1887

Chapter 32 : Measurement of NK Cell Phenotype and Activity in Humans

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Measurement of NK Cell Phenotype and Activity in Humans, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818722/9781555818715_CH32-1.gif /docserver/preview/fulltext/10.1128/9781555818722/9781555818715_CH32-2.gif

Abstract:

Natural killer (NK) cells are a subset of innate lymphocytes initially identified for their ability to specifically kill virally infected and transformed cells without prior antigen sensitization. NK cells efficiently kill target cells through directed release of perforin-containing secretory lysosomes, a feature shared with cytotoxic T lymphocytes (CTLs) (1). Despite similarities in effector mechanisms, the strategies employed by NK cells and CTLs for target cell recognition are distinct yet complementary with respect to immune defense. Whereas CTLs express recombined, clonally distributed antigen receptors that dictate their activation and are selected for recognition of cells presenting nonself peptides in the context of major histocompatibility (MHC) class I molecules, NK cells rely on dynamic integration of signals from various germ line-encoded receptors for target cell discrimination. NK cells express numerous inhibitory receptors to detect normal expression of MHC class I and can selectively kill target cells that downregulate these molecules (2). NK cell activation by target cells with low MHC class I levels does not occur by default, but rather is mediated through engagement of different activating receptors (3). Representing an effector arm of humoral immunity, NK cells express the low-affinity Fc receptor CD16, which facilitates antibody-dependent cellular cytotoxicity (4). Moreover, supporting first-line defense against virally infected or stressed cells, a multiplicity of activating receptors that participate in natural cytotoxicity have been identified. In general, engagement of each such receptor alone is not sufficient to induce NK cell cytotoxicity. However, certain combinations of receptor signals can synergistically activate NK cell effector functions (5). Reflecting the expression of several activating receptors on NK cells that bind ligands exclusively expressed on hematopoietic cells, the ability of NK cells to kill autologous, activated immune cells is increasingly appreciated as an important immunoregulatory mechanism to control and shape adaptive immune responses (6). Upon activation, NK cells not only release granules but also abundantly produce chemokines and cytokines (7).

Citation: Chiang S, Bryceson Y. 2016. Measurement of NK Cell Phenotype and Activity in Humans, p 300-309. In Detrick B, Schmitz J, Hamilton R (ed), Manual of Molecular and Clinical Laboratory Immunology, Eighth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818722.ch32
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Gating strategy for flow cytometric analysis of NK cells. The strategy for consecutive gating of CD3CD56 NK cells is depicted. First, lymphocytes are gated on forward-scatter versus side-scatter characteristics. Second, single cells are gated on forward-scatter height versus forward-scatter area characteristics. Third, a histogram representing a dump channel with staining for dead cells, CD14 monocytes, and CD19 B cells. Viable, nonmonocyte, non-B cells are gated. Fourth, CD3CD56 NK cells are gated on a CD3 versus CD56 plot. Finally, phenotypic or functional readouts can be assessed in histograms.

Citation: Chiang S, Bryceson Y. 2016. Measurement of NK Cell Phenotype and Activity in Humans, p 300-309. In Detrick B, Schmitz J, Hamilton R (ed), Manual of Molecular and Clinical Laboratory Immunology, Eighth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818722.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Lytic granule expression in CD3CD56 NK cells from patients and healthy controls. PBMCs were stained and assessed according to protocol 1. Histograms depict expression of perforin (A, B) or granzyme B (C) in a patient with biallelic mutations (solid line) relative to a healthy control (dashed line) (A) or a patient with biallelic mutations (solid line) relative to a healthy control (dashed line) (B, C).

Citation: Chiang S, Bryceson Y. 2016. Measurement of NK Cell Phenotype and Activity in Humans, p 300-309. In Detrick B, Schmitz J, Hamilton R (ed), Manual of Molecular and Clinical Laboratory Immunology, Eighth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818722.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Functional responses by CD3CD56 NK cells from patients and healthy controls. PBMCs were mixed with target cells and assessed according to protocol 2. Histograms depict expression of CD107a, CD69, and TNF, as indicated, on NK cells from a healthy control or patients with biallelic mutations in , or . Expression in unstimulated cells (filled histograms), cells incubated with K562 cells (dashed lines), or P815 cells with added anti-CD16 mAb (solid lines) is depicted.

Citation: Chiang S, Bryceson Y. 2016. Measurement of NK Cell Phenotype and Activity in Humans, p 300-309. In Detrick B, Schmitz J, Hamilton R (ed), Manual of Molecular and Clinical Laboratory Immunology, Eighth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818722.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818722.ch32
1. de Saint Basile G, Ménasché G, Fischer A. 2010. Molecular mechanisms of biogenesis and exocytosis of cytotoxic granules. Nat Rev Immunol 10:568579.[CrossRef].[PubMed]
2. Long EO. 2008. Negative signaling by inhibitory receptors: the NK cell paradigm. Immunol Rev 224:7084.[CrossRef].[PubMed]
3. Bryceson YT, Chiang SC, Darmanin S, Fauriat C, Schlums H, Theorell J, Wood SM. 2011. Molecular mechanisms of natural killer cell activation. J Innate Immun 3:216226.[CrossRef].[PubMed]
4. Perussia B. 1998. Fc receptors on natural killer cells. Curr Top Microbiol Immunol 230:6388.[PubMed].[CrossRef]
5. Bryceson YT, Ljunggren HG, Long EO. 2009. Minimal requirement for induction of natural cytotoxicity and intersection of activation signals by inhibitory receptors. Blood 114:26572666.[CrossRef].[PubMed]
6. Welsh RM, Waggoner SN. 2013. NK cells controlling virus-specific T cells: rheostats for acute vs. persistent infections. Virology 435:3745.[CrossRef].[PubMed]
7. Fauriat C, Long EO, Ljunggren HG, Bryceson YT. 2010. Regulation of human NK cell cytokine and chemokine production by target cell recognition. Blood 115:21672176.[CrossRef].[PubMed]
8. Caligiuri MA. 2008. Human natural killer cells. Blood 112:461469.[CrossRef].[PubMed]
9. Moffett-King A. 2002. Natural killer cells and pregnancy. Nat Rev Immunol 2:656663.[CrossRef].[PubMed]
10. Cichocki F, Miller JS, Anderson SK, Bryceson YT. 2013. Epigenetic regulation of NK cell differentiation and effector functions. Front Immunol 4:55. doi:10.3389/fimmu.2013.00055.[CrossRef].[PubMed] http://dx.doi.org/doi:10.3389/fimmu.2013.00055
11. Romagnani C, Juelke K, Falco M, Morandi B, D'Agostino A, Costa R, Ratto G, Forte G, Carrega P, Lui G, Conte R, Strowig T, Moretta A, Münz C, Thiel A, Moretta L, Ferlazzo G. 2007. CD56brightCD16 killer Ig-like receptor NK cells display longer telomeres and acquire features of CD56dim NK cells upon activation. J Immunol 178:49474955.[PubMed].[CrossRef]
12. Sun JC, Lanier LL. 2011. NK cell development, homeostasis and function: parallels with CD8+ T cells. Nat Rev Immunol 11:645657.[CrossRef].[PubMed]
13. Narni-Mancinelli E, Vivier E, Kerdiles YM. 2011. The ‘T-cell-ness’ of NK cells: unexpected similarities between NK cells and T cells. Int Immunol 23:427431.[CrossRef].[PubMed]
14. Orange JS. 2013. Natural killer cell deficiency. J Allergy Clin Immunol 132:515525; quiz 526.[CrossRef].[PubMed]
15. Jouanguy E, Gineau L, Cottineau J, Béziat V, Vivier E, Casanova JL. 2013. Inborn errors of the development of human natural killer cells. Curr Opin Allergy Clin Immunol 13:589595.[CrossRef].[PubMed]
16. Mace EM, Hsu AP, Monaco-Shawver L, Makedonas G, Rosen JB, Dropulic L, Cohen JI, Frenkel EP, Bagwell JC, Sullivan JL, Biron CA, Spalding C, Zerbe CS, Uzel G, Holland SM, Orange JS. 2013. Mutations in GATA2 cause human NK cell deficiency with specific loss of the CD56bright subset. Blood 121:26692677.[CrossRef].[PubMed]
17. Hsu AP, Sampaio EP, Khan J, Calvo KR, Lemieux JE, Patel SY, Frucht DM, Vinh DC, Auth, RD, Freeman AF, Olivier KN, Uzel G, Zerbe CS, Spalding C, Pittaluga S, Raffeld M, Kuhns DB, Ding L, Paulson ML, Marciano BE, Gea-Banacloche JC, Orange JS, Cuellar-Rodriguez J, Hickstein DD, Holland SM. 2011. Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood 118:26532655.[CrossRef].[PubMed]
18. Dickinson RE, Griffin H, Bigley V, Reynard LN, Hussain R, Haniffa M, Lakey JH, Rahman T, Wang XN, McGovern N, Pagan S, Cookson S, McDonald D, Chua I, Wallis J, Cant A, Wright M, Keavney B, Chinnery PF, Loughlin J, Hambleton S, Santibanez-Koref M, Collin M. 2011. Exome sequencing identifies GATA-2 mutation as the cause of dendritic cell, monocyte, B and NK lymphoid deficiency. Blood 118:26562658.[CrossRef].[PubMed]
19. Hahn CN, Chong CE, Carmichael CL, Wilkins EJ, Brautigan PJ, Li XC, Babic M, Lin M, Carmagnac A, Lee YK, Kok CH, Gagliardi L, Friend KL, Ekert PG, Butcher CM, Brown AL, Lewis ID, To LB, Timms AE, Storek J, Moore S, Altree M, Escher R, Bardy PG, Suthers GK, D'Andrea RJ, Horwitz MS, Scott HS. 2011. Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nat Genet 43:10121017.
20. Ostergaard P, Simpson MA, Connell FC, Steward CG, Brice G, Woollard WJ, Dafou D, Kilo T, Smithson S, Lunt P, Murday VA, Hodgson S, Keenan R, Pilz DT, Martinez-Corral I, Makinen T, Mortimer PS, Jeffery S, Trembath RC, Mansour S. 2011. Mutations in GATA2 cause primary lymphedema associated with a predisposition to acute myeloid leukemia (Emberger syndrome). Nat Genet 43:929931.
21. Gineau L, Cognet C, Kara N, Lach FP, Dunne J, Veturi U, Picard C, Trouillet C, Eidenschenk C, Aoufouchi S, Alcaïs A, Smith O, Geissmann F, Feighery C, Abel L, Smogorzewska A, Stillman B, Vivier E, Casanova JL, Jouanguy E. 2012. Partial MCM4 deficiency in patients with growth retardation, adrenal insufficiency, and natural killer cell deficiency. J Clin Invest 122:821832.[CrossRef].[PubMed]
22. Grier JT, Forbes LR, Monaco-Shawver L, Oshinsky J, Atkinson TP, Moody C, Pandey R, Campbell KS, Orange JS. 2012. Human immunodeficiency-causing mutation defines CD16 in spontaneous NK cell cytotoxicity. J Clin Invest 122:37693780.[CrossRef].[PubMed]
23. Bernasconi A, Marino R, Ribas A, Rossi J, Ciaccio M, Oleastro M, Ornani A, Paz R, Rivarola MA, Zelazko M, Belgorosky A. 2006. Characterization of immunodeficiency in a patient with growth hormone insensitivity secondary to a novel STAT5b gene mutation. Pediatrics 118:e1584e1592.
24. Henter JI, Horne A, Aricó M, Egeler RM, Filipovich AH, Imashuku S, Ladisch S, McClain K, Webb D, Winiarski J, Janka G. 2007. HLH-2004: diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer 48:124131.[CrossRef].[PubMed]
25. Stepp SE, Dufourcq-Lagelouse R, Le Deist F, Bhawan S, Certain S, Mathew PA, Henter JI, Bennett M, Fischer A, de Saint Basile G, Kumar V. 1999. Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science 286:19571959.[PubMed].[CrossRef]
26. Bryceson YT, Pende D, Maul-Pavicic A, Gilmour KC, Ufheil H, Vraetz T, Chiang SC, Marcenaro S, Meazza R, Bondzio I, Walshe D, Janka G, Lehmberg K, Beutel K, zur Stadt U, Binder N, Arico M, Moretta L, Henter JI, Ehl S. 2012. A prospective evaluation of degranulation assays in the rapid diagnosis of familial hemophagocytic syndromes. Blood 119:27542763.[CrossRef].[PubMed]
27. Maul-Pavicic A, Chiang SC, Rensing-Ehl A, Jessen B, Fauriat C, Wood SM, Sjöqvist S, Hufnagel M, Schulze I, Bass T, Schamel WW, Fuchs S, Pircher H, McCarl CA, Mikoshiba K, Schwarz K, Feske S, Bryceson YT, Ehl S. 2011. ORAI1-mediated calcium influx is required for human cytotoxic lymphocyte degranulation and target cell lysis. Proc Natl Acad Sci U S A 108:33243329.[CrossRef].[PubMed]
28. Meeths M, Chiang SC, Wood SM, Entesarian M, Schlums H, Bang B, Nordenskjöld E, Björklund C, Jakovljevic G, Jazbec J, Hasle H, Holmqvist BM, Rajic L, Pfeifer S, Rosthøj S, Sabel M, Salmi TT, Stokland T, Winiarski J, Ljunggren HG, Fadeel B, Nordenskjöld M, Henter JI, Bryceson YT. 2011. Familial hemophagocytic lymphohistiocytosis type 3 (FHL3) caused by deep intronic mutation and inversion in UNC13D. Blood 118:57835793.
29. Whiteside TL,. 2006. Measurement of NK cell activity in humans, p 296300. In Detrick B, Hamilton RG, Folds JD (ed), Manual of Molecular and Clinical Laboratory Immunology, 7th ed. ASM Press, Washington DC.
30. Bryceson YT, March ME, Barber DF, Ljunggren HG, Long EO. 2005. Cytolytic granule polarization and degranulation controlled by different receptors in resting NK cells. J Exp Med 202:10011012.[CrossRef].[PubMed]
31. Alter G, Malenfant JM, Altfeld M. 2004. CD107a as a functional marker for the identification of natural killer cell activity. J Immunol Methods 294:1522.[CrossRef].[PubMed]
32. Entesarian M, Chiang SC, Schlums H, Meeths M, Chan MY, Mya SN, Soh SY, Nordenskjöld M, Henter JI, Bryceson YT. 2013. Novel deep intronic and missense UNC13D mutations in familial haemophagocytic lymphohistiocytosis type 3. Br J Haematol 162:415418.[CrossRef].[PubMed]
33. Chiang SC, Theorell J, Entesarian M, Meeths M, Mastafa M, Al-Herz W, Frisk P, Gilmour KC, Ifversen M, Langenskiöld C, Machaczka M, Naqvi A, Payne J, Perez-Martinez A, Sabel M, Unal E, Unal S, Winiarski J, Nordenskjöld M, Ljunggren HG, Henter JI, Bryceson YT. 2013. Comparison of primary human cytotoxic T-cell and natural killer cell responses reveal similar molecular requirements for lytic granule exocytosis but differences in cytokine production. Blood 121:13451356.[CrossRef].[PubMed]
34. Comans-Bitter WM, de Groot R, van den Beemd R, Neijens HJ, Hop WC, Groeneveld K, Hooijkaas H, van Dongen JJ. 1997. Immunophenotyping of blood lymphocytes in childhood. Reference values for lymphocyte subpopulations. J Pediatr 130:388393.[PubMed].[CrossRef]
35. Huenecke S, Behl M, Fadler C, Zimmermann SY, Bochennek K, Tramsen L, Esser R, Klarmann D, Kamper M, Sattler A, von Laer D, Klingebiel T, Lehrnbecher T, Koehl U. 2008. Age-matched lymphocyte subpopulation reference values in childhood and adolescence: application of exponential regression analysis. Eur J Haematol 80:532539.[CrossRef].[PubMed]
36. Bryceson YT, Rudd E, Zheng C, Edner J, Ma D, Wood SM, Bechensteen AG, Boelens JJ, Celkan T, Farah RA, Hultenby K, Winiarski J, Roche PA, Nordenskjöld M, Henter JI, Long EO, Ljunggren HG. 2007. Defective cytotoxic lymphocyte degranulation in syntaxin-11 deficient familial hemophagocytic lymphohistiocytosis 4 (FHL4) patients. Blood 110:19061915.[CrossRef].[PubMed]
37. Mellor-Heineke S, Villanueva J, Jordan MB, Marsh R, Zhang K, Bleesing JJ, Filipovich AH, Risma KA. 2013. Elevated granzyme B in cytotoxic lymphocytes is a signature of immune activation in hemophagocytic lymphohistiocytosis. Front Immunol 4:72. doi:10.3389/fimmu.2013.00072.[CrossRef].[PubMed] http://dx.doi.org/doi:10.3389/fimmu.2013.00072
38. Meeths M, Entesarian M, Al-Herz W, Chiang SC, Wood SM, Al-Ateeqi W, Almazan F, Boelens JJ, Hasle H, Ifversen M, Lund B, van den Berg JM, Gustafsson B, Hjelmqvist H, Nordenskjöld M, Bryceson YT, Henter JI. 2010. Spectrum of clinical presentations in familial hemophagocytic lymphohistiocytosis type 5 patients with mutations in STXBP2. Blood 116:26352643.[CrossRef].[PubMed]
39. Hackmann Y, Graham SC, Ehl S, Höning S, Lehmberg K, Aricò M, Owen DJ, Griffiths GM. 2013. Syntaxin binding mechanism and disease-causing mutations in Munc18-2. Proc Natl Acad Sci U S A 110:E44824491. doi:10.1073/pnas.1313474110.[CrossRef].[PubMed] http://dx.doi.org/doi:10.1073/pnas.1313474110
40. Lenart M, Trzyna E, Rutkowska M, Bukowska-Strakova K, Szaflarska A, Pituch-Noworolska A, Szczepanik A, Zembala M, Siedlar M. 2010. The loss of the CD16 B73.1/Leu11c epitope occurring in some primary immunodeficiency diseases is not associated with the FcγRIIIa-48L/R/H polymorphism. Int J Mol Med 26:435442.[PubMed]

Tables

Generic image for table
TABLE 1

Suggested antibody panels

Citation: Chiang S, Bryceson Y. 2016. Measurement of NK Cell Phenotype and Activity in Humans, p 300-309. In Detrick B, Schmitz J, Hamilton R (ed), Manual of Molecular and Clinical Laboratory Immunology, Eighth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818722.ch32
Generic image for table
TABLE 2

Genes associated with strong defects in NK cell development or function

Citation: Chiang S, Bryceson Y. 2016. Measurement of NK Cell Phenotype and Activity in Humans, p 300-309. In Detrick B, Schmitz J, Hamilton R (ed), Manual of Molecular and Clinical Laboratory Immunology, Eighth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818722.ch32

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error