1887

Chapter 6 : Immunoglobulin Genes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Immunoglobulin Genes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818722/9781555818715_CH06-1.gif /docserver/preview/fulltext/10.1128/9781555818722/9781555818715_CH06-2.gif

Abstract:

Immunoglobulins are a heterogeneous group of glycoproteins produced by B lymphocytes and plasma cells. A single person can synthesize 10 million to 100 million different immunoglobulin molecules, each having distinct antigen-binding specificities. This great diversity in the so-called humoral immune system allows us to generate antibodies specific for a variety of substances, including synthetic molecules not naturally present in our environment. Despite the diversity in the specificities of antibody molecules, the binding of an antibody to an antigen initiates a limited series of biologically important effector functions, such as complement activation and/or adherence of the immune complex to receptors on leukocytes (1). Resolution of the immunoglobulin structure has revealed how these molecules can have such great diversity in antigen-binding activities while maintaining conserved effector functions, such as complement activation.

Citation: Kipps T, Ghia E, Rassenti L. 2016. Immunoglobulin Genes, p 51-64. In Detrick B, Schmitz J, Hamilton R (ed), Manual of Molecular and Clinical Laboratory Immunology, Eighth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818722.ch6
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Immunoglobulin heavy-chain gene complex. The heavy-chain genes encoding the constant regions are represented by blue boxes. Switch regions are represented by a filled circle upstream of the IGHC genes. Enhancers are represented by light blue circles. Each IGHV, IGHD, and IGHJ gene is labeled on the right of each symbol. Functional IGHV, IGHD, and IGHJ genes are represented by green boxes, blue lines, and yellow lines, respectively. IGHV, IGJH, and IGHC pseudogenes are represented by red boxes, orange boxes, and blue open boxes, respectively. IGHV and IGHC open reading frames are represented by yellow boxes and blue dashed boxes, respectively. Unrelated pseudogenes are represented by purple open boxes. Colors are according to the international ImMunoGeneTics information system (IMGT) color menu for genes. Reproduced with the kind authorization of Marie-Paule Lefranc (IMGT [http://www.imgt.org]).

Citation: Kipps T, Ghia E, Rassenti L. 2016. Immunoglobulin Genes, p 51-64. In Detrick B, Schmitz J, Hamilton R (ed), Manual of Molecular and Clinical Laboratory Immunology, Eighth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818722.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Immunoglobulin light-chain gene complexes. (Left) κ light-chain gene complex on chromosome 2p11-12. The blue box represents the functional IGLC gene. The IGKJ gene segments are indicated by yellow lines labeled “J1 to 5.” The κ light-chain enhancers are represented by light blue circles. IGKV functional genes, pseudogenes, and open reading frame are indicated by green, red, and yellow boxes, respectively. The IGKV genes of the p region are designated by a number for the subgroup, followed by a hyphen and a number for the localization from 3′ to 5′ in the locus. The IGKV genes of the d region are designated by the same numbers as the corresponding genes in the p region, with the letter D added. Arrows show the IGKV genes whose orientation is opposite to that of the IGKJ gene segments. (Right) λ light-chain gene complex on chromosome 22q11.2. The blue boxes represent functional IGLJ and IGLC gene segments, whereas blue open boxes represent IGLJ and IGLC pseudogenes. IGLV functional genes, pseudogenes, and open reading frame are indicated by green, red, and yellow boxes, respectively. IGLV pseudogenes that could not be assigned to subgroups with functional genes are represented by red boxes and designated by a roman number in parentheses, corresponding to the clans, followed by a dash and a number for the localization from 3′ to 5′ in the locus. The IGLV genes are organized into three clusters, designated A, B, and C, which are indicated to the left of each cluster. Unrelated pseudogenes are represented by purple open boxes. The λ light-chain enhancer is represented by a light blue circle. Colors are according to the IMGT color menu for genes. Reproduced with the kind authorization of Marie-Paule Lefranc (IMGT, the international ImMunoGeneTics information system [http://www.imgt.org]).

Citation: Kipps T, Ghia E, Rassenti L. 2016. Immunoglobulin Genes, p 51-64. In Detrick B, Schmitz J, Hamilton R (ed), Manual of Molecular and Clinical Laboratory Immunology, Eighth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818722.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818722.ch6
1. Joiner KA, Fries LF, Frank MM. 1987. Studies of antibody and complement function in host defense against bacterial infection. Immunol Lett 14:197202.[PubMed].[CrossRef]
2. Edelman GM. 1991. Antibody structure and molecular immunology. Scand J Immunol 34:122.[PubMed].[CrossRef]
3. Schroeder HWJr, Cavacini L. 2010. Structure and function of immunoglobulins. J Allergy Clin Immunol 125(2 Suppl 2):S41S52.[CrossRef].[PubMed]
4. Torres RM, Imbonden JB, Schroeder HWJr,. 2008. Antigen receptor genes, gene products, and co-receptors, p 5377. In Rich RR, Fleisher TA, Shearer WT, Schroeder HW Jr, Frew AJ, Weyand CM (ed), Clinical Immunology: Principles and Practice, 3rd ed. Mosby Elsevier, London, United Kingdom.
5. Virella G, Wang AC. 1993. Immunoglobulin structure. Immunol Ser 58:7590.[PubMed]
6. Kavli B, Andersen S, Otterlei M, Liabakk NB, Imai K, Fischer A, Durandy A, Krokan HE, Slupphaug G. 2005. B cells from hyper-IgM patients carrying UNG mutations lack ability to remove uracil from ssDNA and have elevated genomic uracil. J Exp Med 201:20112021.[CrossRef].[PubMed]
7. Harris LJ, Larson SB, Hasel KW, Day J, Greenwood A, McPherson A. 1992. The three-dimensional structure of an intact monoclonal antibody for canine lymphoma. Nature 360:369372.[CrossRef].[PubMed]
8. Jefferis R, Lund J, Goodall M. 1995. Recognition sites on human IgG for Fc gamma receptors: the role of glycosylation. Immunol Lett 44:111117.[PubMed].[CrossRef]
9. Lee YK, Brewer JW, Hellman R, Hendershot LM. 1999. BiP and immunoglobulin light chain cooperate to control the folding of heavy chain and ensure the fidelity of immunoglobulin assembly. Mol Biol Cell 10:22092219.[PubMed].[CrossRef]
10. Ravetch JV, Bolland S. 2001. IgG Fc receptors. Annu Rev Immunol 19:275290.[CrossRef].[PubMed]
11. Parlowsky T, Welzel J, Amagai M, Zillikens D, Wygold T. 2003. Neonatal pemphigus vulgaris: IgG4 autoantibodies to desmoglein 3 induce skin blisters in newborns. J Am Acad Dermatol 48:623625.[CrossRef].[PubMed]
12. Yeh SW, Cavacini LA, Bhol KC, Lin MS, Kumar M, Duval M, Posner MR, Ahmed AR. 2006. Pathogenic human monoclonal antibody against desmoglein 3. Clin Immunol 120:6875.[CrossRef].[PubMed]
13. Corthesy B, Kraehenbuhl JP. 1999. Antibody-mediated protection of mucosal surfaces. Curr Top Microbiol Immunol 236:93111.[PubMed]
14. Lamm ME, Nedrud JG, Kaetzel CS, Mazanec MB. 1995. IgA and mucosal defense. APMIS 103:241246.[PubMed].[CrossRef]
15. Mestecky J, Lue C, Russell MW. 1991. Selective transport of IgA. Cellular and molecular aspects. Gastroenterol Clin N Am 20:441471.
16. Woof JM, Mestecky J. 2005. Mucosal immunoglobulins. Immunol Rev 206:6482.[CrossRef].[PubMed]
17. Niles MJ, Matsuuchi L, Koshland ME. 1995. Polymer IgM assembly and secretion in lymphoid and nonlymphoid cell lines: evidence that J chain is required for pentamer IgM synthesis. Proc Natl Acad Sci U S A 92:28842888.[PubMed].[CrossRef]
18. Corthesy B. 2007. Roundtrip ticket for secretory IgA: role in mucosal homeostasis? J Immunol 178:2732.[PubMed].[CrossRef]
19. Brezski RJ, Monroe JG. 2008. B-cell receptor. Adv Exp Med Biol 640:1221.[CrossRef].[PubMed]
20. Roes J, Rajewsky K. 1993. Immunoglobulin D (IgD)-deficient mice reveal an auxiliary receptor function for IgD in antigen-mediated recruitment of B cells. J Exp Med 177:4555.[PubMed].[CrossRef]
21. Geisberger R, Lamers M, Achatz G. 2006. The riddle of the dual expression of IgM and IgD. Immunology 118:429437.[CrossRef].[PubMed]
22. Riesbeck K, Nordstrom T. 2006. Structure and immunological action of the human pathogen Moraxella catarrhalis IgD-binding protein. Crit Rev Immunol 26:353376.[PubMed].[CrossRef]
23. Lyczak JB, Zhang K, Saxon A, Morrison SL. 1996. Expression of novel secreted isoforms of human immunoglobulin E proteins. J Biol Chem 271:34283436.[PubMed].[CrossRef]
24. Gould HJ, Sutton BJ, Beavil AJ, Beavil RL, McCloskey N, Coker HA, Fear D, Smurthwaite L. 2003. The biology of IGE and the basis of allergic disease. Annu Rev Immunol 21:579628.[CrossRef].[PubMed]
25. Chang TW, Wu PC, Hsu CL, Hung AF. 2007. Anti-IgE antibodies for the treatment of IgE-mediated allergic diseases. Adv Immunol 93:63119.[CrossRef].[PubMed]
26. Kirsch IR, Morton CC, Nakahara K, Leder P. 1982. Human immunoglobulin heavy chain genes map to a region of translocations in malignant B lymphocytes. Science 216: 301303.[PubMed].[CrossRef]
27. Kipps TJ. 1997. Human B cell biology. Int Rev Immunol 15:243264.[PubMed].[CrossRef]
28. Matsuda F, Ishii K, Bourvagnet P, Kuma K, Hayashida H, Miyata T, Honjo T. 1998. The complete nucleotide sequence of the human immunoglobulin heavy chain variable region locus. J Exp Med 188:21512162.[PubMed].[CrossRef]
29. Ruiz M, Pallares N, Contet V, Barbi V, Lefranc MP. 1999. The human immunoglobulin heavy diversity (IGHD) and joining (IGHJ) segments. Exp Clin Immunogenet 16:173184.[CrossRef].[PubMed]
30. Cook GP, Tomlinson IM. 1995. The human immunoglobulin VH repertoire. Immunol Today 16:237242.[CrossRef].[PubMed]
31. Kirkham PM, Mortari F, Newton JA, Schroeder HW. 1992. Immunoglobulin VH clan and family identity predicts variable domain structure and may influence antigen binding. EMBO J 11:603609.
32. Tomlinson IM, Walter G, Marks JD, Llewelyn MB, Winter G. 1992. The repertoire of human germline VH sequences reveals about fifty groups of VH segments with different hypervariable loops. J Mol Biol 227:776798.[PubMed].[CrossRef]
33. Pascual V, Capra JD. 1991. Human immunoglobulin heavy-chain variable region genes: organization, polymorphism, and expression. Adv Immunol 49:174.[PubMed].[CrossRef]
34. Sanz I, Kelly P, Williams C, Scholl S, Tucker P, Capra JD. 1989. The smaller human VH gene families display remarkably little polymorphism. EMBO J 8:37413748.[PubMed]
35. Meek K, Eversole T, Capra JD. 1991. Conservation of the most JH proximal Ig VH gene segment (VHVI) throughout primate evolution. J Immunol 146:24342438.[PubMed]
36. Milner EC, Hufnagle WO, Glas AM, Suzuki I, Alexander C. 1995. Polymorphism and utilization of human VH genes. Ann N Y Acad Sci 764:5061.[PubMed]
37. Sasso EH, Johnson T, Kipps TJ. 1996. Expression of the immunoglobulin VH gene 51p1 is proportional to its germline gene copy number. J Clin Invest 97:20742080.[CrossRef].[PubMed]
38. Pramanik S, Li H. 2002. Direct detection of insertion/deletion polymorphisms in an autosomal region by analyzing high-density markers in individual spermatozoa. Am J Hum Genet 71:13421352.[CrossRef].[PubMed]
39. Lefranc MP, Lefranc G. 2001. The Immunoglobulin Factsbook. Academic Press, San Diego, CA.
40. Cui X, Li H. 2000. Human immunoglobulin VH4 sequences resolved by population-based analysis after enzymatic amplification and denaturing gradient gel electrophoresis. Eur J Immunogenet 27:3746.[PubMed].[CrossRef]
41. Chimge NO, Pramanik S, Hu G, Lin Y, Gao R, Shen L, Li H. 2005. Determination of gene organization in the human IGHV region on single chromosomes. Genes Immun 6:186193.[CrossRef].[PubMed]
42. Ruiz M, Giudicelli V, Ginestoux C, Stoehr P, Robinson J, Bodmer J, Marsh SG, Bontrop R, Lemaitre M, Lefranc G, Chaume D, Lefranc MP. 2000. IMGT, the international ImMunoGeneTics database. Nucleic Acids Res 28:219221.[PubMed].[CrossRef]
43. Kawasaki K, Minoshima S, Nakato E, Shibuya K, Shintani A, Asakawa S, Sasaki T, Klobeck HG, Combriato G, Zachau HG, Shimizu N. 2001. Evolutionary dynamics of the human immunoglobulin kappa locus and the germline repertoire of the Vkappa genes. Eur J Immunol 31:10171028.[PubMed].[CrossRef]
44. Tomlinson IM, Cook GP, Walter G, Carter NP, Riethman H, Buluwela L, Rabbitts TH, Winter G. 1995. A complete map of the human immunoglobulin VH locus. Ann N Y Acad Sci 764:4346.
45. Zachau HG. 1993. The immunoglobulin kappa locus-or-what has been learned from looking closely at one-tenth of a percent of the human genome. Gene 135:167173.[PubMed].[CrossRef]
46. Schable K, Thiebe R, Flugel A, Meindl A, Zachau HG. 1994. The human immunoglobulin kappa locus: pseudogenes, unique and repetitive sequences. Biol Chem Hoppe Seyler 375:189199.[PubMed].[CrossRef]
47. Huber C, Huber E, Lautner-Rieske A, Schable KF, Zachau HG. 1993. The human immunoglobulin kappa locus. Characterization of the partially duplicated L regions. Eur J Immunol 23:28602867.[CrossRef].[PubMed]
48. Lautner-Rieske A, Huber C, Meindl A, Pargent W, Schable KF, Thiebe R, Zocher I, Zachau HG. 1992. The human immunoglobulin kappa locus. Characterization of the duplicated A regions. Eur J Immunol 22:10231029.[CrossRef].[PubMed]
49. Cox JP, Tomlinson IM, Winter G. 1994. A directory of human germ-line V kappa segments reveals a strong bias in their usage. Eur J Immunol 24:827836.[CrossRef].[PubMed]
50. Klein R, Zachau HG. 1995. Expression and hypermutation of human immunoglobulin kappa genes. Ann N Y Acad Sci 764:7483.[PubMed].[CrossRef]
51. Feeney AJ, Atkinson MJ, Cowan MJ, Escuro G, Lugo G. 1996. A defective Vkappa A2 allele in Navajos which may play a role in increased susceptibility to Haemophilus influenzae type b disease. J Clin Invest 97:22772282.[CrossRef].[PubMed]
52. Hilschmann N. 1987. The immunoglobulin receptor. Behring Inst Mitt 81:9899.[PubMed]
53. Ghanem N, Dariavach P, Bensmana M, Chibani J, Lefranc G, Lefranc MP. 1988. Polymorphism of immunoglobulin lambda constant region genes in populations from France, Lebanon and Tunisia. Exp Clin Immunogenet 5:186195.[PubMed]
54. Dariavach P, Lefranc G, Lefranc MP. 1987. Human immunoglobulin C lambda 6 gene encodes the Kern+Oz-lambda chain and C lambda 4 and C lambda 5 are pseudogenes. Proc Natl Acad Sci U S A 84:90749078.[PubMed].[CrossRef]
55. Vasicek TJ, Leder P. 1990. Structure and expression of the human immunoglobulin lambda genes. J Exp Med 172:609620.[PubMed].[CrossRef]
56. Kawasaki K, Minoshima S, Nakato E, Shibuya K, Shintani A, Schmeits JL, Wang J, Shimizu N. 1997. One-megabase sequence analysis of the human immunoglobulin lambda gene locus. Genome Res 7:250261.[PubMed].[CrossRef]
57. Pallares N, Frippiat JP, Giudicelli V, Lefranc MP. 1998. The human immunoglobulin lambda variable (IGLV) genes and joining (IGLJ) segments. Exp Clin Immunogenet 15:818.[PubMed].[CrossRef]
58. Williams SC, Frippiat JP, Tomlinson IM, Ignatovich O, Lefranc MP, Winter G. 1996. Sequence and evolution of the human germline V lambda repertoire. J Mol Biol 264:220232.[CrossRef].[PubMed]
59. Chuchana P, Blancher A, Brockly F, Alexandre D, Lefranc G, Lefranc MP. 1990. Definition of the human immunoglobulin variable lambda (IGLV) gene subgroups. Eur J Immunol 20:13171325.[CrossRef].[PubMed]
60. Frippiat JP, Williams SC, Tomlinson IM, Cook GP, Cherif D, Le Paslier D, Collins JE, Dunham I, Winter G, Lefranc MP. 1995. Organization of the human immunoglobulin lambda light-chain locus on chromosome 22q11.2. Hum Mol Genet 4:983991.[PubMed].[CrossRef]
61. Abe M, Ozaki S, Wolfenbarger D, deBram-Hart M, Weiss DT, Solomon A. 1994. Variable-region subgroup distribution among lambda-type immunoglobulins in normal human serum. J Clin Lab Anal 8:49.[PubMed].[CrossRef]
62. Tonegawa S. 1993. The Nobel Lectures in Immunology. The Nobel Prize for Physiology or Medicine, 1987. Somatic generation of immune diversity. Scand J Immunol 38:303319.[PubMed].[CrossRef]
63. Graninger WB, Goldman PL, Morton CC, O'Brien SJ, Korsmeyer SJ. 1988. The kappa-deleting element. Germline and rearranged, duplicated and dispersed forms. J Exp Med 167:488501.[PubMed].[CrossRef]
64. Xiang Y, Park SK, Garrard WT. 2013. Vkappa gene repertoire and locus contraction are specified by critical DNase I hypersensitive sites within the Vkappa-Jkappa intervening region. J Immunol 190:18191826.[CrossRef].[PubMed]
65. Martensson IL, Ceredig R. 2000. Review article: role of the surrogate light chain and the pre-B-cell receptor in mouse B-cell development. Immunology 101:435441.[PubMed].[CrossRef]
66. Melchers F, Karasuyama H, Haasner D, Bauer S, Kudo A, Sakaguchi N, Jameson B, Rolink A. 1993. The surrogate light chain in B-cell development. Immunol Today 14:6068.[CrossRef].[PubMed]
67. Ten Boekel E, Yamagami T, Andersson J, Rolink A, Melchers F. 1999. The formation and selection of cells expressing preB cell receptors and B cell receptors. Curr Top Microbiol Immunol 246:39; discussion, 246:10.[PubMed]
68. Tsuganezawa K, Kiyokawa N, Matsuo Y, Kitamura F, Toyama-Sorimachi N, Kuida K, Fujimoto J, Karasuyama H. 1998. Flow cytometric diagnosis of the cell lineage and developmental stage of acute lymphoblastic leukemia by novel monoclonal antibodies specific to human pre-B-cell receptor. Blood 92:43174324.[PubMed]
69. Kitamura D, Kudo A, Schaal S, Muller W, Melchers F, Rajewsky K. 1992. A critical role of lambda 5 protein in B cell development. Cell 69:823831.[PubMed].[CrossRef]
70. Corcos D, Dunda O, Butor C, Cesbron JY, Lores P, Bucchini D, Jami J. 1995. Pre-B-cell development in the absence of lambda 5 in transgenic mice expressing a heavy-chain disease protein. Curr Biol 5:11401148.[PubMed].[CrossRef]
71. Minegishi Y, Coustan-Smith E, Wang YH, Cooper MD, Campana D, Conley ME. 1998. Mutations in the human lambda5/14.1 gene result in B cell deficiency and agammaglobulinemia. J Exp Med 187:7177.[PubMed].[CrossRef]
72. Bankovich AJ, Raunser S, Juo ZS, Walz T, Davis MM, Garcia KC. 2007. Structural insight into pre-B cell receptor function. Science 316:291294.[CrossRef].[PubMed]
73. Rassenti LZ, Kipps TJ. 1997. Lack of allelic exclusion in B cell chronic lymphocytic leukemia. J Exp Med 185:14351445.[PubMed].[CrossRef]
74. Lewis SM. 1994. The mechanism of V(D)J joining: lessons from molecular, immunological, and comparative analyses. Adv Immunol 56:27150.[PubMed].[CrossRef]
75. Gellert M. 1997. Recent advances in understanding V(D)J recombination. Adv Immunol 64:3964.[PubMed].[CrossRef]
76. Steen SB, Gomelsky L, Speidel SL, Roth DB. 1997. Initiation of V(D)J recombination in vivo: role of recombination signal sequences in formation of single and paired double-strand breaks. EMBO J 16:26562664.[CrossRef].[PubMed]
77. Schatz DG, Swanson PC. 2011. V(D)J recombination: mechanisms of initiation. Annu Rev Genet 45:167202.[CrossRef].[PubMed]
78. Fugmann SD, Lee AI, Shockett PE, Villey IJ, Schatz DG. 2000. The RAG proteins and V(D)J recombination: complexes, ends, and transposition. Annu Rev Immunol 18:495527.[CrossRef].[PubMed]
79. Oettinger MA. 1999. V(D)J recombination: on the cutting edge. Curr Opin Cell Biol 11:325329.[CrossRef].[PubMed]
80. Gellert M. 2002. V(D)J recombination: RAG proteins, repair factors, and regulation. Annu Rev Biochem 71:101132.[CrossRef].[PubMed]
81. Lieber MR. 2010. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181211.[CrossRef].[PubMed]
82. Rooney S, Chaudhuri J, Alt FW. 2004. The role of the non-homologous end-joining pathway in lymphocyte development. Immunol Rev 200:115131.[CrossRef].[PubMed]
83. Gostissa M, Alt FW, Chiarle R. 2011. Mechanisms that promote and suppress chromosomal translocations in lymphocytes. Annu Rev Immunol 29:319350.[CrossRef].[PubMed]
84. Nussenzweig A, Nussenzweig MC. 2010. Origin of chromosomal translocations in lymphoid cancer. Cell 141:2738.[CrossRef].[PubMed]
85. Helmink BA, Sleckman BP. 2012. The response to and repair of RAG-mediated DNA double-strand breaks. Annu Rev Immunol 30:175202.[CrossRef].[PubMed]
86. Grawunder U, West RB, Lieber MR. 1998. Antigen receptor gene rearrangement. Curr Opin Immunol 10:172180.[PubMed].[CrossRef]
87. Matthias P, Rolink AG. 2005. Transcriptional networks in developing and mature B cells. Nat Rev Immunol 5:497508.[CrossRef].[PubMed]
88. Shinkai Y, Rathbun G, Lam KP, Oltz EM, Stewart V, Mendelsohn M, Charron J, Datta M, Young F, Stall AM , et al 1992. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68:855867.[PubMed].[CrossRef]
89. Villa A, Santagata S, Bozzi F, Imberti L, Notarangelo LD. 1999. Omenn syndrome: a disorder of Rag1 and Rag2 genes. J Clin Immunol 19:8797.[PubMed].[CrossRef]
90. Villa A, Sobacchi C, Notarangelo LD, Bozzi F, Abinun M, Abrahamsen TG, Arkwright PD, Baniyash M, Brooks EG, Conley ME, Cortes P, Duse M, Fasth A, Filipovich AM, Infante AJ, Jones A, Mazzolari E, Muller SM, Pasic S, Rechavi G, Sacco MG, Santagata S, Schroeder ML, Seger R, Strina D, Ugazio A, Valiaho J, Vihinen M, Vogler LB, Ochs H, Vezzoni P, Friedrich W, Schwarz K. 2001. V(D)J recombination defects in lymphocytes due to RAG mutations: severe immunodeficiency with a spectrum of clinical presentations. Blood 97:8188.[PubMed]
91. Simkus C, Anand P, Bhattacharyya A, Jones JM. 2007. Biochemical and folding defects in a RAG1 variant associated with Omenn syndrome. J Immunol 179:83328340.[PubMed].[CrossRef]
92. Huye LE, Purugganan MM, Jiang MM, Roth DB. 2002. Mutational analysis of all conserved basic amino acids in RAG-1 reveals catalytic, step arrest, and joining-deficient mutants in the V(D)J recombinase. Mol Cell Biol 22:34603473.[PubMed].[CrossRef]
93. Tsai CL, Drejer AH, Schatz DG. 2002. Evidence of a critical architectural function for the RAG proteins in end processing, protection, and joining in V(D)J recombination. Genes Dev 16:19341949.[CrossRef].[PubMed]
94. Thomas JO, Travers AA. 2001. HMG1 and 2, and related ‘architectural’ DNA-binding proteins. Trends Biochem Sci 26:167174.[PubMed].[CrossRef]
95. Schlissel MS. 1998. Structure of nonhairpin coding-end DNA breaks in cells undergoing V(D)J recombination. Mol Cell Biol 18:20292037.[PubMed].[CrossRef]
96. Jones JM, Gellert M. 2001. Intermediates in V(D)J recombination: a stable RAG1/2 complex sequesters cleaved RSS ends. Proc Natl Acad Sci U S A 98:1292612931.[CrossRef].[PubMed]
97. Lieber MR. 2008. The mechanism of human nonhomologous DNA end joining. J Biol Chem 283:15.[CrossRef].[PubMed]
98. Goodarzi AA, Jeggo PA. 2013. The repair and signaling responses to DNA double-strand breaks. Adv Genet 82:145.[CrossRef].[PubMed]
99. Ma Y, Schwarz K, Lieber MR. 2005. The Artemis:DNA-PKcs endonuclease cleaves DNA loops, flaps, and gaps. DNA Repair (Amsterdam) 4:845851.[CrossRef].[PubMed]
100. Taccioli GE, Amatucci AG, Beamish HJ, Gell D, Xiang XH, Torres Arzayus MI, Priestley A, Jackson SP, Marshak Rothstein A, Jeggo PA, Herrera VL. 1998. Targeted disruption of the catalytic subunit of the DNA-PK gene in mice confers severe combined immunodeficiency and radiosensitivity. Immunity 9:355366.[PubMed].[CrossRef]
101. Khanna KK, Jackson SP. 2001. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27:247254.[CrossRef].[PubMed]
102. Ma Y, Pannicke U, Schwarz K, Lieber MR. 2002. Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 108:781794.[PubMed].[CrossRef]
103. Bogue MA, Jhappan C, Roth DB. 1998. Analysis of variable (diversity) joining recombination in DNAdependent protein kinase (DNA-PK)-deficient mice reveals DNA-PK-independent pathways for both signal and coding joint formation. Proc Natl Acad Sci U S A 95:1555915564.[PubMed].[CrossRef]
104. Kulesza P, Lieber MR. 1998. DNA-PK is essential only for coding joint formation in V(D)J recombination. Nucleic Acids Res 26:39443948.[PubMed].[CrossRef]
105. Ding Q, Reddy YV, Wang W, Woods T, Douglas P, Ramsden DA, Lees-Miller SP, Meek K. 2003. Autophosphorylation of the catalytic subunit of the DNA-dependent protein kinase is required for efficient end processing during DNA double-strand break repair. Mol Cell Biol 23:58365848.[PubMed].[CrossRef]
106. Wiler R, Leber R, Moore BB, VanDyk LF, Perryman LE, Meek K. 1995. Equine severe combined immunodeficiency: a defect in V(D)J recombination and DNA-dependent protein kinase activity. Proc Natl Acad Sci U S A 92:1148511489.[PubMed].[CrossRef]
107. Meek K, Kienker L, Dallas C, Wang W, Dark MJ, Venta PJ, Huie ML, Hirschhorn R, Bell T. 2001. SCID in Jack Russell terriers: a new animal model of DNA-PKcs deficiency. J Immunol 167:21422150.[CrossRef]
108. Gu Y, Sekiguchi J, Gao Y, Dikkes P, Frank K, Ferguson D, Hasty P, Chun J, Alt FW. 2000. Defective embryonic neurogenesis in Ku-deficient but not DNA-dependent protein kinase catalytic subunit-deficient mice. Proc Natl Acad Sci U S A 97:26682673.[PubMed].[CrossRef]
109. Ouyang H, Nussenzweig A, Kurimasa A, Soares VC, Li X, Cordon-Cardo C, Li W, Cheong N, Nussenzweig M, Iliakis G, Chen DJ, Li GC. 1997. Ku70 is required for DNA repair but not for T cell antigen receptor gene recombination in vivo. J Exp Med 186:921929.[PubMed].[CrossRef]
110. Bassing CH, Suh H, Ferguson DO, Chua KF, Manis J, Eckersdorff M, Gleason M, Bronson R, Lee C, Alt FW. 2003. Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell 114:359370.[PubMed].[CrossRef]
111. Celeste A, Difilippantonio S, Difilippantonio MJ, Fernandez-Capetillo O, Pilch DR, Sedelnikova OA, Eckhaus M, Ried T, Bonner WM, Nussenzweig A. 2003. H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell 114:371383.[PubMed].[CrossRef]
112. Al-Hakim A, Escribano-Diaz C, Landry MC, O'Donnell L, Panier S, Szilard RK, Durocher D. 2010. The ubiquitous role of ubiquitin in the DNA damage response. DNA Repair (Amsterdam) 9:12291240.[CrossRef].[PubMed]
113. Komori T, Okada A, Stewart V, Alt FW. 1993. Lack of N regions in antigen receptor variable region genes of TdT-deficient lymphocytes. Science 261:11711175.[PubMed].[CrossRef]
114. Sleckman BP, Oltz EM. 2012. Preparing targets for V(D)J recombinase: transcription paves the way. J Immunol 188:79.[CrossRef].[PubMed]
115. Subrahmanyam R, Sen R. 2012. Epigenetic features that regulate IgH locus recombination and expression. Curr Top Microbiol Immunol 356:3963.[CrossRef].[PubMed]
116. Grazini U, Zanardi F, Citterio E, Casola S, Goding CR, McBlane F. 2010. The RING domain of RAG1 ubiquitylates histone H3: a novel activity in chromatin-mediated regulation of V(D)J joining. Mol Cell 37:282293.[CrossRef].[PubMed]
117. Jones JM, Bhattacharyya A, Simkus C, Vallieres B, Veenstra TD, Zhou M. 2011. The RAG1 V(D)J recombinase/ubiquitin ligase promotes ubiquitylation of acetylated, phosphorylated histone 3.3. Immunol Lett 136:156162.[CrossRef].[PubMed]
118. Jones JM, Gellert M. 2003. Autoubiquitylation of the V(D)J recombinase protein RAG1. Proc Natl Acad Sci U S A 100:1544615451.[CrossRef].[PubMed]
119. Kassmeier MD, Mondal K, Palmer VL, Raval P, Kumar S, Perry GA, Anderson DK, Ciborowski P, Jackson S, Xiong Y, Swanson PC. 2012. VprBP binds full-length RAG1 and is required for B-cell development and V(D)J recombination fidelity. EMBO J 31:945958.[CrossRef].[PubMed]
120. Simkus C, Bhattacharyya A, Zhou M, Veenstra TD, Jones JM. 2009. Correlation between recombinase activating gene 1 ubiquitin ligase activity and V(D)J recombination. Immunology 128:206217.[CrossRef].[PubMed]
121. Yurchenko V, Xue Z, Sadofsky M. 2003. The RAG1 N-terminal domain is an E3 ubiquitin ligase. Genes Dev 17:581585.[CrossRef].[PubMed]
122. Jiang H, Chang FC, Ross AE, Lee J, Nakayama K, Desiderio S. 2005. Ubiquitylation of RAG-2 by Skp2-SCF links destruction of the V(D)J recombinase to the cell cycle. Mol Cell 18:699709.[CrossRef].[PubMed]
123. Lee J, Desiderio S. 1999. Cyclin A/CDK2 regulates V(D)J recombination by coordinating RAG-2 accumulation and DNA repair. Immunity 11:771781.[PubMed].[CrossRef]
124. Mizuta R, Mizuta M, Araki S, Kitamura D. 2002. RAG2 is down-regulated by cytoplasmic sequestration and ubiquitin-dependent degradation. J Biol Chem 277:4142341427.[CrossRef].[PubMed]
125. Stavnezer J, Amemiya CT. 2004. Evolution of isotype switching. Semin Immunol 16:257275.[CrossRef].[PubMed]
126. Durandy A, Revy P, Fischer A. 2004. Human models of inherited immunoglobulin class switch recombination and somatic hypermutation defects (hyper-IgM syndromes). Adv Immunol 82:295330.[CrossRef].[PubMed]
127. Ferrari S, Plebani A. 2002. Cross-talk between CD40 and CD40L: lessons from primary immune deficiencies. Curr Opin Allergy Clin Immunol 2:489494.[CrossRef].[PubMed]
128. Calame KL, Lin KI, Tunyaplin C. 2003. Regulatory mechanisms that determine the development and function of plasma cells. Annu Rev Immunol 21:205230.[CrossRef].[PubMed]
129. Yamane A, Robbiani DF, Resch W, Bothmer A, Nakahashi H, Oliveira T, Rommel PC, Brown EJ, Nussenzweig A, Nussenzweig MC, Casellas R. 2013. RPA accumulation during class switch recombination represents 5′-3′ DNA-end resection during the S-G2/M phase of the cell cycle. Cell Rep 3:138147.[CrossRef].[PubMed]
130. Honjo T, Kinoshita K, Muramatsu M. 2002. Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annu Rev Immunol 20:165196.[CrossRef].[PubMed]
131. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T. 2000. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102:553563.[PubMed].[CrossRef]
132. Muramatsu M, Nagaoka H, Shinkura R, Begum NA, Honjo T. 2007. Discovery of activation-induced cytidine deaminase, the engraver of antibody memory. Adv Immunol 94:136.[CrossRef].[PubMed]
133. Revy P, Muto T, Levy Y, Geissmann F, Plebani A, Sanal O, Catalan N, Forveille M, Dufourcq-Labelouse R, Gennery A, Tezcan I, Ersoy F, Kayserili H, Ugazio AG, Brousse N, Muramatsu M, Notarangelo LD, Kinoshita K, Honjo T, Fischer A, Durandy A. 2000. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 102:565575.[PubMed].[CrossRef]
134. Zahn A, Eranki AK, Patenaude AM, Methot SP, Fifield H, Cortizas EM, Foster P, Imai K, Durandy A, Larijani M, Verdun RE, Di Noia JM. 2014. Activation induced deaminase C-terminal domain links DNA breaks to end protection and repair during class switch recombination. Proc Natl Acad Sci U S A 111:E988E997.[CrossRef].[PubMed]
135. MacLennan IC. 2005. Germinal centers still hold secrets. Immunity 22:656657.[CrossRef].[PubMed]
136. Imai K, Slupphaug G, Lee WI, Revy P, Nonoyama S, Catalan N, Yel L, Forveille M, Kavli B, Krokan HE, Ochs HD, Fischer A, Durandy A. 2003. Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat Immunol 4:10231028.[CrossRef].[PubMed]
137. Chen X, Kinoshita K, Honjo T. 2001. Variable deletion and duplication at recombination junction ends: implication for staggered double-strand cleavage in class-switch recombination. Proc Natl Acad Sci U S A 98:1386013865.[CrossRef].[PubMed]
138. Wang CL, Wabl M. 2004. DNA acrobats of the Ig class switch. J Immunol 172:58155821.[PubMed].[CrossRef]
139. Kaji T, Furukawa K, Ishige A, Toyokura I, Nomura M, Okada M, Takahashi Y, Shimoda M, Takemori T. 2013. Both mutated and unmutated memory B cells accumulate mutations in the course of the secondary response and develop a new antibody repertoire optimally adapted to the secondary stimulus. Int Immunol 25:683695.[CrossRef].[PubMed]
140. Michael N, Martin TE, Nicolae D, Kim N, Padjen K, Zhan P, Nguyen H, Pinkert C, Storb U. 2002. Effects of sequence and structure on the hypermutability of immunoglobulin genes. Immunity 16:123134.[PubMed].[CrossRef]
141. Rogozin IB, Sredneva NE, Kolchanov NA. 1996. Somatic hypermutagenesis in immunoglobulin genes. III. Somatic mutations in the chicken light chain locus. Biochim Biophys Acta 1306:171178.[PubMed].[CrossRef]
142. Dudley DD, Chaudhuri J, Bassing CH, Alt FW. 2005. Mechanism and control of V(D)J recombination versus class switch recombination: similarities and differences. Adv Immunol 86:43112.[CrossRef].[PubMed]
143. Di Noia JM, Neuberger MS. 2007. Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem 76:122.[CrossRef].[PubMed]
144. Di Noia J, Neuberger MS. 2002. Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase. Nature 419:4348.[CrossRef].[PubMed]
145. Neuberger MS. 2008. Antibody diversification by somatic mutation: from Burnet onwards. Immunol Cell Biol 86:124132.[CrossRef].[PubMed]
146. Peled JU, Kuang FL, Iglesias-Ussel MD, Roa S, Kalis SL, Goodman MF, Scharff MD. 2008. The biochemistry of somatic hypermutation. Annu Rev Immunol 26:481511.[CrossRef]
147. Odegard VH, Schatz DG. 2006. Targeting of somatic hypermutation. Nat Rev Immunol 6:573583.[CrossRef]
148. Storb U, Shen HM, Michael N, Kim N. 2001. Somatic hypermutation of immunoglobulin and non-immunoglobulin genes. Philos Trans R Soc Lond B Biol Sci 356:1319.[CrossRef]
149. Ollila J, Vihinen M. 2005. B cells. Int J Biochem Cell Biol 37:518523.[CrossRef].[PubMed]
150. Dorner T, Foster SJ, Brezinschek HP, Lipsky PE. 1998. Analysis of the targeting of the hypermutational machinery and the impact of subsequent selection on the distribution of nucleotide changes in human VHDJH rearrangements. Immunol Rev 162:161171.[PubMed].[CrossRef]
151. Buerstedde JM, Alinikula J, Arakawa H, McDonald JJ, Schatz DG. 2014. Targeting of somatic hypermutation by immunoglobulin enhancer and enhancer-like sequences. PLoS Biol 12:e1001831.[CrossRef].[PubMed]
152. Aoufouchi S, Faili A, Zober C, D'Orlando O, Weller S, Weill JC, Reynaud CA. 2008. Proteasomal degradation restricts the nuclear lifespan of AID. J Exp Med 205:13571368.[CrossRef].[PubMed]
153. Delker RK, Zhou Y, Strikoudis A, Stebbins CE, Papavasiliou FN. 2013. Solubility-based genetic screen identifies RING finger protein 126 as an E3 ligase for activation-induced cytidine deaminase. Proc Natl Acad Sci U S A 110:10291034.[CrossRef].[PubMed]
154. Sonnenberg A, Marciniak JY, Rassenti L, Ghia EM, Skowronski EA, Manouchehri S, McCanna J, Widhopf GF II, Kipps TJ, Heller MJ. 2014. Rapid electrokinetic isolation of cancer-related circulating cell-free DNA directly from blood. Clin Chem 60:500509.[CrossRef].[PubMed]
155. Langerak A,. 2009. From the patient to the sequence: selection of material, primers and PCR protol, clonality analysis, and sequencing protocol, p 2331. In Ghia P, Rosenquist R, Davi F (ed), Immunoglobulin Gene Analysis in Chronic Lymphocytic Leukemia. Wolters Kluwer Health Italy Ltd., Milan, Italy.

Tables

Generic image for table
TABLE 1

Physical properties of human immunoglobulins

Citation: Kipps T, Ghia E, Rassenti L. 2016. Immunoglobulin Genes, p 51-64. In Detrick B, Schmitz J, Hamilton R (ed), Manual of Molecular and Clinical Laboratory Immunology, Eighth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818722.ch6
Generic image for table
TABLE 2

Sense and antisense strand oligonucleotide primers to amplify the rearranged V gene in genomic DNA or cDNA

Citation: Kipps T, Ghia E, Rassenti L. 2016. Immunoglobulin Genes, p 51-64. In Detrick B, Schmitz J, Hamilton R (ed), Manual of Molecular and Clinical Laboratory Immunology, Eighth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818722.ch6

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error