1887

Chapter 36 : Cytokine Measurement by Flow Cytometry

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Cytokine Measurement by Flow Cytometry, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818722/9781555818715_CH36-1.gif /docserver/preview/fulltext/10.1128/9781555818722/9781555818715_CH36-2.gif

Abstract:

In the years since intracellular cytokine staining (ICS) was first developed (1), this method has become a standard way to analyze the functions of immune cells by flow cytometry. It has been used with specific antigen stimulation (2, 3) to read out T cell populations responsive to vaccines (4–6), pathogens (7, 8), cancer (9–11), or allergens (12), in both human and animal models. The technique has been combined with MHC-peptide multimer staining (11, 13), including combinatorial tetramer staining that allows the interrogation of many epitope specificities at once (14, 15). Combined assays with tetramers can be done by first staining with tetramer(s), then stimulating with a nonspecific agent such as PMA+ionomycin, which bypasses the tetramer-occupied T cell receptors. ICS has also increasingly been used with detection of CD154 (16, 17) or CD107a (18) induction, as markers of activation and degranulation, respectively. When used with cell surface and other intracellular phenotyping markers, such multiparameter ICS assays are a tool of choice for functional characterization of T cells and other cytokine-producing cell populations. ICS has also successfully been converted to the mass cytometry platform (19) allowing the use of many more simultaneous markers without significant spillover between readouts.

Citation: Maecker H. 2016. Cytokine Measurement by Flow Cytometry, p 338-342. In Detrick B, Schmitz J, Hamilton R (ed), Manual of Molecular and Clinical Laboratory Immunology, Eighth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818722.ch36
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Workflow of ICS assays. Steps in the ICS assay, with variations and optional stopping points as shown.

Citation: Maecker H. 2016. Cytokine Measurement by Flow Cytometry, p 338-342. In Detrick B, Schmitz J, Hamilton R (ed), Manual of Molecular and Clinical Laboratory Immunology, Eighth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818722.ch36
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818722.ch36
1. Prussin C, Metcalfe DD. 1995. Detection of intracytoplasmic cytokine using flow cytometry and directly conjugated anti-cytokine antibodies. J Immunol Methods 188:117128.[PubMed].[CrossRef]
2. Picker LJ, Singh MK, Zdraveski Z, Treer JR, Waldrop SL, Bergstresser PR, Maino VC. 1995. Direct demonstration of cytokine synthesis heterogeneity among human memory/effector T cells by flow cytometry. Blood 86:14081419.[PubMed]
3. Suni MA, Picker LJ, Maino VC. 1998. Detection of antigen-specific T cell cytokine expression in whole blood by flow cytometry. J Immunol Methods 212:8998.[PubMed].[CrossRef]
4. Horton H, Havenar-Daughton C, Lee D, Moore E, Cao J, McNevin J, Andrus T, Zhu H, Rubin A, Zhu T, Celum C, McElrath MJ. 2006. Induction of human immunodeficiency virus type 1 (HIV-1)-specific T-cell responses in HIV vaccine trial participants who subsequently acquire HIV-1 infection. J Virol 80:97799788.[CrossRef].[PubMed]
5. De Rosa SC, Lu FX, Yu J, Perfetto SP, Falloon J, Moser S, Evans TG, Koup R, Miller CJ, Roederer M. 2004. Vaccination in humans generates broad T cell cytokine responses. J Immunol 173:53725380.[PubMed].[CrossRef]
6. Bos R, van Duikeren S, van Hall T, Lauwen MM, Parrington M, Berinstein NL, McNeil B, Melief CJ, Verbeek JS, van der Burg SH, Offringa R. 2007. Characterization of antigen-specific immune responses induced by canarypox virus vaccines. J Immunol 179:61156122.[PubMed].[CrossRef]
7. Streitz M, Fuhrmann S, Thomas D, Cheek E, Nomura L, Maecker H, Martus P, Aghaeepour N, Brinkman RR, Volk HD, Kern F. 2012. The phenotypic distribution and functional profile of tuberculin-specific CD4 T-cells characterizes different stages of TB infection. Cytometry B Clin Cytom 82B:360368.[CrossRef]
8. Betts MR, Price DA, Brenchley JM, Loré K, Guenaga FJ, Smed-Sorensen A, Ambrozak DR, Migueles SA, Connors M, Roederer M, Douek DC, Koup RA. 2004. The functional profile of primary human antiviral CD8+ T cell effector activity is dictated by cognate peptide concentration. J Immunol 172:64076417.[PubMed].[CrossRef]
9. Inokuma M, dela Rosa C, Schmitt C, Haaland P, Siebert J, Petry D, Tang M, Suni MA, Ghanekar SA, Gladding D, Dunne JF, Maino VC, Disis ML, Maecker HT. 2007. Functional T cell responses to tumor antigens in breast cancer patients have a distinct phenotype and cytokine signature. J Immunol 179:26272633.[PubMed].[CrossRef]
10. Maecker HT, Auffermann-Gretzinger S, Nomura LE, Liso A, Czerwinski DK, Levy R. 2001. Detection of CD4 T-cell responses to a tumor vaccine by cytokine flow cytometry. Clin Cancer Res 7(3 Suppl):902s908s.[PubMed]
11. Lee PP, Yee C, Savage PA, Fong L, Brockstedt D, Weber JS, Johnson D, Swetter S, Thompson J, Greenberg PD, Roederer M, Davis MM. 1999. Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med 5:677685.[CrossRef].[PubMed]
12. DeLong JH, Simpson KH, Wambre E, James EA, Robinson D, Kwok WW. 2011. Ara h 1-reactive T cells in individuals with peanut allergy. J Allergy Clin Immunol 127:12111213.[CrossRef].[PubMed]
13. He XS, Rehermann B, Boisvert J, Mumm J, Maecker HT, Roederer M, Wright TL, Maino VC, Davis MM, Greenberg HB. 2001. Direct functional analysis of epitope-specific CD8+ T cells in peripheral blood. Viral Immunol 14:5969.[CrossRef].[PubMed]
14. Newell EW, Klein LO, Yu W, Davis MM. 2009. Simultaneous detection of many T-cell specificities using combinatorial tetramer staining. Nature Methods 6:497499.[CrossRef].[PubMed]
15. Newell EW, Sigal N, Nair N, Kidd BA, Greenberg HB, Davis MM. 2013. Combinatorial tetramer staining and mass cytometry analysis facilitate T-cell epitope mapping and characterization. Nature Biotechnol 31:623629.[CrossRef]
16. Frentsch M, Arbach O, Kirchhoff D, Moewes B, Worm M, Rothe M, Scheffold A, Thiel A. 2005. Direct access to CD4+ T cells specific for defined antigens according to CD154 expression. Nat Med 11:11181124.[CrossRef].[PubMed]
17. Chattopadhyay PK, Yu J, Roederer M. 2005. A live-cell assay to detect antigen-specific CD4+ T cells with diverse cytokine profiles. Nat Med 11:11131117.[CrossRef].[PubMed]
18. Betts MR, Brenchley JM, Price DA, De Rosa SC, Douek DC, Roederer M, Koup RA. 2003. Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J Immunol Methods 281:6578.[PubMed].[CrossRef]
19. Newell EW, Sigal N, Bendall SC, Nolan GP, Davis MM. 2012. Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes. Immunity 36:142152.[CrossRef].[PubMed]
20. Czerkinsky C, Andersson G, Ekre HP, Nilsson LA, Klareskog L, Ouchterlony O. 1988. Reverse ELISPOT assay for clonal analysis of cytokine production. I. Enumeration of gamma-interferon-secreting cells. J Immunol Methods 110:2936.[PubMed].[CrossRef]
21. Brosterhus H, Brings S, Leyendeckers H, Manz RA, Miltenyi S, Radbruch A, Assenmacher M, Schmitz J. 1999. Enrichment and detection of live antigen-specific CD4(+) and CD8(+) T cells based on cytokine secretion. Eur J Immunol 29:40534059.[CrossRef].[PubMed]
22. Gazagne A, Claret E, Wijdenes J, Yssel H, Bousquet F, Levy E, Vielh P, Scotte F, Goupil TL, Fridman WH, Tartour E. 2003. A Fluorospot assay to detect single T lymphocytes simultaneously producing multiple cytokines. J Immunol Methods 283:9198.[PubMed].[CrossRef]
23. Ahlborg N, Axelsson B. 2012. Dual- and triple-color fluorospot. Methods Mol Biol 792:7785.[CrossRef].[PubMed]
24. Suni MA, Dunn HS, Orr PL, Laat R de, Sinclair E, Ghanekar SA, Bredt BM, Dunne JF, Maino VC, Maecker HT. 2003. Performance of plate-based cytokine flow cytometry with automated data analysis. BMC Immunol 4:9.[CrossRef].[PubMed]
25. Waldrop SL, Davis KA, Maino VC, Picker LJ. 1998. Normal human CD4+ memory T cells display broad heterogeneity in their activation threshold for cytokine synthesis. J Immunol 161:52845295.[PubMed]
26. Maecker HT, Ghanekar SA, Suni MA, He XS, Picker LJ, Maino VC. 2001. Factors affecting the efficiency of CD8+ T cell cross-priming with exogenous antigens. J Immunol 166:72687275.[PubMed].[CrossRef]
27. Maecker HT, Dunn HS, Suni MA, Khatamzas E, Pitcher CJ, Bunde T, Persaud N, Trigona W, Fu TM, Sinclair E, Bredt BM, McCune JM, Maino VC, Kern F, Picker LJ. 2001. Use of overlapping peptide mixtures as antigens for cytokine flow cytometry. J Immunol Methods 255:2740.[PubMed].[CrossRef]
28. Draenert R, Altfeld M, Brander C, Basgoz N, Corcoran C, Wurcel AG, Stone DR, Kalams SA, Trocha A, Addo MM, Goulder PJ, Walker BD. 2003. Comparison of overlapping peptide sets for detection of antiviral CD8 and CD4 T cell responses. J Immunol Methods 275:1929.[PubMed].[CrossRef]
29. Horton H, Thomas EP, Stucky JA, Frank I, Moodie Z, Huang Y, Chiu YL, McElrath MJ, De Rosa SC. 2007. Optimization and validation of an 8-color intracellular cytokine staining (ICS) assay to quantify antigen-specific T cells induced by vaccination. J Immunol Methods 323:3954.[CrossRef].[PubMed]
30. Nylander S, Kalies I. 1999. Brefeldin A, but not monensin, completely blocks CD69 expression on mouse lymphocytes: efficacy of inhibitors of protein secretion in protocols for intracellular cytokine staining by flow cytometry. J Immunol Methods 224:6976.[PubMed].[CrossRef]
31. Bueno C, Almeida J, Alguero MC, Sánchez ML, Vaquero JM, Laso FJ, San Miguel JF, Escribano L, Orfao A. 2001. Flow cytometric analysis of cytokine production by normal human peripheral blood dendritic cells and monocytes: comparative analysis of different stimuli, secretion-blocking agents and incubation periods. Cytometry 46:3340.[PubMed].[CrossRef]
32. Nomura LE, Walker JM, Maecker HT. 2000. Optimization of whole blood antigen-specific cytokine assays for CD4(+) T cells. Cytometry 40:6068.[PubMed].[CrossRef]
33. Betts MR, Koup RA. 2004. Detection of T-cell degranulation: CD107a and b. Methods Cell Biol 75:497512.[PubMed].[CrossRef]
34. Lovelace P, Maecker HT,. 2010. Multiparameter intracellular cytokine staining, p 165178. In Hawley TS, Hawley RG (ed), Flow Cytometry Protocols. Humana Press, Totowa, NJ.
35. Maecker HT. 2009. Multiparameter flow cytometry monitoring of T cell responses. Methods Mol Biol 485:375391.[CrossRef].[PubMed]
36. Maecker HT, Frey T, Nomura LE, Trotter J. 2004. Selecting fluorochrome conjugates for maximum sensitivity. Cytometry 62A:169173.[CrossRef]
37. McNeil LK, Price L, Britten CM, Jaimes M, Maecker H, Odunsi K, Matsuzaki J, Staats JS, Thorpe J, Yuan J, Janetzki S. 2013. A harmonized approach to intracellular cytokine staining gating: results from an international multiconsortia proficiency panel conducted by the Cancer Immunotherapy Consortium (CIC/CRI). Cytometry A 83:728738.[CrossRef].[PubMed]
38. Maecker HT, Rinfret A, D'Souza P, Darden J, Roig E, Landry C, Hayes P, Birungi J, Anzala O, Garcia M, Harari A, Frank I, Baydo R, Baker M, Holbrook J, Ottinger J, Lamoreaux L, Epling CL, Sinclair E, Suni MA, Punt K, Calarota S, El-Bahi S, Alter G, Maila H, Kuta E, Cox J, Gray C, Altfeld M, Nougarede N, Boyer J, Tussey L, Tobery T, Bredt B, Roederer M, Koup R, Maino VC, Weinhold K, Pantaleo G, Gilmour J, Horton H, Sekaly RP. 2005. Standardization of cytokine flow cytometry assays. BMC Immunol 6:13.[CrossRef].[PubMed]
39. Jaimes MC, Maecker HT, Yan M, Maino VC, Hanley MB, Greer A, Darden JM, D'Souza MP. 2010. Quality assurance of intracellular cytokine staining assays: analysis of multiple rounds of proficiency testing. J Immunol Methods 363:143157.[CrossRef].[PubMed]
40. Maecker HT,. 2005. The role of immune monitoring in evaluating cancer immunotherapy, p 5972. In Disis ML (ed), Cancer Drug Discovery and Development: Immunotherapy of Cancer. Humana Press, Totowa, NJ.
41. Aghaeepour N, Finak G, FlowCAP Consortium, DREAM Consortium Hoos H, Mosmann TR, Brinkman R, Gottardo R, Scheuermann RH. 2013. Critical assessment of automated flow cytometry data analysis techniques. Nat Methods 10:228238.[CrossRef].[PubMed]
42. Maecker HT, Hassler J, Payne JK, Summers A, Comatas K, Ghanayem M, Morse MA, Clay TM, Lyerly HK, Bhatia S, Ghanekar SA, Maino VC, Delarosa C, Disis ML. 2008. Precision and linearity targets for validation of an IFNgamma ELISPOT, cytokine flow cytometry, and tetramer assay using CMV peptides. BMC Immunol 9:9. doi:10.1186/1471-2172-9-9[CrossRef].[PubMed] http://dx.doi.org/doi:10.1186/1471-2172-9-9

Tables

Generic image for table
TABLE 1

Comparison of antigen-specific T cell assay features

Citation: Maecker H. 2016. Cytokine Measurement by Flow Cytometry, p 338-342. In Detrick B, Schmitz J, Hamilton R (ed), Manual of Molecular and Clinical Laboratory Immunology, Eighth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818722.ch36

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error