU/T- and RpoN-dependent transcriptional activation. DNA bending is thought to occur with the aid of IHF and Hp-1. Transcriptional activators in the far upstream region, such as AlgR (B) or AlgB (C), are then able to activate transcription near the +1 site by interaction with the AlgU-RNAP or RpoN-RNAP complexes, respectively. P transcription is thought to be regulated by sigma factor competition (D). RpoN and AlgU binding sites overlap, and alginate production is activated depending on the type of stress encountered by the cell (nitrogen-related stress versus cell wall stress). doi:10.1128/9781555818524.ch9f2

Citation: Schurr M, Okkotsu Y, Pritchett C. 2013. Regulation of Exopolysaccharide Biosynthesis in , p 171-189. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Posttranslational regulatory system for alginate production. The cell wall stress-sensing mechanism that is intimately linked with alginate is encoded by the genes . MucA is a membrane-spanning anti-sigma factor that represses the AlgU sigma-factor regulon by sequestering AlgU to the membrane. MucB protects MucA from degradation. MucD is a general protease that scans the periplasm for misfolded or excess proteins to be degraded. Increase in membrane stress results in MucE or other proteins to be degraded in a way to reveal a WVF or YVF triple-residue motif, which is recognized by the protease AlgW. An unidentified signal activates the MucP and ClpP proteases. AlgW, MucP, and ClpP cleave MucA at either the cytoplasmic domain, the inner membrane, or the periplasmic domain, which results in AlgU/T release and activation of P. IM, inner membrane; OM, outer membrane; PDG, peptidoglycan layer. doi:10.1128/9781555818524.ch9f3

Citation: Schurr M, Okkotsu Y, Pritchett C. 2013. Regulation of Exopolysaccharide Biosynthesis in , p 171-189. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818524.chap9
1. Albus, A.,, E. C. Pesci,, L. J. Runyen-Janecky,, S. E. West,, and B. H. Iglewski. 1997. Vfr controls quorum sensing in Pseudomonas aeruginosa. J. Bacteriol. 179:39283935.
2. Amikam, D.,, and M. Y. Galperin. 2006. PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22:36.
3. Anastassiou, E. D.,, A. C. Mintzas,, C. Kounavis,, and G. Dimitracopoulos. 1987. Alginate production by clinical nonmucoid Pseudomonas aeruginosa. J. Clin. Microbiol. 25:656659.
4. Arai, H.,, T. Kodama,, and Y. Igarashi. 1997. Cascade regulation of the two CRP/FNR-related transcriptional regulators (ANR and DNR) and the denitrification enzymes in Pseudomonas aeruginosa. Mol. Microbiol. 25:11411148.
5. Baynham, P. J.,, A. L. Brown,, L. L. Hall,, and D. J. Wozniak. 1999. Pseudomonas aeruginosa AlgZ, a ribbon-helix-helix DNA-binding protein, is essential for alginate synthesis and algD transcriptional activation. Mol. Microbiol. 33:10691080.
6. Baynham, P. J.,, D. M. Ramsey,, B. V. Gvozdyev,, E. M. Cordonnier,, and D. J. Wozniak. 2006. The Pseudomonas aeruginosa ribbon-helix-helix DNA-binding protein AlgZ (AmrZ) controls twitching motility and biogenesis of type IV pili. J. Bacteriol. 188:132140.
7. Baynham, P. J.,, and D. J. Wozniak. 1996. Identification and characterization of AlgZ, an AlgT-dependent DNA-binding protein required for Pseudomonas aeruginosa algD transcription. Mol. Microbiol. 22:97108.
8. Beatson, S. A.,, C. B. Whitchurch,, J. L. Sargent,, R. C. Levesque,, and J. S. Mattick. 2002. Differential regulation of twitching motility and elastase production by Vfr in Pseudomonas aeruginosa. J. Bacteriol. 184:36053613.
9. Berry, A.,, J. D. DeVault,, and A. M. Chakrabarty. 1989. High osmolarity is a signal for enhanced algD transcription in mucoid and nonmucoid Pseudomonas aeruginosa strains. J. Bacteriol. 171:23122317.
10. Blumer, C.,, and D. Haas. 2000. Iron regulation of the hcnABC genes encoding hydrogen cyanide synthase depends on the anaerobic regulator ANR rather than on the global activator GacA in Pseudomonas fluorescens CHA0. Microbiology 146(Pt. 10):24172424.
11. Borlee, B. R.,, A. D. Goldman,, K. Murakami,, R. Samudrala,, D. J. Wozniak,, and M. R. Parsek. 2010. Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol. Microbiol. 75:827842.
12. Boucher, J. C.,, J. Martinez-Salazar,, M. J. Schurr,, M. H. Mudd,, H. Yu,, and V. Deretic. 1996. Two distinct loci affecting conversion to mucoidy in Pseudomonas aeruginosa in cystic fibrosis encode homologs of the serine protease HtrA. J. Bacteriol. 178:511523.
13. Boucher, J. C.,, M. J. Schurr,, and V. Deretic. 2000. Dual regulation of mucoidy in Pseudomonas aeruginosa and sigma factor antagonism. Mol. Microbiol. 36:341351.
14. Boucher, J. C.,, M. J. Schurr,, H. Yu,, D. W. Rowen,, and V. Deretic. 1997. Pseudomonas aeruginosa in cystic fibrosis: role of mucC in the regulation of alginate production and stress sensitivity. Microbiology 143:34733480.
15. Bragonzi, A.,, D. Worlitzsch,, G. B. Pier,, P. Timpert,, M. Ulrich,, M. Hentzer,, J. B. Andersen,, M. Givskov,, M. Conese,, and G. Doring. 2005. Nonmucoid Pseudomonas aeruginosa expresses alginate in the lungs of patients with cystic fibrosis and in a mouse model. J. Infect. Dis. 192:410419.
16. Byrd, M. S.,, B. Pang,, W. Hong,, E. A. Waligora,, R. A. Juneau,, C. E. Armbruster,, K. E. Weimer, K. Murrah, E. E. Mann, H. Lu, A. Sprinkle, M. R. Parsek, N. D. Kock, D. J. Wozniak, and W. E. Swords. 2011. Direct evaluation of Pseudomonas aeruginosa biofilm mediators in a chronic infection model. Infect. Immun. 79:30873095.
17. Byrd, M. S.,, B. Pang,, M. Mishra,, W. E. Swords,, and D. J. Wozniak. 2010. The Pseudomonas aeruginosa exopolysaccharide Psl facilitates surface adherence and NF-κB activation in A549 cells. mBio 1:e0014010.
18. Byrd, M. S.,, I. Sadovskaya,, E. Vinogradov,, H. Lu,, A. B. Sprinkle,, S. H.Richardson, L. Ma, B. Ralston, M. R. Parsek, E. M. Anderson, J.S. Lam, and D. J. Wozniak. 2009. Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Mol. Microbiol. 73:622638.
19. Carterson, A. J.,, L. A. Morici,, D. W. Jackson,, A. Frisk,, S. E. Lizewski,, R. Jupiter,, K. Simpson,, D. A. Kunz,, S. H. Davis,, J. R. Schurr,, D. J.Hassett, and M. J. Schurr. 2004. The transcriptional regulator AlgR controls cyanide production in Pseudomonas aeruginosa. J. Bacteriol. 186:68376844.
20. Cezairliyan, B. O.,, and R. T. Sauer. 2009. Control of Pseudomonas aeruginosa AlgW protease cleavage of MucA by peptide signals and MucB. Mol. Microbiol. 72:368379.
21. Chand, N. S.,, J. S. Lee,, A. E. Clatworthy,, A. J. Golas,, R. S. Smith,, and D. T. Hung. 2011. The sensor kinase KinB regulates virulence in acute Pseudomonas aeruginosa infection. J. Bacteriol. 193:29892999.
22. Ciofu, O.,, B. Lee,, M. Johannesson,, N. O. Hermansen,, P. Meyer,, and N. Hoiby. 2008. Investigation of the algT operon sequence in mucoid and non-mucoid Pseudomonas aeruginosa isolates from 115 Scandinavian patients with cystic fibrosis and in 88 in vitro non-mucoid revertants. Microbiology 154:103113.
23. Cochran, W. L.,, S. J. Suh,, G. A. McFeters,, and P. S. Stewart. 2000. Role of RpoS and AlgT in Pseudomonas aeruginosa biofilm resistance to hydrogen peroxide and monochloramine. J. Appl. Microbiol. 88:546553.
24. Cody, W. L.,, C. L. Pritchett,, A. K. Jones,, A. J. Carterson,, D. Jackson,, A. Frisk,, M. C. Wolfgang,, and M. J. Schurr. 2009. Pseudomonas aeruginosa AlgR controls cyanide production in an AlgZ-dependent manner. J. Bacteriol. 191:29933002.
25. Comolli, J. C.,, and T. J. Donohue. 2004. Differences in two Pseudomonas aeruginosa cbb3 cytochrome oxidases. Mol. Microbiol. 51:11931203.
26. Coulon, C.,, E. Vinogradov,, A. Filloux,, and I. Sadovskaya. 2010. Chemical analysis of cellular and extracellular carbohydrates of a biofilm-forming strain Pseudomonas aeruginosa PA14. PLoS One 5:e14220.
27. Coyne, M. J.,, K. S. Russell,, C. L. Coyle,, and J. B. Goldberg. 1994. The Pseudomonas aeruginosa algC gene encodes phosphoglucomutase, required for the synthesis of a complete lipopolysaccharide core. J. Bacteriol. 176:35003507.
28. Damron, F. H.,, M. R. Davis, Jr., T. R. Withers, R. K. Ernst, J. B. Goldberg, G. Yu, and H. D. Yu. 2011. Vanadate and triclosan synergistically induce alginate production by Pseudomonas aeruginosa strain PAO1. Mol. Microbiol. 81:554570.
29. Damron, F. H.,, D. Qiu,, and H. D. Yu. 2009. The Pseudomonas aeruginosa sensor kinase KinB negatively controls alginate production through AlgW-dependent MucA proteolysis. J. Bacteriol. 191:22852295.
30. Damron, F. H.,, and H. D. Yu. 2011. Pseudomonas aeruginosa MucD regulates the alginate pathway through activation of MucA degradation via MucP proteolytic activity. J. Bacteriol. 193:286291.
31. Dasgupta, N.,, E. P. Ferrell,, K. J. Kanack,, S. E. West,, and R. Ramphal. 2002. fleQ, the gene encoding the major flagellar regulator of Pseudomonas aeruginosa, is sigma70 dependent and is downregulated by Vfr, a homolog of Escherichia coli cyclic AMP receptor protein. J. Bacteriol. 184:52405250.
32. Davies, D. G.,, A. M. Chakrabarty,, and G. G. Geesey. 1993. Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa. Appl. Environ. Microbiol. 59:11811186.
33. Davies, D. G.,, and G. G. Geesey. 1995. Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture. Appl. Environ. Microbiol. 61:860867.
34. Davies, D. G.,, M. R. Parsek,, J. P. Pearson,, B. H. Iglewski,, J. W. Costerton,, and E. P. Greenberg. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295298.
35. Delic-Attree, I.,, B. Toussaint,, A. Froger,, J. C. Willison,, and P. M.Vignais. 1996. Isolation of an IHF-deficient mutant of a Pseudomonas aeruginosa mucoid isolate and evaluation of the role of IHF in algD gene expression. Microbiology 142:27852793.
36. Delic-Attree, I.,, B. Toussaint,, J. Garin,, and P. M. Vignais. 1997. Cloning, sequence and mutagenesis of the structural gene of Pseudomonas aeruginosa CysB, which can activate algD transcription. Mol. Microbiol. 24:12751284.
37. Deretic, V.,, R. Dikshit,, W. M. Konyecsni,, A. M. Chakrabarty,, and T. K. Misra. 1989. The algR gene, which regulates mucoidy in Pseudomonas aeruginosa, belongs to a class of environmentally responsive genes. J. Bacteriol. 171:12781283.
38. Deretic, V.,, N. S. Hibler,, and S. C. Holt. 1992. Immunocytochemical analysis of AlgP (Hp1), a histonelike element participating in control of mucoidy in Pseudomonas aeruginosa. J. Bacteriol. 174:824831.
39. Deretic, V.,, and W. M. Konyecsni. 1990. A procaryotic regulatory factor with a histone H1-like carboxy-terminal domain: clonal variation of repeats within algP, a gene involved in regulation of mucoidy in Pseudomonas aeruginosa. J. Bacteriol. 172:55445554.
40. DeVault, J. D.,, W. Hendrickson,, J. Kato,, and A. M. Chakrabarty. 1991. Environmentally regulated algD promoter is responsive to the cAMP receptor protein in Escherichia coli. Mol. Microbiol. 5:25032509.
41. DeVries, C. A.,, and D. E. Ohman. 1994. Mucoid-to-nonmucoid conversion in alginate-producing Pseudomonas aeruginosa often results from spontaneous mutations in algT, encoding a putative alternate sigma factor, and shows evidence for autoregulation. J. Bacteriol. 176:66776687.
42. Doggett, R. G. 1969. Incidence of mucoid Pseudomonas aeruginosa from clinical sources. Appl. Microbiol. 18:936937.
43. Edwards, K. J.,, and N. A. Saunders. 2001. Real-time PCR used to measure stress-induced changes in the expression of the genes of the alginate pathway of Pseudomonas aeruginosa. J. Appl. Microbiol. 91:2937.
44. Engel, J.,, and P. Balachandran. 2009. Role of Pseudomonas aeruginosa type III effectors in disease. Curr. Opin. Microbiol. 12:6166.
45. Flynn, J. L.,, and D. E. Ohman. 1988a. Cloning of genes from mucoid Pseudomonas aeruginosa which control spontaneous conversion to the alginate production phenotype. J. Bacteriol. 170:14521460.
46. Flynn, J. L.,, and D. E. Ohman. 1988b. Use of a gene replacement cosmid vector for cloning alginate conversion genes from mucoid and nonmucoid Pseudomonas aeruginosa strains: algS controls expression of algT. J. Bacteriol. 170:32283236.
47. Franklin, M. J.,, D. E. Nivens,, J. T. Weadge,, and L. P. Howell. 2011. Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides alginate, Pel and Psl. Front. Cell. Infect. Microbiol. 2:167.
48. Friedman, L.,, and R. Kolter. 2004a. Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol. Microbiol. 51:675690.
49. Friedman, L.,, and R. Kolter. 2004b. Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J. Bacteriol. 186:44574465.
50. Fujiwara, S.,, and A. M. Chakrabarty. 1994. Post-transcriptional regulation of the Pseudomonas aeruginosa algC gene. Gene 146:15.
51. Fujiwara, S.,, N. A. Zielinski,, and A. M. Chakrabarty. 1993. Enhancer-like activity of AlgR1-binding site in alginate gene activation: positional, orientational, and sequence specificity. J. Bacteriol. 175:54525459.
52. Galimand, M.,, M. Gamper,, A. Zimmermann,, and D. Haas. 1991. Positive FNR-like control of anaerobic arginine degradation and nitrate respiration in Pseudomonas aeruginosa. J. Bacteriol. 173:15981606.
53. Galperin, M. Y.,, T. A. Gaidenko,, A. Y. Mulkidjanian,, M. Nakano,, and C. W. Price. 2001. MHYT, a new integral membrane sensor domain. FEMS Microbiol. Lett. 205:1723.
54. Ghafoor, A.,, I. D. Hay,, and B. H. M. Rehm. 2011. Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture. Appl. Environ. Microbiol. 77:52385246.
55. Gilbert, K. B.,, T. H. Kim,, R. Gupta,, E. P. Greenberg,, and M. Schuster. 2009. Global position analysis of the Pseudomonas aeruginosa quorum-sensing transcription factor LasR. Mol. Microbiol. 73:10721085.
56. Goldberg, J. B.,, and T. Dahnke. 1992. Pseudomonas aeruginosa AlgB, which modulates the expression of alginate, is a member of the NtrC subclass of prokaryotic regulators. Mol. Microbiol. 6:5966.
57. Goldberg, J. B.,, W. L. Gorman,, J. Flynn,, and D. E. Ohman. 1993. A mutation in algN permits trans activation of alginate production by algT in Pseudomonas species. J. Bacteriol. 175:13031308.
58. Goldberg, J. B.,, and D. E. Ohman. 1987. Construction and characterization of Pseudomonas aeruginosa algB mutants: role of algB in high-level production of alginate. J. Bacteriol. 169:15931602.
59. Govan, J. R.,, and V. Deretic. 1996. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol. Rev. 60:539574.
60. Govan, J. R. W., 1988. Alginate biosynthesis and other unusual characteristics associated with the pathogenesis of Pseudomonas aeruginosa in cystic fibrosis, p. 6796. In E. Griffiths, W.E. Donachie, and J. Stephen (ed.), Bacterial Infections of Respiratory and Gastrointestinal Mucosae. IRL Press, Oxford, United Kingdom.
61. Hasegawa, N.,, H. Arai,, and Y. Igarashi. 1998. Activation of a consensus FNR-dependent promoter by DNR of Pseudomonas aeruginosa in response to nitrite. FEMS Microbiol. Lett. 166:213217.
62. Hassett, D. J. 1996. Anaerobic production of alginate by Pseudomonas aeruginosa: alginate restricts diffusion of oxygen. J. Bacteriol. 178:73227325.
63. Hay, I. D.,, Z. U. Rehman,, A. Ghafoor,, and B. H. Rehm. 2010. Bacterial biosynthsis of alginates. J. Chem. Technol. Biotechnol. 85:752759.
64. Hay, I. D.,, U. Remminghorst,, and B. H. Rehm. 2009. MucR, a novel membrane-associated regulator of alginate biosynthesis in Pseudomonas aeruginosa. Appl. Environ. Microbiol. 75:11101120.
65. Hay, I. D.,, O. Schmidt,, J. Filitcheva,, and B. H. Rehm. 2012. Identification of a periplasmic AlgK-AlgX-MucD multiprotein complex in Pseudomonas aeruginosa involved in biosynthesis and regulation of alginate. Appl. Microbiol. Biotechnol. 93:215227.
66. Hentzer, M.,, G. M. Teitzel,, G. J. Balzer,, A. Heydorn,, S. Molin,, M. Givskov,, and M. R. Parsek. 2001. Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J. Bacteriol. 183:53955401.
67. Hershberger, C. D.,, R. W. Ye,, M. R. Parsek,, Z.-D. Xie,, and A. M. Chakrabarty. 1995. The algT (algU) gene of Pseudomonas aeruginosa, a key regulator involved in alginate biosynthesis, encodes an alternative σ factor (σE). Proc. Natl. Acad. Sci. USA 92:79417945.
68. Irie, Y.,, M. Starkey,, A. N. Edwards,, D. J. Wozniak,, T. Romeo,, and M. R. Parsek. 2010. Pseudomonas aeruginosa biofilm matrix polysaccharide Psl is regulated transcriptionally by RpoS and post-transcriptionally by RsmA. Mol. Microbiol. 78:158172.
69. Jackson, K. D.,, M. Starkey,, S. Kremer,, M. R. Parsek,, and D. J. Wozniak. 2004. Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. J. Bacteriol. 186:44664475.
70. Jain, S.,, and D. E. Ohman. 1998. Deletion of algK in mucoid Pseudomonas aeruginosa blocks alginate polymer formation and results in uronic acid secretion. J. Bacteriol. 180:634641.
71. Jain, S.,, and D. E. Ohman. 2005. Role of an alginate lyase for alginate transport in mucoid Pseudomonas aeruginosa. Infect. Immun. 73:64296436.
72. Kanack, K. J.,, L. J. Runyen-Janecky,, E. P. Ferrell,, S. J. Suh,, and S. E. West. 2006. Characterization of DNA-binding specificity and analysis of binding sites of the Pseudomonas aeruginosa global regulator, Vfr, a homologue of the Escherichia coli cAMP receptor protein. Microbiology 152:34853496.
73. Kato, J.,, and A. M. Chakrabarty. 1991. Purification of the regulatory protein AlgR1 and its binding in the far upstream region of the algD promoter in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 88:17601764.
74. Kato, J.,, T. K. Misra,, and A. M. Chakrabarty. 1990. AlgR3, a protein resembling eukaryotic histone H1, regulates alginate synthesis in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 87:28872891.
75. Keiski, C. L.,, M. Harwich,, S. Jain,, A. M. Neculai,, P. Yip,, H. Robinson,, J. C. Whitney,, L. Riley,, L. L. Burrows,, D. E. Ohman,, and P. L. Howell. 2010. AlgK is a TPR-containing protein and the periplasmic component of a novel exopolysaccharide secretin. Structure 18:265273.
76. Keith, L. M.,, and C. L. Bender. 1999. AlgT (sigma22) controls alginate production and tolerance to environmental stress in Pseudomonas syringae. J. Bacteriol. 181:71767184.
77. Kimbara, K.,, and A. M. Chakrabarty. 1989. Control of alginate synthesis in Pseudomonas aeruginosa: regulation of the algR1 gene. Biochem. Biophys. Res. Commun. 164:601608.
78. Konyecsni, W. M.,, and V. Deretic. 1988. Broad-host-range plasmid and M13 bacteriophage-derived vectors for promoter analysis in Escherichia coli and Pseudomonas aeruginosa. Gene 74:375386.
79. Konyecsni, W. M.,, and V. Deretic. 1990. DNA sequence and expression analysis of algP and algQ, components of the multigene system transcriptionally regulating mucoidy in Pseudomonas aeruginosa: algP contains multiple direct repeats. J. Bacteriol. 172:25112520.
80. Krieg, D. P.,, J. A. Bass,, and S. J. Mattingly. 1986. Aeration selects for mucoid phenotype of Pseudomonas aeruginosa. J. Clin. Microbiol. 24:986990.
81. Krieg, D. P.,, J. A. Bass,, and S. J. Mattingly. 1988a. Phosphorylcholine stimulates capsule formation of phosphate-limited mucoid Pseudomonas aeruginosa. Infect. Immun. 56:864873.
82. Krieg, D. P.,, R. J. Helmke,, V. F. German,, and J. A. Mangos. 1988b. Resistance of mucoid Pseudomonas aeruginosa to nonopsonic phagocytosis by alveolar macrophages in vitro. Infect. Immun. 56:31733179.
83. Lau, G. W.,, D. J. Hassett,, H. Ran,, and F. Kong. 2004. The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol. Med. 10:599606.
84. Lee, V. T.,, J. M. Matewish,, J. L. Kessler,, M. Hyodo,, Y. Hayakawa,, and S. Lory. 2007. A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol. Microbiol. 65:14741484.
85. Leech, A. J.,, A. Sprinkle,, L. Wood,, D. J. Wozniak,, and D. E. Ohman. 2008. The NtrC family regulator AlgB, which controls alginate biosynthesis in mucoid Pseudomonas aeruginosa, binds directly to the algD promoter. J. Bacteriol. 190:581589.
86. Lizewski, S. E.,, D. S. Lundberg,, and M. J. Schurr. 2002. The transcriptional regulator AlgR is essential for Pseudomonas aeruginosa pathogenesis. Infect. Immun. 70:60836093.
87. Lizewski, S. E.,, J. R. Schurr,, D. W. Jackson,, A. Frisk,, A. J. Carterson,, and M. J. Schurr. 2004. Identification of AlgR-regulated genes in Pseudomonas aeruginosa by use of microarray analysis. J. Bacteriol. 186:56725684.
88. Ma, L.,, K. D. Jackson,, R. M. Landry,, M. R. Parsek,, and D. J. Wozniak. 2006. Analysis of Pseudomonas aeruginosa conditional Psl variants reveals roles for the Psl polysaccharide in adhesion and maintaining biofilm structure postattachment. J. Bacteriol. 188:82138221.
89. Ma, L.,, H. Lu,, A. Sprinkle,, M. R. Parsek,, and D. J. Wozniak. 2007. Pseudomonas aeruginosa Psl is a galactose- and mannose-rich exopolysaccharide. J. Bacteriol. 189:83538356.
90. Ma, S.,, U. Selvaraj,, D. E. Ohman,, R. Quarless,, D. J. Hassett,, and D. J. Wozniak. 1998. Phosphorylation-independent activity of the response regulators AlgB and AlgR in promoting alginate biosynthesis in mucoid Pseudomonas aeruginosa. J. Bacteriol. 180:956968.
91. Ma, S.,, D. J. Wozniak,, and D. E. Ohman. 1997. Identification of the histidine protein kinase KinB in Pseudomonas aeruginosa and its phosphorylation of the alginate regulator algB. J. Biol. Chem. 272:1795217960.
92. Mai, G. T.,, W. K. Seow,, G. B. Pier,, J. G. McCormack,, and Y. H. Thong. 1993. Suppression of lymphocyte and neutrophil functions by Pseudomonas aeruginosa mucoid exopolysaccharide (alginate): reversal by physicochemical, alginase, and specific monoclonal antibody treatments. Infect. Immun. 61:559564.
93. Martin, D. W.,, B. W. Holloway,, and V. Deretic. 1993a. Characterization of a locus determining the mucoid status of Pseudomonas aeruginosa: AlgU shows sequence similarities with a Bacillus sigma factor. J. Bacteriol. 175:11531164.
94. Martin, D. W.,, M. J. Schurr,, M. H. Mudd,, and V. Deretic. 1993b. Differentiation of Pseudomonas aeruginosa into the alginate-producing form: inactivation of mucB causes conversion to mucoidy. Mol. Microbiol. 9:497506.
95. Martin, D. W.,, M. J. Schurr,, M. H. Mudd,, J. R. W. Govan,, B. W. Holloway,, and V. Deretic. 1993c. Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc. Natl. Acad. Sci. USA 90:83778381.
96. Martin, D. W.,, M. J. Schurr,, H. Yu,, and V. Deretic. 1994. Analysis of promoters controlled by the putative sigma factor AlgU regulating conversion to mucoidy in Pseudomonas aeruginosa: relationship to sigma E and stress response. J. Bacteriol. 176:66886696.
97. Martinez-Salazar, J. M.,, S. Moreno,, R. Najera,, J. C. Boucher,, G. Espin,, G. Soberon-Chavez,, and V. Deretic. 1996. Characterization of the genes coding for the putative sigma factor AlgU and its regulators MucA, MucB, MucC, and MucD in Azotobacter vinelandii and evaluation of their roles in alginate biosynthesis. J. Bacteriol. 178:18001808.
98. Mathee, K.,, O. Ciofu,, C. Sternberg,, P. W. Lindum,, J. I. Campbell,, P. Jensen,, A. H. Johnsen,, M. Givskov,, D. E. Ohman,, S. Molin,, N. Hoiby,, and A. Kharazmi. 1999. Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology 145(Pt. 6):13491357.
99. Mathee, K.,, A. Kharazmi,, and N. Hoiby. 2002 Role of exopolysaccharide in biofilm matrix formation: the alginate paradigm, p. 134. In R. J. C. McLean and A. W. Decho (ed.), Molecular Ecology of Biofilms. Horizon Scientific Press, Wymondham, United Kingdom.
100. Mathee, K.,, C. J. McPherson,, and D. E. Ohman. 1997. Posttranslational control of the AlgT (AlgU)-encoded sigma22 for expression of the alginate regulon in Pseudomonas aeruginosa and localization of its antagonist proteins MucA and MucB (AlgN). J. Bacteriol. 179:37113720.
101. Matsukawa, M.,, and E. P. Greenberg. 2004. Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development. J. Bacteriol. 186:44494456.
102. Mattick, J. S. 2002. Type IV pili and twitching motility. Annu. Rev. Microbiol. 56:289314.
103. McAvoy, M. J.,, V. Newton,, A. Paull,, J. Morgan,, P. Gacesa,, and N. J. Russell. 1989. Isolation of mucoid strains of Pseudomonas aeruginosa from non-cystic fibrosis patients and characterisation of the structure of their secreted alginate. J. Med. Microbiol. 28:183189.
104. Merighi, M.,, V. T. Lee,, M. Hyodo,, Y. Hayakawa,, and S. Lory. 2007. The second messenger bis-(3'-5')-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol. Microbiol. 65:876895.
105. Mohr, C. D.,, and V. Deretic. 1992. In vitro interactions of the histone-like protein IHF with the algD promoter, a critical site for control of mucoidy in Pseudomonas aeruginosa. Biochem. Biophys. Res. Commun. 189:837844.
106. Mohr, C. D.,, N. S. Hibler,, and V. Deretic. 1991. AlgR, a response regulator controlling mucoidy in Pseudomonas aeruginosa, binds to the FUS sites of the algD promoter located unusually far upstream from the mRNA start site. J. Bacteriol. 173:51365143.
107. Mohr, C. D.,, J. H. Leveau,, D. P. Krieg,, N. S. Hibler,, and V. Deretic. 1992. AlgR-binding sites within the algD promoter make up a set of inverted repeats separated by a large intervening segment of DNA. J. Bacteriol. 174:66246633.
108. Mohr, C. D.,, D. W. Martin,, W. M. Konyecsni,, J. R. Govan,, S. Lory,, and V. Deretic. 1990. Role of the far-upstream sites of the algD promoter and the algR and rpoN genes in environmental modulation of mucoidy in Pseudomonas aeruginosa. J. Bacteriol. 172:65766580.
109. Morici, L. A.,, A. J. Carterson,, V. E. Wagner,, A. Frisk,, J. R. Schurr,, K. H. Zu Bentrup, D. J. Hassett, B. H. Iglewski, K. Sauer, and M.J. Schurr. 2007. Pseudomonas aeruginosa AlgR represses the Rhl quorum-sensing system in a biofilm-specific manner. J. Bacteriol. 189:77527764.
110. Muhammadi,, and N. Ahmed. 2007. Genetics of bacterial alginate: alginate genes distribution, organization and biosynthesis in bacteria. Curr. Genomics 8:191202.
111. Nunez, C.,, R. Leon,, J. Guzman,, G. Espin,, and G. Soberon-Chavez. 2000. Role of Azotobacter vinelandii mucA and mucC gene products in alginate production. J. Bacteriol. 182:65506556.
112. Oliver, A. M.,, and D. M. Weir. 1985. The effect of Pseudomonas alginate on rat alveolar macrophage phagocytosis and bacterial opsonization. Clin. Exp. Immunol. 59:190196.
113. Oliver, A. M.,, and D. M. Weir. 1983. Inhibition of bacterial binding to mouse macrophages by Pseudomonas alginate. J. Clin. Lab. Immunol. 10:221224.
114. Olvera, C,, J. B. Goldberg,, R. Sanchez,, and G. Soberon-Chavez. 1999. The Pseudomonas aeruginosaalgC gene product participates in rhamnolipid biosynthesis. FEMS Microbiol. Lett. 179:8590.
115. Pasquier, C.,, N. Marty,, J. L. Dournes,, G. Chabanon,, and B. Pipy. 1997. Implication of neutral polysaccharides associated to alginate in inhibition of murine macrophage response to Pseudomonas aeruginosa. FEMS Microbiol. Lett. 147:195202.
116. Pritt, B.,, L. O’Brien,, and W. Winn. 2007. Mucoid Pseudomonas in cystic fibrosis. Am. J. Clin. Pathol. 128:3234.
117. Qiu, D.,, V. M. Eisinger,, N. E. Head,, G. B. Pier,, and H. D. Yu. 2008. ClpXP proteases positively regulate alginate overexpression and mucoid conversion in Pseudomonas aeruginosa. Microbiology 154:21192130.
118. Qiu, D.,, V. M. Eisinger,, D. W. Rowen,, and H. D. Yu. 2007. Regulated proteolysis controls mucoid conversion in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 104:81078112.
119. Ramsey, D. M.,, P. J. Baynham,, and D. J. Wozniak. 2005. Binding of Pseudomonas aeruginosa AlgZ to sites upstream of the algZ promoter leads to repression of transcription. J. Bacteriol. 187:44304443.
120. Regni, C.,, P. A. Tipton,, and L. J. Beamer. 2002. Crystal structure of PMM/PGM: an enzyme in the biosynthetic pathway of Pseudomonas aeruginosa virulence factors. Structure 10:269279.
121. Reiling, S. A.,, J. A. Jansen,, B. J. Henley,, S. Singh,, C. Chattin,, M. Chandler,, and D. W. Rowen. 2005. Prc protease promotes mucoidy in mucA mutants of Pseudomonas aeruginosa. Microbiology 151:22512261.
122. Remminghorst, U.,, and B. H. Rehm. 2006. Alg44, a unique protein required for alginate biosynthesis in Pseudomonas aeruginosa. FEBS Lett. 580:38833888.
123. Robles-Price, A.,, T. Y. Wong,, H. Sletta,, S. Valla,, and N. L. Schiller. 2004. AlgX is a periplasmic protein required for alginate biosynthesis in Pseudomonas aeruginosa. J. Bacteriol. 186:73697377.
124. Rompf, A.,, C. Hungerer,, T. Hoffmann,, M. Lindenmeyer,, U. Romling,, U. Gross,, M. O. Doss,, H. Arai,, Y. Igarashi,, and D. Jahn. 1998. Regulation of Pseudomonas aeruginosa hemF and hemN by the dual action of the redox response regulators Anr and Dnr. Mol. Microbiol. 29:985997.
125. Rowen, D. W.,, and V. Deretic. 2000. Membrane-to-cytosol redistribution of ECF sigma factor AlgU and conversion to mucoidy in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Mol. Microbiol. 36:314327.
126. Sakuragi, Y.,, and R. Kolter. 2007. Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa. J. Bacteriol. 189:53835386.
127. Schurr, M. J.,, and V. Deretic. 1997. Microbial pathogenesis in cystic fibrosis: co-ordinate regulation of heat-shock response and conversion to mucoidy in Pseudomonas aeruginosa. Mol. Microbiol. 24:411420.
128. Schurr, M. J.,, H. Yu,, J. C. Boucher,, N. S. Hibler,, and V. Deretic. 1995a. Multiple promoters and induction by heat shock of the gene encoding the alternative sigma factor AlgU (sigma E) which controls mucoidy in cystic fibrosis isolates of Pseudomonas aeruginosa. J. Bacteriol. 177:56705679.
129. Schurr, M. J.,, H. Yu,, J. M. Martinez-Salazar,, N. S. Hibler,, and V. Deretic. 1995b. Biochemical characterization and posttranslational modification of AlgU, a regulator of stress response in Pseudomonas aeruginosa. Biochem. Biophys. Res. Commun. 216:874880.
130. Sidote, D. J.,, C. M. Barbieri,, T. Wu,, and A. M. Stock. 2008. Structure of the Staphylococcus aureus AgrA LytTR domain bound to DNA reveals a beta fold with an unusual mode of binding. Structure 16:727735.
131. Simpson, J. A.,, S. E. Smith,, and R. T. Dean. 1988. Alginate inhibition of the uptake of Pseudomonas aeruginosa by macrophages. J. Gen. Microbiol. 134:2936.
132. Simpson, J. A.,, S. E. Smith,, and R. T. Dean. 1993. Alginate may accumulate in cystic fibrosis lung because the enzymatic and free radical capacities of phagocytic cells are inadequate for its degradation. Biochem. Mol. Biol. Int. 30:10211034.
133. Simpson, J. A.,, S. E. Smith,, and R. T. Dean. 1989. Scavenging by alginate of free radicals released by macrophages. Free Radic. Biol. Med. 6:347353.
134. Snook, C. F.,, P. A. Tipton,, and L. J. Beamer. 2003. Crystal structure of GDP-mannose dehydrogenase: a key enzyme of alginate biosynthesis in Pseudomonas aeruginosa. Biochemistry 42:46584668.
135. Starkey, M.,, J. H. Hickman,, L. Ma,, N. Zhang,, S. De Long,, A. Hinz,, S. Palacios,, C. Manoil,, M. J. Kirisits,, T. D. Starner,, D. J. Wozniak,, C. S. Harwood,, and M. R. Parsek. 2009. Pseudomonas aeruginosa rugose small-colony variants have adaptations that likely promote persistence in the cystic fibrosis lung. J. Bacteriol. 191:34923503.
136. Suh, S. J.,, L. Silo-Suh,, D. E. Woods,, D. J. Hassett,, S. E. West,, and D. E.Ohman. 1999. Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. J. Bacteriol. 181:38903897.
137. Tart, A. H.,, M. J. Blanks,, and D. J. Wozniak. 2006. The AlgT-dependent transcriptional regulator AmrZ (AlgZ) inhibits flagellum biosynthesis in mucoid, nonmotile Pseudomonas aeruginosa cystic fibrosis isolates. J. Bacteriol. 188:64836489.
138. Tavares, I. M.,, J. H. Leitao,, A. M. Fialho,, and I. Sa-Correia. 1999. Pattern of changes in the activity of enzymes of GDP-D-mannuronic acid synthesis and in the level of transcription of algA, algC and algD genes accompanying the loss and emergence of mucoidy in Pseudomonas aeruginosa. Res. Microbiol. 150:105116.
139. Terry, J. M.,, S. E. Pina,, and S. J. Mattingly. 1991. Environmental conditions which influence mucoid conversion in Pseudomonas aeruginosa PAO1. Infect. Immun. 59:471477.
140. Terry, J. M.,, S. E. Pina,, and S. J. Mattingly. 1992. Role of energy metabolism in conversion of nonmucoid Pseudomonas aeruginosa to the mucoid phenotype. Infect. Immun. 60:13291335.
141. Vasil, M. L. 2007. How we learnt about iron acquisition in Pseudomonas aeruginosa: a series of very fortunate events. Biometals 20:587601.
142. Vasil, M. L.,, L. M. Graham,, R. M. Ostroff,, V. D. Shortridge,, and A. I.Vasil. 1991. Phospholipase C: molecular biology and contribution to the pathogenesis of Pseudomonas aeruginosa. Antibiot. Chemother. 44:3447.
143. Vasseur, P.,, I. Vallet-Gely,, C. Soscia,, S. Genin,, and A. Filloux. 2005. The pel genes of the Pseudomonas aeruginosa PAK strain are involved at early and late stages of biofilm formation. Microbiology 151:985997.
144. Waligora, E. A.,, D. M. Ramsey,, E. E. Pryor, Jr.,, H. Lu,, T. Hollis,, G. P. Sloan,, R. Deora,, and D. J. Wozniak. 2010. AmrZ beta-sheet residues are essential for DNA binding and transcriptional control of Pseudomonas aeruginosa virulence genes. J. Bacteriol. 192:53905401.
145. Whitchurch, C. B.,, R. A. Alm,, and J. S. Mattick. 1996. The alginate regulator AlgR and an associated sensor FimS are required for twitching motility in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 93:98399843.
146. Whitchurch, C. B.,, T. E. Erova,, J. A. Emery,, J. L. Sargent,, J. M. Harris,, A. B. Semmler,, M. D. Young,, J. S. Mattick,, and D. J. Wozniak. 2002. Phosphorylation of the Pseudomonas aeruginosa response regulator AlgR is essential for type IV fimbria-mediated twitching motility. J. Bacteriol. 184:45444554.
147. Whitney, J. C.,, I. D. Hay,, C. Li,, P. D. Eckford,, H. Robinson,, M. F. Amaya,, L. F. Wood,, D. E. Ohman,, C. E. Bear,, B. H. Rehm,, and P. Lynne Howell. 2011. Structural basis for alginate secretion across the bacterial outer membrane. Proc. Natl. Acad. Sci. USA 108:1308313088.
148. Wolfgang, M. C.,, V. T. Lee,, M. E. Gilmore,, and S. Lory. 2003. Coordinate regulation of bacterial virulence genes by a novel adenylate cyclase-dependent signaling pathway. Dev. Cell 4:253263.
149. Wood, L. F.,, A. J. Leech,, and D. E. Ohman. 2006. Cell wall-inhibitory antibiotics activate the alginate biosynthesis operon in Pseudomonas aeruginosa: roles of σ22 (AlgT) and the AlgW and Prc proteases. Mol. Microbiol. 62:412426.
150. Wood, L. F.,, and D. E. Ohman. 2006. Independent regulation of MucD, an HtrA-like protease in Pseudomonas aeruginosa, and the role of its proteolytic motif in alginate gene regulation. J. Bacteriol. 188:31343137.
151. Wood, S. R.,, A. M. Firoved,, W. Ornatowski,, T. Mai,, V. Deretic,, and G. S. Timmins. 2007. Nitrosative stress inhibits production of the virulence factor alginate in mucoid Pseudomonas aeruginosa. Free Radic. Res. 41:208215.
152. Worlitzsch, D.,, R. Tarran,, M. Ulrich,, U. Schwab,, A. Cekici,, K. C. Meyer,, P. Birrer,, G. Bellon,, J. Berger,, T. Weiss,, K. Botzenhart,, J. R. Yankaskas,, S. Randell,, R. C. Boucher,, and G. Doring. 2002. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J. Clin. Investig. 109:317325.
153. Wozniak, D. J. 1994. Integration host factor and sequences downstream of the Pseudomonas aeruginosa algD transcription start site are required for expression. J. Bacteriol. 176:50685076.
154. Wozniak, D. J.,, and D. E. Ohman. 1993. Involvement of the alginate algT gene and integration host factor in the regulation of the Pseudomonas aeruginosa algB gene. J. Bacteriol. 175:41454153.
155. Wozniak, D. J.,, and D. E. Ohman. 1991. Pseudomonas aeruginosa AlgB, a two-component response regulator of the NtrC family, is required for algD transcription. J. Bacteriol. 173:14061413.
156. Wozniak, D. J.,, A. B. Sprinkle,, and P. J. Baynham. 2003a. Control of Pseudomonas aeruginosa algZ expression by the alternative sigma factor AlgT. J. Bacteriol. 185:72977300.
157. Wozniak, D. J.,, T. J. Wyckoff,, M. Starkey,, R. Keyser,, P. Azadi,, G. A. O’Toole,, and M. R. Parsek. 2003b. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc. Natl. Acad. Sci. USA 100:79077912.
158. Yorgey, P.,, L. G. Rahme,, M. W. Tan,, and F. M. Ausubel. 2001. The roles of mucD and alginate in the virulence of Pseudomonas aeruginosa in plants, nematodes and mice. Mol. Microbiol.41:10631076.
159. Yu, H.,, M. Mudd,, J. C. Boucher,, M. J. Schurr,, and V. Deretic. 1997. Identification of the algZ gene upstream of the response regulator AlgR and its participation in control of alginate production in Pseudomonas aeruginosa. J. Bacteriol. 179:187193.
160. Yu, H.,, M. J. Schurr,, and V. Deretic. 1995. Functional equivalence of Escherichia coli σE and Pseudomonas aeruginosa AlgU: E.coli rpoE restores mucoidy and reduces sensitivity to reactive oxygen intermediates in algU mutants of P. aeruginosa. J. Bacteriol. 177:32593268.
161. Zielinski, N. A.,, A. M. Chakrabarty,, and A. Berry. 1991. Characterization and regulation of the Pseudomonas aeruginosa algC gene encoding phosphomannomutase. J. Biol. Chem. 266:97549763.
162. Zielinski, N. A.,, R. Maharaj,, S. Roychoudhury,, C. E. Danganan,, W. Hendrickson,, and A. M. Chakrabarty. 1992. Alginate synthesis in Pseudomonas aeruginosa: environmental regulation of the algC promoter. J. Bacteriol. 174:76807688.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error