1887

Chapter 37 : Chemokine and Chemokine Receptor Analysis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Chemokine and Chemokine Receptor Analysis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818722/9781555818715_CH37-1.gif /docserver/preview/fulltext/10.1128/9781555818722/9781555818715_CH37-2.gif

Abstract:

The active movement of leukocytes towards a site of antigen challenge, infection, or tissue damage represents a central aspect of the establishment of both inflammatory and immune responses (1–4). The movement of cells towards a chemical gradient of a particular stimulus or chemotactic factor is called chemotaxis. Chemotactic factors that induce the directional movement of leukocytes include the chemokines, a super family of proteins 8 to 10 kDa in size that signal chemotaxis through seven transmembrane G protein-coupled cell surface receptors (GPCRs) (1, 2). In this chapter, the methodological approaches to studying the role of chemokines and chemokine receptors in the physiology of immune and inflammatory responses are described. Although assays of chemokines or chemokine receptors have yet to be used for widespread clinical applications, this chapter briefly reviews the role of these proteins in the pathophysiology of several inflammatory diseases and illustrates potential clinical settings in which measuring these proteins or studying their functional activity may be of useful.

Citation: Islam S, Medoff B, Luster A. 2016. Chemokine and Chemokine Receptor Analysis, p 343-356. In Detrick B, Schmitz J, Hamilton R (ed), Manual of Molecular and Clinical Laboratory Immunology, Eighth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818722.ch37
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Chemokine receptor signal transduction. Chemokine receptors are a subfamily of G protein-coupled seven transmembrane-spanning cell surface receptors. They are coupled to heterotrimeric G proteins of the Gi subclass, which are distinguished by their pertussis toxin sensitivity. Chemokine receptor activation leads to the stimulation of multiple signal transduction pathways, including the activation of phosphatidylinositol 3-kinase (PI3K) and phospholipase C (PLC), leading to generation of inositol triphosphates, intracellular calcium release, and protein kinase C (PKC) activation. Chemokine signaling also induces the upregulation of integrin affinity and the activation of Rho, leading to cytoskeletal reorganization. Agonist-stimulated receptors also activate G protein receptor kinases, which leads to receptor phosphorylation, arrestin binding, G protein uncoupling (desensitization), and clathrin-mediated receptor endocytosis (internalization).

Citation: Islam S, Medoff B, Luster A. 2016. Chemokine and Chemokine Receptor Analysis, p 343-356. In Detrick B, Schmitz J, Hamilton R (ed), Manual of Molecular and Clinical Laboratory Immunology, Eighth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818722.ch37
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Transmigration assay system. Positive, negative, and absent gradients of a chemokine are established in order to assess chemotaxis (movement towards a chemokine) and chemokinesis (random movement of cells in response to a chemokine in the absence of a gradient). Cells are plated into the upper chamber of the transwell system or Boyden chamber and the proportion of migrating cells determined by accurate counting of cells that migrate to the lower chamber. The upper and lower chambers are separated by a polycarbonate membrane of standard pore size (3 μm to 8 μm), depending on the migrating cell type.

Citation: Islam S, Medoff B, Luster A. 2016. Chemokine and Chemokine Receptor Analysis, p 343-356. In Detrick B, Schmitz J, Hamilton R (ed), Manual of Molecular and Clinical Laboratory Immunology, Eighth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818722.ch37
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Digitized time-lapse photography of cells moving in the presence of a gradient of chemokine. Positive and negative gradients of a chemokine can be established in methylcellulose, as previously described ( ). Cells are plated into methylcellulose and a gradient is established by inoculating the methylcellulose at a fixed point with the chemokine. Cells are then visualized migrating in response to the gradient using time-lapse video microscopy.

Citation: Islam S, Medoff B, Luster A. 2016. Chemokine and Chemokine Receptor Analysis, p 343-356. In Detrick B, Schmitz J, Hamilton R (ed), Manual of Molecular and Clinical Laboratory Immunology, Eighth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818722.ch37
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

analysis of cell motility by multiphoton IVM in popliteal lymph node. The basic multiphoton microscope system consists of an infrared laser to deliver two-photon excitation; a laser intensity adjuster to decrease the laser power; a beam translation optical system to convey the laser beam to the back aperture of the objective; a laser scan head to raster scan the field of view with the microscope objective by rapid synchronized movement of dichroic steering mirrors; a low-magnification high-numerical-aperture water immersion objective; and external nondescanned detectors to concurrently acquire multiple fluorescent channels. The popliteal lymph node is visualized by making a skin incision in the knee, which is immersed in saline and sealed with a cover slip and vacuum grease after percutaneous clamps are used to prevent tissue movement. A thermistor is used to monitor temperature close to the lymph nodes, and the temperature is adjusted with a heating coil. Fluorescence is induced only in the focal plane; vertical image stacks are repetitively acquired that are then transformed into 3D images. Figure adapted from Mempel et al. ( ).

Citation: Islam S, Medoff B, Luster A. 2016. Chemokine and Chemokine Receptor Analysis, p 343-356. In Detrick B, Schmitz J, Hamilton R (ed), Manual of Molecular and Clinical Laboratory Immunology, Eighth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818722.ch37
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818722.ch37
1. Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ, Horuk R, Sparre-Ulrich AH, Locati M, Luster AD, Mantovani A, Matsushima K, Murphy PM, Nibbs R, Nomiyama H, Power CA, Proudfoot AE, Rosenkilde MM, Rot A, Sozzani S, Thelen M, Yoshie O, Zlotnik A. 2014. International Union of Pharmacology. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 66:179.[CrossRef].[PubMed]
2. Zlotnik A, Yoshie O. 2012. The chemokine superfamily revisited. Immunity 36:705716.[CrossRef].[PubMed]
3. Sadik CD, Luster AD. 2012. Lipid-cytokine-chemokine cascades orchestrate leukocyte recruitment in inflammation. J Leukoc Biol 91:207215.[CrossRef].[PubMed]
4. Förster R, Sozzani S. 2013. Emerging aspects of leukocyte migration. Eur J Immunol 43:14041406.[CrossRef]
5. Rot A. 1993. Neutrophil attractant/activation protein-1 (interleukin-8) induces in vitro neutrophil migration by haptotactic mechanism. Eur J Immunol 23:303306.[CrossRef].[PubMed]
6. del Pozo MA, Vicente-Manzanares M, Tejedor R, Serrador JM, Sánchez-Madrid F. 1999. Rho GTPases control migration and polarization of adhesion molecules and cytoskeletal ERM components in T lymphocytes. Eur J Immunol 29:36093620.[CrossRef].[PubMed]
7. Laudanna C, Campbell JJ, Butcher EC. 1996. Role of Rho in chemoattractant-activated leukocyte adhesion through integrins. Science 271:981983.[PubMed].[CrossRef]
8. Colvin RA, Means TK, Diefenbach TJ, Moita LF, Friday RP, Sever S, Campanella GS, Abrazinski T, Manice LA, Moita C, Andrews NW, Wu D, Hacohen N, Luster AD. 2010. Synaptotagmin-mediated vesicle fusion regulates cell migration. Nat Immunol 11:495502.[CrossRef].[PubMed]
9. Cravedi P, Heeger PS. 2012. Immunologic monitoring in transplantation revisited. Curr Opin Organ Transplant 17:2632.[CrossRef].[PubMed]
10. Koenen RR, Weber C. 2011. Chemokines: established and novel targets in atherosclerosis. EMBO Mol Med 3:713725.[CrossRef].[PubMed]
11. Sadik CD, Kim ND, Luster AD. 2011. Neutrophils cascading their way to inflammation. Trends Immunol 32:452460.[CrossRef].[PubMed]
12. Kokkonen H, Söderström I, Rocklöv J, Hallmans G, Lejon K, Rantapää Dahlqvist S. 2010. Up-regulation of cytokines and chemokines predates the onset of rheumatoid arthritis. Arthritis Rheum 62:383391.[CrossRef].[PubMed]
13. Libby P, Ridker PM. 2004. Inflammation and atherosclerosis: role of C-reactive protein in risk assessment. Am J Med 116(Suppl 6A):9S16S.[CrossRef].[PubMed]
14. Gerszten RE, Mach F, Sauty A, Rosenzweig A, Luster AD. 2000. Chemokines, leukocytes, and atherosclerosis. J Lab Clin Med 136:8792.[CrossRef].[PubMed]
15. Mach F, Sauty A, Iarossi AS, Sukhova GK, Neote K, Libby P, Luster AD. 1999. Differential expression of three T lymphocyte-activating CXC chemokines by human atheroma-associated cells. J Clin Invest 104:10411050.[CrossRef].[PubMed]
16. Swirski FK, Libby P, Aikawa E, Alcaide P, Luscinskas FW, Weissleder R, Pittet MJ. 2007. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J Clin Invest 117:195205.[CrossRef].[PubMed]
17. Quinones MP, Martinez HG, Jimenez F, Estrada CA, Dudley M, Willmon O, Kulkarni H, Reddick RL, Fernandes G, Kuziel WA, Ahuja SK, Ahuja SS. 2007. CC chemokine receptor 5 influences late-stage atherosclerosis. Atherosclerosis 195:e92e103.[CrossRef].[PubMed]
18. Combadière C, Potteaux S, Rodero M, Simon T, Pezard A, Esposito B, Merval R, Proudfoot A, Tedgui A, Mallat Z. 2008. Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation 117:16491657.[CrossRef]
19. Hampel U, Sesselmann S, Iserovich P, Sel S, Paulsen F, Sack R. 2013. Chemokine and cytokine levels in osteoarthritis and rheumatoid arthritis synovial fluid. J Immunol Methods 396:134139.[CrossRef].[PubMed]
20. Loetscher M, Loetscher P, Brass N, Meese E, Moser B. 1998. Lymphocyte-specific chemokine receptor CXCR3: regulation, chemokine binding and gene localization. Eur J Immunol 28:36963705.[CrossRef].[PubMed]
21. Chou RC, Kim ND, Sadik CD, Seung E, Lan Y, Byrne MH, Haribabu B, Iwakura Y, Luster AD. 2010. Lipid-cytokine-chemokine cascade drives neutrophil recruitment in a murine model of inflammatory arthritis. Immunity 33:266278.[CrossRef].[PubMed]
22. Busse WW, Lemanske RF Jr. 2001. Asthma. N Engl J Med 344:350362.[CrossRef].[PubMed]
23. Islam SA, Luster AD. 2012. T cell homing to epithelial barriers in allergic disease. Nat Med 18:705715.[CrossRef].[PubMed]
24. Medoff BD, Thomas SY, Luster AD. 2008. T cell trafficking in allergic asthma: the ins and outs. Annu Rev Immunol 26:205232.[CrossRef].[PubMed]
25. Thomas SY, Banerji A, Medoff BD, Lilly CM, Luster AD. 2007. Multiple chemokine receptors, including CCR6 and CXCR3, regulate antigen-induced T cell homing to the human asthmatic airway. J Immunol 179:19011912.[PubMed].[CrossRef]
26. DeVries ME, Hosiawa KA, Cameron CM, Bosinger SE, Persad D, Kelvin AA, Coombs JC, Wang H, Zhong R, Cameron MJ, Kelvin DJ. 2003. The role of chemokines and chemokine receptors in alloantigen-independent and alloantigen-dependent transplantation injury. Semin Immunol 15:3348.[PubMed].[CrossRef]
27. Abdi R, Means TK, Ito T, Smith RN, Najafian N, Jurewicz M, Tchipachvili V, Charo I, Auchincloss H Jr, Sayegh MH, Luster AD. 2004. Differential role of CCR2 in islet and heart allograft rejection: tissue specificity of chemokine/chemokine receptor function in vivo. J Immunol 172:767775.[CrossRef]
28. De Perrot M, Sekine Y, Fischer S, Waddell TK, McRae K, Liu M, Wigle DA, Keshavjee S. 2002. Interleukin-8 release during early reperfusion predicts graft function in human lung transplantation. Am J Respir Crit Care Med 165:211215.[CrossRef].[PubMed]
29. Belperio JA, Keane MP, Burdick MD, Lynch JP III, Xue YY, Li K, Ross DJ, Strieter RM. 2002. Critical role for CXCR3 chemokine biology in the pathogenesis of bronchiolitis obliterans syndrome. J Immunol 169:10371049.[PubMed].[CrossRef]
30. de Perrot M, Young K, Imai Y, Liu M, Waddell TK, Fischer S, Zhang L, Keshavjee S. 2003. Recipient T cells mediate reperfusion injury after lung transplantation in the rat. J Immunol 171:49955002.[PubMed].[CrossRef]
31. Zhao DX, Hu Y, Miller GG, Luster AD, Mitchell RN, Libby P. 2002. Differential expression of the IFN-gamma-inducible CXCR3-binding chemokines, IFN-inducible protein 10, monokine induced by IFN, and IFN-inducible T cell alpha chemoattractant in human cardiac allografts: association with cardiac allograft vasculopathy and acute rejection. J Immunol 169:15561560.[PubMed].[CrossRef]
32. Jackson JA, Kim EJ, Begley B, Cheeseman J, Harden T, Perez SD, Thomas S, Warshaw B, Kirk AD. 2011. Urinary chemokines CXCL9 and CXCL10 are noninvasive markers of renal allograft rejection and BK viral infection. Am J Transplant 11:22282234.[CrossRef].[PubMed]
33. Reynaud-Gaubert M, Marin V, Thirion X, Farnarier C, Thomas P, Badier M, Bongrand P, Giudicelli R, Fuentes P. 2002. Upregulation of chemokines in bronchoalveolar lavage fluid as a predictive marker of post-transplant airway obliteration. J Heart Lung Transplant 21:721730.[PubMed].[CrossRef]
34. Bromley SK, Mempel TR, Luster AD. 2008. Orchestrating the orchestrators: chemokines in control of T cell traffic. Nat Immunol 9:970980.[CrossRef].[PubMed]
35. Griffith JW, Luster AD. 2013. Targeting cells in motion: migrating toward improved therapies. Eur J Immunol 43:14301435.[CrossRef].[PubMed]
36. Corren J, Lemanske RF, Hanania NA, Korenblat PE, Parsey MV, Arron JR, Harris JM, Scheerens H, Wu LC, Su Z, Mosesova S, Eisner MD, Bohen SP, Matthews JG. 2011. Lebrikizumab treatment in adults with asthma. N Engl J Med 365:10881098.[CrossRef].[PubMed]
37. Kraft M. 2011. Asthma phenotypes and interleukin-13—moving closer to personalized medicine. N Engl J Med 365:11411144.[CrossRef].[PubMed]
38. Leung TF, Wong GW, Ko FW, Lam CW, Fok TF. 2004. Increased macrophage-derived chemokine in exhaled breath condensate and plasma from children with asthma. Clin Exp Allergy 34:786791.[CrossRef].[PubMed]
39. Kurashima K, Mukaida N, Fujimura M, Schröder JM, Matsuda T, Matsushima K. 1996. Increase of chemokine levels in sputum precedes exacerbation of acute asthma attacks. J Leukoc Biol 59:313316.[PubMed]
40. Schnickel GT, Bastani S, Hsieh GR, Shefizadeh A, Bhatia R, Fishbein MC, Belperio J, Ardehali A. 2008. Combined CXCR3/CCR5 blockade attenuates acute and chronic rejection. J Immunol 180:47144721.[PubMed].[CrossRef]
41. Fischereder M, Schroppel B. 2009. The role of chemokines in acute renal allograft rejection and chronic allograft injury. Front Biosci (Landmark Ed) 14:18071814.[PubMed].[CrossRef]
42. Ho J, Rush DN, Gibson IW, Karpinski M, Storsley L, Bestland J, Stefura W, HayGlass KT, Nickerson PW. 2010. Early urinary CCL2 is associated with the later development of interstitial fibrosis and tubular atrophy in renal allografts. Transplantation 90:394400.[CrossRef].[PubMed]
43. Ponath P, Kassam N, Qin S,. 2000. Monoclonal antibodies to chemokine receptors, p 231242. In Proudfoot AE, Wells TN, Power CA (ed), Methods in Molecular Biology: Chemokine Protocols. Humana Press Inc, Totowa, NJ.
44. Waldmann TA. 1991. Monoclonal antibodies in diagnosis and therapy. Science 252:16571662.[PubMed].[CrossRef]
45. Boyden S. 1962. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med 115:453466.[PubMed].[CrossRef]
46. Moshfegh A, Halldén G, Lundahl J. 1999. Methods for simultaneous quantitative analysis of eosinophil and neutrophil adhesion and transmigration. Scand J Immunol 50:262269.[PubMed].[CrossRef]
47. Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA. 1996. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med 184:11011109.[PubMed].[CrossRef]
48. Richards KL, McCullough J. 1984. A modified microchamber method for chemotaxis and chemokinesis. Immunol Commun 13:4962.[PubMed].[CrossRef]
49. Poznansky MC, Olszak IT, Foxall R, Evans RH, Luster AD, Scadden DT. 2000. Active movement of T cells away from a chemokine. Nat Med 6:543548.[CrossRef].[PubMed]
50. Parent CA, Blacklock BJ, Froehlich WM, Murphy DB, Devreotes PN. 1998. G protein signaling events are activated at the leading edge of chemotactic cells. Cell 95:8191.[PubMed].[CrossRef]
51. van Es S, Wessels D, Soll DR, Borleis J, Devreotes PN. 2001. Tortoise, a novel mitochondrial protein, is required for directional responses of Dictyostelium in chemotactic gradients. J Cell Biol 152:621632.[PubMed].[CrossRef]
52. Meyvantsson I, Vu E, Lamers C, Echeverria D, Worzella T, Echeverria V, Skoien A, Hayes S. 2011. Image-based analysis of primary human neutrophil chemotaxis in an automated direct-viewing assay. J Immunol Methods 374:7077.[CrossRef].[PubMed]
53. Ishii M, Kikuta J, Shimazu Y, Meier-Schellersheim M, Germain RN. 2010. Chemorepulsion by blood S1P regulates osteoclast precursor mobilization and bone remodeling in vivo. J Exp Med 207:27932798.[CrossRef].[PubMed]
54. Nitta N, Tsuchiya T, Yamauchi A, Tamatani T, Kanegasaki S. 2007. Quantitative analysis of eosinophil chemotaxis tracked using a novel optical device—TAXIScan. J Immunol Methods 320:155163.[CrossRef].[PubMed]
55. Sumen C, Mempel TR, Mazo IB, von Andrian UH. 2004. Intravital microscopy: visualizing immunity in context. Immunity 21:315329.[CrossRef].[PubMed]
56. Schürpf T, Springer TA. 2011. Regulation of integrin affinity on cell surfaces. EMBO J 30:47124727.[CrossRef]
57. Dransfield I, Cabañas C, Craig A, Hogg N. 1992. Divalent cation regulation of the function of the leukocyte integrin LFA-1. J Cell Biol 116:219226.[PubMed].[CrossRef]
58. Weber KS, Klickstein LB, Weber C. 1999. Specific activation of leukocyte beta2 integrins lymphocyte function-associated antigen-1 and Mac-1 by chemokines mediated by distinct pathways via the alpha subunit cytoplasmic domains. Mol Biol Cell 10:861873.[PubMed].[CrossRef]
59. Chan JR, Hyduk SJ, Cybulsky MI. 2001. Chemoattractants induce a rapid and transient upregulation of monocyte alpha4 integrin affinity for vascular cell adhesion molecule 1 which mediates arrest: an early step in the process of emigration. J Exp Med 193:11491158.[PubMed].[CrossRef]
60. Hirsch E, Katanaev VL, Garlanda C, Azzolino O, Pirola L, Silengo L, Sozzani S, Mantovani A, Altruda F, Wymann MP. 2000. Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation. Science 287:10491053.[PubMed].[CrossRef]
61. Buser R, Proudfoot AE,. 2000. Calcium mobilization, p 143148. In Proudfoot AE, Wells TN, Power CA (ed), Methods in Molecular Biology: Chemokine Protocols. Humana Press Inc, Totowa, NJ.
62. Gonsiorek W, Zavodny P, Hipkin RW. 2003. The study of CXCR3 and CCR7 pharmacology using [35S]GTPgammaS exchange assays in cell membranes and permeabilized peripheral blood lymphocytes. J Immunol Methods 273:1527.[PubMed].[CrossRef]
63. Rivière C, Subra F, Cohen-Solal K, Cordette-Lagarde V, Letestu R, Auclair C, Vainchenker W, Louache F. 1999. Phenotypic and functional evidence for the expression of CXCR4 receptor during megakaryocytopoiesis. Blood 93:15111523.
64. Weiner OD, Servant G, Welch MD, Mitchison TJ, Sedat JW, Bourne HR. 1999. Spatial control of actin polymerization during neutrophil chemotaxis. Nat Cell Biol 1:7581.[CrossRef].[PubMed]
65. Campanella GS, Medoff BD, Manice LA, Colvin RA, Luster AD. 2008. Development of a novel chemokine-mediated in vivo T cell recruitment assay. J Immunol Methods 331:127139.[CrossRef].[PubMed]
66. Carbone FR, Sterry SJ, Butler J, Rodda S, Moore MW. 1992. T cell receptor alpha-chain pairing determines the specificity of residue 262 within the Kb-restricted, ovalbumin257-264 determinant. Int Immunol 4:861867.[PubMed].[CrossRef]
67. Weissleder R, Mahmood U. 2001. Molecular imaging. Radiology 219:316333.[CrossRef].[PubMed]
68. Germain RN, Robey EA, Cahalan MD. 2012. A decade of imaging cellular motility and interaction dynamics in the immune system. Science 336:16761681.[CrossRef].[PubMed]
69. Niesner RA, Hauser AE. 2011. Recent advances in dynamic intravital multi-photon microscopy. Cytometry A 79:789798.[CrossRef].[PubMed]
70. Phan TG, Bullen A. 2010. Practical intravital two-photon microscopy for immunological research: faster, brighter, deeper. Immunol Cell Biol 88:438444.[CrossRef].[PubMed]
71. Pittet MJ, Weissleder R. 2011. Intravital imaging. Cell 147:983991.[CrossRef].[PubMed]
72. Phan TG, Grigorova I, Okada T, Cyster JG. 2007. Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nat Immunol 8:9921000.[CrossRef].[PubMed]
73. Mempel TR, Scimone ML, Mora JR, von Andrian UH. 2004. In vivo imaging of leukocyte trafficking in blood vessels and tissues. Curr Opin Immunol 16:406417.[CrossRef].[PubMed]

Tables

Generic image for table
TABLE 1

Chemokines

Citation: Islam S, Medoff B, Luster A. 2016. Chemokine and Chemokine Receptor Analysis, p 343-356. In Detrick B, Schmitz J, Hamilton R (ed), Manual of Molecular and Clinical Laboratory Immunology, Eighth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818722.ch37
Generic image for table
TABLE 2

Chemokine receptors

Citation: Islam S, Medoff B, Luster A. 2016. Chemokine and Chemokine Receptor Analysis, p 343-356. In Detrick B, Schmitz J, Hamilton R (ed), Manual of Molecular and Clinical Laboratory Immunology, Eighth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818722.ch37

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error