1887

Chapter 24 : Plasma Cell Disorders

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Plasma Cell Disorders, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818722/9781555818715_CH24-1.gif /docserver/preview/fulltext/10.1128/9781555818722/9781555818715_CH24-2.gif

Abstract:

Clonal plasma cell disorders (PCDs) encompass a heterogeneous group of distinct entities characterized in common by a clonal expansion and accumulation of plasma cells (PCs) in the bone marrow (BM) and/or other tissues, which is associated in the vast majority of cases with the presence of their product(s) (monoclonal immunoglobulin [Ig], M component) at detectable amounts in serum or urine (1). Although the so-called diseases of immunoglobulin deposits (e.g., primary light chain [AL] amyloidosis) and lymphoplasmacytic lymphoma (e.g., Waldenström macroglobulinemia) also belong to this heterogeneous group of disorders, its most representative diagnostic subtypes include monoclonal gammopathy of undetermined significance (MGUS), solitary plasmacytoma, multiple myeloma (MM), plasma cell leukemia (PCL), and several subvariants of these entities (1, 2) (Table 1). The last four diagnostic categories of PCD are the main focus of this chapter.

Citation: Flores-Montero J, Sanoja L, Pérez J, Pojero F, Puig N, Vidriales M, Orfao A. 2016. Plasma Cell Disorders, p 235-250. In Detrick B, Schmitz J, Hamilton R (ed), Manual of Molecular and Clinical Laboratory Immunology, Eighth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818722.ch24
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Normal bone marrow (BM) plasma cells (PCs) in an illustrating example of a consensus PC-gating strategy. Classic bivariate dot plots showing the minimal set of parameters recommended for accurate identification and gating of total BM PCs (dark blue dots). A combination of sequential gating, which must include CD138, CD38, and preferably CD45, together with light scatter properties, is recommended for accurate identification of PCs in BM samples. Once identified, PCs can be quantitated (0.12% of total nucleated cells in the illustrated example [gray dots]) and further characterized on phenotypic grounds. Abnormal PC populations may display lower levels of CD38 expression than normal BM PCs.

Citation: Flores-Montero J, Sanoja L, Pérez J, Pojero F, Puig N, Vidriales M, Orfao A. 2016. Plasma Cell Disorders, p 235-250. In Detrick B, Schmitz J, Hamilton R (ed), Manual of Molecular and Clinical Laboratory Immunology, Eighth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818722.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Illustrating example of a bone marrow (BM) sample from a multiple myeloma (MM) patient whose clonal plasma cells (PCs) aberrantly expressed several typical phenotypic markers, as may be seen through comparison against the immunophenotypic profile of normal PCs coexisting in the same BM sample. Classical bivariate dot plot representations illustrate the normal phenotypic characteristics of polyclonal PCs (dark blue dots) for surface membrane markers. The same dot plots also illustrate the aberrant phenotypic profiles expressed by the patient clonal PCs (red dots), i.e., CD38, CD45, CD19, CD56, CD117, and CD81. In addition, the normal and myeloma PC populations were further discriminated by their cytoplasmic (Cy) expression of immunoglobulin (Ig) light chains, highlighting the polyclonal nature of normal PCs (CyIgκ and CyIgλ [ratio of 1:3], dark and light green events, respectively) versus the monotypic expression of CyIgk of clonal PCs (red dots). The middle bottom panel displays the automated population separator (APS) view of principal component 1 versus principal component 2 ( and axes, respectively) specifically obtained for the two populations of BM PCs (normal versus myeloma PCs, red and blue dots, respectively) when compared to a set of normal/reactive PCs from 31 reference BM samples; circles represent the median fluorescence intensity of all fluorescence parameters stained, while dotted and continuous borders represent 1 and 2 standard deviations of the distribution obtained for the reference normal PC population; please note how normal PCs from the sample (blue dots) cluster within the reference population cloud, while phenotypically aberrant PCs (red dots) are clearly separated. The right panel in the row in the bottom shows the rank of individual markers and their contribution for the discrimination shown in the APS 1 plot for principal component 1. The overall PC populations correspond to 0.6% of all nucleated BM cells in the sample (gray dots). Normal PCs were 59.9%, while clonal PCs represented 40.1% of all BM PCs.

Citation: Flores-Montero J, Sanoja L, Pérez J, Pojero F, Puig N, Vidriales M, Orfao A. 2016. Plasma Cell Disorders, p 235-250. In Detrick B, Schmitz J, Hamilton R (ed), Manual of Molecular and Clinical Laboratory Immunology, Eighth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818722.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Highly sensitive minimal residual disease (MRD) detection in a bone marrow sample from a multiple myeloma (MM) patient. Bivariate dot plot representations of merged files from two different sample aliquots/tubes stained with the EuroFlow-International Myeloma Foundation MM MRD panel to illustrate the highly sensitive detection of aberrant/clonal myeloma plasma cells (PC; red events) coexisting with normal/polyclonal BM PCs (8 × 10 total BM events measured). Normal PCs display a characteristically normal phenotypic profile for surface membrane markers (dark blue dots). In turn, clonal PCs (red dots) from the same individual displayed a distinct pattern characterized by several myeloma-associated phenotypes (MAP; i.e., CD45, CD19, CD56, CD117, and CD81) in addition to higher forward and sideward scatter properties. Normal and abnormal PC populations could be further discriminated by their cytoplasmic (Cy) expression of immunoglobulin (Ig) light chains, highlighting the polyclonal nature of normal PCs (CyIgκ and CyIgλ [ratio of 0.8], dark and light green, respectively) versus monotypic expression of CyIgκ of clonal PCs. The overall BM PC population in this patient corresponded to 0.01% of all nucleated cells in the sample (gray dots); normal PCs were 0.008%, while clonal PCs represented 0.002% (227 dots) of all BM cells.

Citation: Flores-Montero J, Sanoja L, Pérez J, Pojero F, Puig N, Vidriales M, Orfao A. 2016. Plasma Cell Disorders, p 235-250. In Detrick B, Schmitz J, Hamilton R (ed), Manual of Molecular and Clinical Laboratory Immunology, Eighth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818722.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818722.ch24
1. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW. 2008. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th ed. International Agency for Research on Cancer, Lyon, France.
2. Rajkumar SV, Dimopoulos MA, Palumbo A, Blade J, Merlini G, Mateos MV, Kumar S, Hillengass J, Kastritis E, Richardson P, Landgren O, Paiva B, Dispenzieri A, Weiss B, LeLeu X, Zweegman S, Lonial S, Rosinol L, Zamagni E, Jagannath S, Sezer O, Kristinsson SY, Caers J, Usmani SZ, Lahuerta JJ, Johnsen HE, Beksac M, Cavo M, Goldschmidt H, Terpos E, Kyle RA, Anderson KC, Durie BG, Miguel JF. 2014. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol 15:e538e548.[CrossRef].[PubMed]
3. Turesson I, Kovalchik SA, Pfeiffer RM, Kristinsson SY, Goldin LR, Drayson MT, Landgren O. 2014. Monoclonal gammopathy of undetermined significance and risk of lymphoid and myeloid malignancies: 728 cases followed up to 30 years in Sweden. Blood 123:338345.[CrossRef].[PubMed]
4. Dispenzieri A, Katzmann JA, Kyle RA, Larson DR, Melton LJ III, Colby CL, Therneau TM, Clark R, Kumar SK, Bradwell A, Fonseca R, Jelinek DF, Rajkumar SV. 2010. Prevalence and risk of progression of light-chain monoclonal gammopathy of undetermined significance: a retrospective population-based cohort study. Lancet 375:17211728.[CrossRef].[PubMed]
5. Perez-Persona E, Vidriales MB, Mateo G, Garcia-Sanz R, Mateos MV, de Coca AG, Galende J, Martin-Nunez G, Alonso JM, de Las Heras N, Hernandez JM, Martin A, Lopez-Berges C, Orfao A, San Miguel JF. 2007. New criteria to identify risk of progression in monoclonal gammopathy of uncertain significance and smoldering multiple myeloma based on multiparameter flow cytometry analysis of bone marrow plasma cells. Blood 110:25862592.[CrossRef].[PubMed]
6. Rollig C, Knop S, Bornhauser M. 2015. Multiple myeloma. Lancet 385:21972208.
7. Warsame R, Gertz MA, Lacy MQ, Kyle RA, Buadi F, Dingli D, Greipp PR, Hayman SR, Kumar SK, Lust JA, Russell SJ, Witzig TE, Mikhael J, Leung N, Zeldenrust SR, Rajkumar SV, Dispenzieri A. 2012. Trends and outcomes of modern staging of solitary plasmacytoma of bone. Am J Hematol 87:647651.[CrossRef].[PubMed]
8. Rajkumar VS. 2014. Multiple myeloma: 2014 update on diagnosis, risk-stratification, and management. Am J Hematol 89:9991009.[CrossRef]
9. Landgren O. 2013. Monoclonal gammopathy of undetermined significance and smoldering multiple myeloma: biological insights and early treatment strategies. Hematol Am Soc Hematol Educ Program 2013:478487.[CrossRef]
10. Mateos MV, Hernandez MT, Giraldo P, de la Rubia J, de Arriba F, Lopez Corral L, Rosinol L, Paiva B, Palomera L, Bargay J, Oriol A, Prosper F, Lopez J, Olavarria E, Quintana N, Garcia JL, Blade J, Lahuerta JJ, San Miguel JF. 2013. Lenalidomide plus dexamethasone for high-risk smoldering multiple myeloma. N Engl J Med 369:438447.[CrossRef].[PubMed]
11. Braylan RC. 2004. Impact of flow cytometry on the diagnosis and characterization of lymphomas, chronic lymphoproliferative disorders and plasma cell neoplasias. Cytometry A 58:5761.[CrossRef].[PubMed]
12. Kaleem Z, Crawford E, Pathan MH, Jasper L, Covinsky MA, Johnson LR, White G. 2003. Flow cytometric analysis of acute leukemias. Diagnostic utility and critical analysis of data. Arch Pathol Lab Med 127:4248.[CrossRef].[PubMed]
13. Vidriales MB, San-Miguel JF, Orfao A, Coustan-Smith E, Campana D. 2003. Minimal residual disease monitoring by flow cytometry. Best Pract Res Clin Haematol 16:599612.[PubMed].[CrossRef]
14. Sewell WA, Smith SA. 2011. Polychromatic flow cytometry in the clinical laboratory. Pathology 43:580591.[CrossRef].[PubMed]
15. Rawstron AC, Orfao A, Beksac M, Bezdickova L, Brooimans RA, Bumbea H, Dalva K, Fuhler G, Gratama J, Hose D, Kovarova L, Lioznov M, Mateo G, Morilla R, Mylin AK, Omede P, Pellat-Deceunynck C, Perez Andres M, Petrucci M, Ruggeri M, Rymkiewicz G, Schmitz A, Schreder M, Seynaeve C, Spacek M, de Tute RM, Van Valckenborgh E, Weston-Bell N, Owen RG, San Miguel JF, Sonneveld P, Johnsen HE. 2008. Report of the European Myeloma Network on multiparametric flow cytometry in multiple myeloma and related disorders. Haematologica 93:431438.[CrossRef].[PubMed]
16. Nadav L, Katz BZ, Baron S, Yossipov L, Polliack A, Deutsch V, Geiger B, Naparstek E. 2006. Diverse niches within multiple myeloma bone marrow aspirates affect plasma cell enumeration. Br J Haematol 133:530532.[CrossRef].[PubMed]
17. Smock KJ, Perkins SL, Bahler DW. 2007. Quantitation of plasma cells in bone marrow aspirates by flow cytometric analysis compared with morphologic assessment. Arch Pathol Lab Med 131:951955.[CrossRef].[PubMed]
18. Harada H, Kawano MM, Huang N, Harada Y, Iwato K, Tanabe O, Tanaka H, Sakai A, Asaoku H, Kuramoto A. 1993. Phenotypic difference of normal plasma cells from mature myeloma cells. Blood 81:26582663.[PubMed]
19. San Miguel JF, Gonzalez M, Gascon A, Moro MJ, Hernandez JM, Ortega F, Jimenez R, Guerras L, Romero M, Casanova F, Sanz A, Sanchez J, Portero JA, Orfao A. 1991. Immunophenotypic heterogeneity of multiple myeloma: influence on the biology and clinical course of the disease. Castellano-Leones (Spain) Cooperative Group for the Study of Monoclonal Gammopathies. Br J Haematol 77:185190.[PubMed].[CrossRef]
20. Terstappen LW, Johnsen S, Segers-Nolten IM, Loken MR. 1990. Identification and characterization of plasma cells in normal human bone marrow by high-resolution flow cytometry. Blood 76:17391747.[PubMed]
21. Mateo G, Montalban MA, Vidriales MB, Lahuerta JJ, Mateos MV, Gutierrez N, Rosinol L, Montejano L, Blade J, Martinez R, de la Rubia J, Diaz-Mediavilla J, Sureda A, Ribera JM, Ojanguren JM, de Arriba F, Palomera L, Terol MJ, Orfao A, San Miguel JF. 2008. Prognostic value of immunophenotyping in multiple myeloma: a study by the PETHEMA/GEM cooperative study groups on patients uniformly treated with high-dose therapy. J Clin Oncol 26:27372744.[CrossRef].[PubMed]
22. Mateo G, Castellanos M, Rasillo A, Gutierrez NC, Montalban MA, Martin ML, Hernandez JM, Lopez-Berges MC, Montejano L, Blade J, Mateos MV, Sureda A, de la Rubia J, Diaz-Mediavilla J, Pandiella A, Lahuerta JJ, Orfao A, San Miguel JF. 2005. Genetic abnormalities and patterns of antigenic expression in multiple myeloma. Clin Cancer Res 11:36613667.[CrossRef].[PubMed]
23. Ocqueteau M, Orfao A, Almeida J, Blade J, Gonzalez M, Garcia-Sanz R, Lopez-Berges C, Moro MJ, Hernandez J, Escribano L, Caballero D, Rozman M, San Miguel JF. 1998. Immunophenotypic characterization of plasma cells from monoclonal gammopathy of undetermined significance patients. Implications for the differential diagnosis between MGUS and multiple myeloma. Am J Pathol 152:16551665.[PubMed]
24. Perez-Andres M, Santiago M, Almeida J, Mateo G, Porwit-MacDonald A, Bjorklund E, Valet G, Kraan J, Gratama JW, D'Hautcourt JL, Merle-Beral H, Lima M, Montalban MA, San Miguel JF, Orfao A. 2004. Immunophenotypic approach to the identification and characterization of clonal plasma cells from patients with monoclonal gammopathies. J Biol Regul Homeost Agents 18:392398.[PubMed]
25. San Miguel JF, Almeida J, Mateo G, Blade J, Lopez-Berges C, Caballero D, Hernandez J, Moro MJ, Fernandez-Calvo J, Diaz-Mediavilla J, Palomera L, Orfao A. 2002. Immunophenotypic evaluation of the plasma cell compartment in multiple myeloma: a tool for comparing the efficacy of different treatment strategies and predicting outcome. Blood 99:18531856.[PubMed].[CrossRef]
26. San Miguel JF, Vidriales MB, Ocio E, Mateo G, Sanchez-Guijo F, Sanchez ML, Escribano L, Barez A, Moro MJ, Hernandez J, Aguilera C, Cuello R, Garcia-Frade J, Lopez R, Portero J, Orfao A. 2003. Immunophenotypic analysis of Waldenstrom's macroglobulinemia. Semin Oncol 30:187195.[CrossRef].[PubMed]
27. Rawstron AC, Child JA, de Tute RM, Davies FE, Gregory WM, Bell SE, Szubert AJ, Navarro-Coy N, Drayson MT, Feyler S, Ross FM, Cook G, Jackson GH, Morgan GJ, Owen RG. 2013. Minimal residual disease assessed by multiparameter flow cytometry in multiple myeloma: impact on outcome in the Medical Research Council Myeloma IX Study. J Clin Oncol 31:25402547.[CrossRef].[PubMed]
28. Robillard N, Bene MC, Moreau P, Wuilleme S. 2013. A single-tube multiparameter seven-colour flow cytometry strategy for the detection of malignant plasma cells in multiple myeloma. Blood Cancer J 3:e134.[CrossRef].[PubMed]
29. Paiva B, Gutierrez NC, Chen X, Vidriales MB, Montalban MA, Rosinol L, Oriol A, Martinez-Lopez J, Mateos MV, Lopez-Corral L, Diaz-Rodriguez E, Perez JJ, Fernandez-Redondo E, de Arriba F, Palomera L, Bengoechea E, Terol MJ, de Paz R, Martin A, Hernandez J, Orfao A, Lahuerta JJ, Blade J, Pandiella A, Miguel JF. 2012. Clinical significance of CD81 expression by clonal plasma cells in high-risk smoldering and symptomatic multiple myeloma patients. Leukemia 26:18621869.[CrossRef].[PubMed]
30. San Miguel JF, Caballero MD, Gonzalez M, Zola H, Lopez Borrasca A. 1986. Immunological phenotype of neoplasms involving the B cell in the last step of differentiation. Br J Haematol 62:7583.[PubMed].[CrossRef]
31. Tazzari PL, Gobbi M, Dinota A, Bontadini A, Grassi G, Cerato C, Cavo M, Pileri S, Caligaris-Cappio F, Tura S. 1987. Normal and neoplastic plasma cell membrane phenotype: studies with new monoclonal antibodies. Clin Exp Immunol 70:192200.[PubMed]
32. Quarona V, Zaccarello G, Chillemi A, Brunetti E, Singh VK, Ferrero E, Funaro A, Horenstein AL, Malavasi F. 2013. CD38 and CD157: a long journey from activation markers to multifunctional molecules. Cytometry B Clin Cytom 84:207217.[CrossRef].[PubMed]
33. Campana D, Suzuki T, Todisco E, Kitanaka A. 2000. CD38 in hematopoiesis. Chem Immunol 75:169188.[PubMed].[CrossRef]
34. Perez-Andres M, Paiva B, Nieto WG, Caraux A, Schmitz A, Almeida J, Vogt RF Jr, Marti GE, Rawstron AC, Van Zelm MC, Van Dongen JJ, Johnsen HE, Klein B, Orfao A. 2010. Human peripheral blood B-cell compartments: a crossroad in B-cell traffic. Cytometry B Clin Cytom 78:S47S60.[CrossRef].[PubMed]
35. Arroz M, Came N, Lin P, Chen W, Yuan C, Lagoo A, Monreal M, de Tute R, Vergilio JA, Rawstron AC, Paiva B. 2015. Consensus guidelines on plasma cell myeloma minimal residual disease analysis and reporting. Cytometry B Clin Cytom doi:10.1002/cyto.b.21228.[CrossRef] http://dx.doi.org/doi:10.1002/cyto.b.21228
36. Wijdenes J, Vooijs WC, Clement C, Post J, Morard F, Vita N, Laurent P, Sun RX, Klein B, Dore JM. 1996. A plasmocyte selective monoclonal antibody (B-B4) recognizes syndecan-1. Br J Haematol 94:318323.[PubMed].[CrossRef]
37. Jourdan M, Ferlin M, Legouffe E, Horvathova M, Liautard J, Rossi JF, Wijdenes J, Brochier J, Klein B. 1998. The myeloma cell antigen syndecan-1 is lost by apoptotic myeloma cells. Br J Haematol 100:637646.[PubMed].[CrossRef]
38. Yang Y, Borset M, Langford JK, Sanderson RD. 2003. Heparan sulfate regulates targeting of syndecan-1 to a functional domain on the cell surface. J Biol Chem 278:1288812893.[CrossRef].[PubMed]
39. Liu D, Lin P, Hu Y, Zhou Y, Tang G, Powers L, Medeiros LJ, Jorgensen JL, Wang SA. 2012. Immunophenotypic heterogeneity of normal plasma cells: comparison with minimal residual plasma cell myeloma. J Clin Pathol 65:823829.[CrossRef].[PubMed]
40. Sherbenou DW, Behrens CR, Su Y, Wolf JL, Martin TG III, Liu B. 2015. The development of potential antibody-based therapies for myeloma. Blood Rev 29:8191.[CrossRef].[PubMed]
41. Khagi Y, Mark TM. 2014. Potential role of daratumumab in the treatment of multiple myeloma. OncoTargets Ther 7:10951100.[CrossRef]
42. Ocio EM, Richardson PG, Rajkumar SV, Palumbo A, Mateos MV, Orlowski R, Kumar S, Usmani S, Roodman D, Niesvizky R, Einsele H, Anderson KC, Dimopoulos MA, Avet-Loiseau H, Mellqvist UH, Turesson I, Merlini G, Schots R, McCarthy P, Bergsagel L, Chim CS, Lahuerta JJ, Shah J, Reiman A, Mikhael J, Zweegman S, Lonial S, Comenzo R, Chng WJ, Moreau P, Sonneveld P, Ludwig H, Durie BG, Miguel JF. 2014. New drugs and novel mechanisms of action in multiple myeloma in 2013: a report from the International Myeloma Working Group (IMWG). Leukemia 28:525542.[CrossRef].[PubMed]
43. Deckert J, Wetzel MC, Bartle LM, Skaletskaya A, Goldmacher VS, Vallee F, Zhou-Liu Q, Ferrari P, Pouzieux S, Lahoute C, Dumontet C, Plesa A, Chiron M, Lejeune P, Chittenden T, Park PU, Blanc V. 2014. SAR650984, a novel humanized CD38-targeting antibody, demonstrates potent antitumor activity in models of multiple myeloma and other CD38+ hematologic malignancies. Clin Cancer Res 20:45744583.[CrossRef].[PubMed]
44. Zonder JA, Mohrbacher AF, Singhal S, van Rhee F, Bensinger WI, Ding H, Fry J, Afar DE, Singhal AK. 2012. A phase 1, multicenter, open-label, dose escalation study of elotuzumab in patients with advanced multiple myeloma. Blood 120:552559.[CrossRef].[PubMed]
45. Lonial S, Vij R, Harousseau JL, Facon T, Moreau P, Mazumder A, Kaufman JL, Leleu X, Tsao LC, Westland C, Singhal AK, Jagannath S. 2012. Elotuzumab in combination with lenalidomide and low-dose dexamethasone in relapsed or refractory multiple myeloma. J Clin Oncol 30:19531959.[CrossRef].[PubMed]
46. Atanackovic D, Panse J, Hildebrandt Y, Jadczak A, Kobold S, Cao Y, Templin J, Meyer S, Reinhard H, Bartels K, Lajmi N, Zander AR, Marx AH, Bokemeyer C, Kroger N. 2011. Surface molecule CD229 as a novel target for the diagnosis and treatment of multiple myeloma. Haematologica 96:15121520.[CrossRef].[PubMed]
47. Veillette A, Guo H. 2013. CS1, a SLAM family receptor involved in immune regulation, is a therapeutic target in multiple myeloma. Crit Rev Oncol Hematol 88:168177.[CrossRef].[PubMed]
48. Noborio-Hatano K, Kikuchi J, Takatoku M, Shimizu R, Wada T, Ueda M, Nobuyoshi M, Oh I, Sato K, Suzuki T, Ozaki K, Mori M, Nagai T, Muroi K, Kano Y, Furukawa Y, Ozawa K. 2009. Bortezomib overcomes cell-adhesion-mediated drug resistance through downregulation of VLA-4 expression in multiple myeloma. Oncogene 28:231242.[CrossRef].[PubMed]
49. Pojero F, Flores-Montero J, Sanoja L, Perez JJ, Puig N, Paiva B, Bottcher S, van Dongen JJM, Orfao A. 2015. Utility of CD54, CD229, and CD319 for the identification of plasma cells in patients with clonal plasma cell diseases. Cytometry B Clin Cytom doi:10.1002/cyto.b.21269.[CrossRef] http://dx.doi.org/doi:10.1002/cyto.b.21269
50. Radbruch A, Muehlinghaus G, Luger EO, Inamine A, Smith KG, Dorner T, Hiepe F. 2006. Competence and competition: the challenge of becoming a long-lived plasma cell. Nat Rev Immunol 6:741750.[CrossRef].[PubMed]
51. Caraux A, Klein B, Paiva B, Bret C, Schmitz A, Fuhler GM, Bos NA, Johnsen HE, Orfao A, Perez-Andres M. 2010. Circulating human B and plasma cells. Age-associated changes in counts and detailed characterization of circulating normal CD138- and CD138+ plasma cells. Haematologica 95:10161020.[CrossRef].[PubMed]
52. Mei HE, Yoshida T, Sime W, Hiepe F, Thiele K, Manz RA, Radbruch A, Dorner T. 2009. Blood-borne human plasma cells in steady state are derived from mucosal immune responses. Blood 113:24612469.[CrossRef].[PubMed]
53. Belnoue E, Pihlgren M, McGaha TL, Tougne C, Rochat AF, Bossen C, Schneider P, Huard B, Lambert PH, Siegrist CA. 2008. APRIL is critical for plasmablast survival in the bone marrow and poorly expressed by early-life bone marrow stromal cells. Blood 111:27552764.[CrossRef].[PubMed]
54. Robillard N, Wuilleme S, Moreau P, Bene MC. 2014. Immunophenotype of normal and myelomatous plasma-cell subsets. Front Immunol 5:137.[CrossRef].[PubMed]
55. Cannizzo E, Bellio E, Sohani AR, Hasserjian RP, Ferry JA, Dorn ME, Sadowski C, Bucci JJ, Carulli G, Preffer F. 2010. Multiparameter immunophenotyping by flow cytometry in multiple myeloma: the diagnostic utility of defining ranges of normal antigenic expression in comparison to histology. Cytometry B Clin Cytom 78:231238.[CrossRef].[PubMed]
56. Schmidt-Hieber M, Paiva B, Perez-Andres M, Gutierrez ML, Dybkaer K, Rasillo A, Tabernero MD, Lopez A, Kryukov F, Carrasco P, Sanchez ML, Rosiñol L, Lopez JM, Oriol A, de Arriba F, Palomera L, Bengoechea E, Lahuerta JJ, Blade J, Schmitz A, Johnsen HE, San Miguel JF, Orfao A. 2013. CD56+ Clonal plasma cells in multiple myeloma are associated with unique disease characteristics and have a counterpart of CD56+ normal plasma cells with increased maturity. Blood 122:751.
57. Ocqueteau M, Orfao A, Garcia-Sanz R, Almeida J, Gonzalez M, San Miguel JF. 1996. Expression of the CD117 antigen (c-Kit) on normal and myelomatous plasma cells. Br J Haematol 95:489493.[PubMed].[CrossRef]
58. Lin P, Owens R, Tricot G, Wilson CS. 2004. Flow cytometric immunophenotypic analysis of 306 cases of multiple myeloma. Am J Clin Pathol 121:482488.[CrossRef].[PubMed]
59. Alapat D, Coviello-Malle J, Owens R, Qu P, Barlogie B, Shaughnessy JD, Lorsbach RB. 2012. Diagnostic usefulness and prognostic impact of CD200 expression in lymphoid malignancies and plasma cell myeloma. Am J Clin Pathol 137:93100.[CrossRef].[PubMed]
60. Iqbal MS, Otsuyama K, Shamsasenjan K, Asaoku H, Mahmoud MS, Gondo T, Kawano MM. 2009. Constitutively lower expressions of CD54 on primary myeloma cells and their different localizations in bone marrow. Eur J Haematol 83:302312.[CrossRef].[PubMed]
61. Ise T, Nagata S, Kreitman RJ, Wilson WH, Wayne AS, Stetler-Stevenson M, Bishop MR, Scheinberg DA, Rassenti L, Kipps TJ, Kyle RA, Jelinek DF, Pastan I. 2007. Elevation of soluble CD307 (IRTA2/FcRH5) protein in the blood and expression on malignant cells of patients with multiple myeloma, chronic lymphocytic leukemia, and mantle cell lymphoma. Leukemia 21:169174.[CrossRef].[PubMed]
62. van Dongen JJ, Lhermitte L, Bottcher S, Almeida J, van der Velden VH, Flores-Montero J, Rawstron A, Asnafi V, Lecrevisse Q, Lucio P, Mejstrikova E, Szczepanski T, Kalina T, de Tute R, Bruggemann M, Sedek L, Cullen M, Langerak AW, Mendonca A, Macintyre E, Martin-Ayuso M, Hrusak O, Vidriales MB, Orfao A. 2012. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia 26:19081975.[CrossRef].[PubMed]
63. Pellat-Deceunynck C, Bataille R, Robillard N, Harousseau JL, Rapp MJ, Juge-Morineau N, Wijdenes J, Amiot M. 1994. Expression of CD28 and CD40 in human myeloma cells: a comparative study with normal plasma cells. Blood 84:25972603.[PubMed]
64. Moreau P, Robillard N, Jego G, Pellat C, Le Gouill S, Thoumi S, Avet-Loiseau H, Harousseau JL, Bataille R. 2006. Lack of CD27 in myeloma delineates different presentation and outcome. Br J Haematol 132:168170.[CrossRef].[PubMed]
65. Paiva B, van Dongen JJ, Orfao A. 2015. New criteria for response assessment: role of minimal residual disease in multiple myeloma. Blood 125:30593068.[CrossRef].[PubMed]
66. Paiva B, Vidriales MB, Perez JJ, Mateo G, Montalban MA, Mateos MV, Blade J, Lahuerta JJ, Orfao A, San Miguel JF. 2009. Multiparameter flow cytometry quantification of bone marrow plasma cells at diagnosis provides more prognostic information than morphological assessment in myeloma patients. Haematologica 94:15991602.[CrossRef].[PubMed]
67. Manasanch EE, Salem DA, Yuan CM, Tageja N, Bhutani M, Kwok M, Kazandjian D, Carter G, Steinberg SM, Zuchlinski D, Mulquin M, Calvo K, Maric I, Roschewski M, Korde N, Braylan R, Landgren O, Stetler-Stevenson M. 2015. Flow cytometric sensitivity and characteristics of plasma cells in patients with multiple myeloma or its precursor disease: influence of biopsy site and anticoagulation method. Leuk Lymphoma 56:14161424.[CrossRef].[PubMed]
68. Paiva B, Almeida J, Perez-Andres M, Mateo G, Lopez A, Rasillo A, Vidriales MB, Lopez-Berges MC, Miguel JF, Orfao A. 2010. Utility of flow cytometry immunophenotyping in multiple myeloma and other clonal plasma cell-related disorders. Cytometry B Clin Cytom 78:239252.[CrossRef].[PubMed]
69. Paiva B, Vidriales MB, Mateo G, Perez JJ, Montalban MA, Sureda A, Montejano L, Gutierrez NC, Garcia de Coca A, de las Heras N, Mateos MV, Lopez-Berges MC, Garcia-Boyero R, Galende J, Hernandez J, Palomera L, Carrera D, Martinez R, de la Rubia J, Martin A, Gonzalez Y, Blade J, Lahuerta JJ, Orfao A, San-Miguel JF. 2009. The persistence of immunophenotypically normal residual bone marrow plasma cells at diagnosis identifies a good prognostic subgroup of symptomatic multiple myeloma patients. Blood 114:43694372.[CrossRef].[PubMed]
70. Schmidt-Hieber M, Perez-Andres M, Paiva B, Flores-Montero J, Perez JJ, Gutierrez NC, Vidriales MB, Matarraz S, San Miguel JF, Orfao A. 2011. CD117 expression in gammopathies is associated with an altered maturation of the myeloid and lymphoid hematopoietic cell compartments and favorable disease features. Haematologica 96:328332.[CrossRef].[PubMed]
71. Fernandez de Larrea C, Kyle RA, Durie BG, Ludwig H, Usmani S, Vesole DH, Hajek R, San Miguel JF, Sezer O, Sonneveld P, Kumar SK, Mahindra A, Comenzo R, Palumbo A, Mazumber A, Anderson KC, Richardson PG, Badros AZ, Caers J, Cavo M, LeLeu X, Dimopoulos MA, Chim CS, Schots R, Noeul A, Fantl D, Mellqvist UH, Landgren O, Chanan-Khan A, Moreau P, Fonseca R, Merlini G, Lahuerta JJ, Blade J, Orlowski RZ, Shah JJ. 2013. Plasma cell leukemia: consensus statement on diagnostic requirements, response criteria and treatment recommendations by the International Myeloma Working Group. Leukemia 27:780791.[CrossRef].[PubMed]
72. Davies FE, Rawstron AC, Owen RG, Morgan GJ. 2002. Minimal residual disease monitoring in multiple myeloma. Best Pract Res Clin Haematol 15:197222.[CrossRef].[PubMed]
73. Puig N, Sarasquete ME, Balanzategui A, Martinez J, Paiva B, Garcia H, Fumero S, Jimenez C, Alcoceba M, Chillon MC, Sebastian E, Marin L, Montalban MA, Mateos MV, Oriol A, Palomera L, de la Rubia J, Vidriales MB, Blade J, Lahuerta JJ, Gonzalez M, Miguel JF, Garcia-Sanz R. 2014. Critical evaluation of ASO RQ-PCR for minimal residual disease evaluation in multiple myeloma. A comparative analysis with flow cytometry. Leukemia 28:391397.[CrossRef].[PubMed]
74. Gupta R, Bhaskar A, Kumar L, Sharma A, Jain P. 2009. Flow cytometric immunophenotyping and minimal residual disease analysis in multiple myeloma. Am J Clin Pathol 132:728732.[CrossRef].[PubMed]
75. van Dongen JJ, van der Velden VH, Bruggemann M, Orfao A. 2015. Minimal residual disease diagnostics in acute lymphoblastic leukemia: need for sensitive, fast, and standardized technologies. Blood 125:39964009.[CrossRef].[PubMed]
76. Paiva B, Martinez-Lopez J, Vidriales MB, Mateos MV, Montalban MA, Fernandez-Redondo E, Alonso L, Oriol A, Teruel AI, de Paz R, Larana JG, Bengoechea E, Martin A, Mediavilla JD, Palomera L, de Arriba F, Blade J, Orfao A, Lahuerta JJ, San Miguel JF. 2011. Comparison of immunofixation, serum free light chain, and immunophenotyping for response evaluation and prognostication in multiple myeloma. J Clin Oncol 29:16271633.[CrossRef].[PubMed]
77. Mathis S, Chapuis N, Borgeot J, Maynadie M, Fontenay M, Bene MC, Guy J, Bardet V. 2015. Comparison of cross-platform flow cytometry minimal residual disease evaluation in multiple myeloma using a common antibody combination and analysis strategy. Cytometry B Clin Cytom 88:101109.[CrossRef].[PubMed]
78. Landgren O, Gormley N, Turley D, Owen RG, Rawstron A, Paiva B, Barnett D, Arroz M, Wallace P, Durie B, Yuan C, Dogan A, Stetler-Stevenson M, Marti GE. 2014. Flow cytometry detection of minimal residual disease in multiple myeloma: Lessons learned at FDA-NCI roundtable symposium. Am J Hematol 89:11591160.[CrossRef].[PubMed]
79. Paiva B, Chandia M, Puig N, Vidriales MB, Perez JJ, Lopez-Corral L, Ocio EM, Garcia-Sanz R, Gutierrez NC, Jimenez-Ubieto A, Lahuerta JJ, Mateos MV, San Miguel JF. 2015. The prognostic value of multiparameter flow cytometry minimal residual disease assessment in relapse multiple myeloma. Haematologica 100:e53e55.[CrossRef].[PubMed]
80. Paiva B, Gutierrez NC, Rosinol L, Vidriales MB, Montalban MA, Martinez-Lopez J, Mateos MV, Cibeira MT, Cordon L, Oriol A, Terol MJ, Echeveste MA, de Paz R, de Arriba F, Palomera L, de la Rubia J, Diaz-Mediavilla J, Sureda A, Gorosquieta A, Alegre A, Martin A, Hernandez MT, Lahuerta JJ, Blade J, San Miguel JF. 2012. High-risk cytogenetics and persistent minimal residual disease by multiparameter flow cytometry predict unsustained complete response after autologous stem cell transplantation in multiple myeloma. Blood 119:687691.[CrossRef].[PubMed]
81. Paiva B, Vidriales MB, Cervero J, Mateo G, Perez JJ, Montalban MA, Sureda A, Montejano L, Gutierrez NC, Garcia de Coca A, de Las Heras N, Mateos MV, Lopez-Berges MC, Garcia-Boyero R, Galende J, Hernandez J, Palomera L, Carrera D, Martinez R, de la Rubia J, Martin A, Blade J, Lahuerta JJ, Orfao A, San Miguel JF. 2008. Multiparameter flow cytometric remission is the most relevant prognostic factor for multiple myeloma patients who undergo autologous stem cell transplantation. Blood 112:40174023.[CrossRef].[PubMed]
82. Roussel M, Lauwers-Cances V, Robillard N, Hulin C, Leleu X, Benboubker L, Marit G, Moreau P, Pegourie B, Caillot D, Fruchart C, Stoppa AM, Gentil C, Wuilleme S, Huynh A, Hebraud B, Corre J, Chretien ML, Facon T, Avet-Loiseau H, Attal M. 2014. Front-line transplantation program with lenalidomide, bortezomib, and dexamethasone combination as induction and consolidation followed by lenalidomide maintenance in patients with multiple myeloma: a phase II study by the Intergroupe Francophone du Myelome. J Clin Oncol 32:27122717.[CrossRef].[PubMed]
83. Rawstron AC, Davies FE, DasGupta R, Ashcroft AJ, Patmore R, Drayson MT, Owen RG, Jack AS, Child JA, Morgan GJ. 2002. Flow cytometric disease monitoring in multiple myeloma: the relationship between normal and neoplastic plasma cells predicts outcome after transplantation. Blood 100:30953100.[CrossRef].[PubMed]
84. Rajkumar SV, Harousseau JL, Durie B, Anderson KC, Dimopoulos M, Kyle R, Blade J, Richardson P, Orlowski R, Siegel D, Jagannath S, Facon T, Avet-Loiseau H, Lonial S, Palumbo A, Zonder J, Ludwig H, Vesole D, Sezer O, Munshi NC, San Miguel J. 2011. Consensus recommendations for the uniform reporting of clinical trials: report of the International Myeloma Workshop Consensus Panel 1. Blood 117:46914695.[CrossRef].[PubMed]

Tables

Generic image for table
TABLE 1

Current classification of clonal plasma cell disorders according to the WHO 2008 criteria refined by the IMWG in 2014

Citation: Flores-Montero J, Sanoja L, Pérez J, Pojero F, Puig N, Vidriales M, Orfao A. 2016. Plasma Cell Disorders, p 235-250. In Detrick B, Schmitz J, Hamilton R (ed), Manual of Molecular and Clinical Laboratory Immunology, Eighth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818722.ch24
Generic image for table
TABLE 2

IMWG diagnostic criteria for the major categories of PCDs

Citation: Flores-Montero J, Sanoja L, Pérez J, Pojero F, Puig N, Vidriales M, Orfao A. 2016. Plasma Cell Disorders, p 235-250. In Detrick B, Schmitz J, Hamilton R (ed), Manual of Molecular and Clinical Laboratory Immunology, Eighth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818722.ch24
Generic image for table
TABLE 3

List of the most relevant plasma cell (immunophenotypic) markers and their respective clinical values

Citation: Flores-Montero J, Sanoja L, Pérez J, Pojero F, Puig N, Vidriales M, Orfao A. 2016. Plasma Cell Disorders, p 235-250. In Detrick B, Schmitz J, Hamilton R (ed), Manual of Molecular and Clinical Laboratory Immunology, Eighth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818722.ch24
Generic image for table
TABLE 4

IMWG criteria for treatment response categories including those proposed for defining immunophenotypic and molecular CR

Citation: Flores-Montero J, Sanoja L, Pérez J, Pojero F, Puig N, Vidriales M, Orfao A. 2016. Plasma Cell Disorders, p 235-250. In Detrick B, Schmitz J, Hamilton R (ed), Manual of Molecular and Clinical Laboratory Immunology, Eighth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818722.ch24

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error