1887

Chapter 6 : The Locus of Enterocyte Effacement and Associated Virulence Factors of Enterohemorrhagic

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

The Locus of Enterocyte Effacement and Associated Virulence Factors of Enterohemorrhagic , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818791/9781555818784_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555818791/9781555818784_Chap06-2.gif

Abstract:

Enterohemorrhagic (EHEC) was first recognized as a cause of human disease in 1983 and is associated with diarrhea and hemorrhagic colitis, which may be complicated by life-threatening renal and neurological sequelae (reviewed in reference ). EHEC strains are defined by their ability to produce one or more Shiga toxins (Stx), which mediate the systemic complications of EHEC infections (reviewed in reference ), and to induce attaching and effacing (A/E) lesions on intestinal epithelia. The ability of EHEC to induce such lesions is shared by enteropathogenic (EPEC), (formerly classified as -positive ), and the murine pathogen . The A/E histopathology was first described in gnotobiotic piglets challenged with a strain of EHEC serotype O157:H7 ( ) but has subsequently been observed in ruminant reservoirs and diverse animal models (reviewed in reference ).

Citation: Stevens M, Frankel G. 2015. The Locus of Enterocyte Effacement and Associated Virulence Factors of Enterohemorrhagic , p 131-155. In Sperandio V, Hovde C (ed), Enterohemorrhagic and Other Shiga Toxin-Producing . ASM Press, Washington, DC. doi: 10.1128/microbiolspec.EHEC-0007-2013
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1a
Figure 1a

Transmission electron micrograph (TEM) showing A/E lesions induced by EHEC O111:H– strain E45035N in the spiral colon of a neonatal calf (note raised electron-dense pedestals and microvillus effacement relative to proximal uninfected enterocyte). From reference ; scale bar = 1 µm. TEM of A/E lesions induced by EHEC O157:H7 strain 85-170 12 h after inoculation of a bovine ligated ileal loop (note intimate adherence but relative absence of elongated pedestals). From reference ; scale bar = 5 µm. Fluorescence micrograph showing nucleation of F-actin under EHEC O103:H3 strain PMK5 adhering to a HeLa cell (green, F-actin detected with Oregon green-phalloidin; red, bacteria stained with rabbit anti-O103 typing serum detected with anti-rabbit immunoglobulin-Alexa). From reference ; scale bar = 5 µm.

Citation: Stevens M, Frankel G. 2015. The Locus of Enterocyte Effacement and Associated Virulence Factors of Enterohemorrhagic , p 131-155. In Sperandio V, Hovde C (ed), Enterohemorrhagic and Other Shiga Toxin-Producing . ASM Press, Washington, DC. doi: 10.1128/microbiolspec.EHEC-0007-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1b
Figure 1b

Transmission electron micrograph (TEM) showing A/E lesions induced by EHEC O111:H– strain E45035N in the spiral colon of a neonatal calf (note raised electron-dense pedestals and microvillus effacement relative to proximal uninfected enterocyte). From reference ; scale bar = 1 µm. TEM of A/E lesions induced by EHEC O157:H7 strain 85-170 12 h after inoculation of a bovine ligated ileal loop (note intimate adherence but relative absence of elongated pedestals). From reference ; scale bar = 5 µm. Fluorescence micrograph showing nucleation of F-actin under EHEC O103:H3 strain PMK5 adhering to a HeLa cell (green, F-actin detected with Oregon green-phalloidin; red, bacteria stained with rabbit anti-O103 typing serum detected with anti-rabbit immunoglobulin-Alexa). From reference ; scale bar = 5 µm.

Citation: Stevens M, Frankel G. 2015. The Locus of Enterocyte Effacement and Associated Virulence Factors of Enterohemorrhagic , p 131-155. In Sperandio V, Hovde C (ed), Enterohemorrhagic and Other Shiga Toxin-Producing . ASM Press, Washington, DC. doi: 10.1128/microbiolspec.EHEC-0007-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1c
Figure 1c

Transmission electron micrograph (TEM) showing A/E lesions induced by EHEC O111:H– strain E45035N in the spiral colon of a neonatal calf (note raised electron-dense pedestals and microvillus effacement relative to proximal uninfected enterocyte). From reference ; scale bar = 1 µm. TEM of A/E lesions induced by EHEC O157:H7 strain 85-170 12 h after inoculation of a bovine ligated ileal loop (note intimate adherence but relative absence of elongated pedestals). From reference ; scale bar = 5 µm. Fluorescence micrograph showing nucleation of F-actin under EHEC O103:H3 strain PMK5 adhering to a HeLa cell (green, F-actin detected with Oregon green-phalloidin; red, bacteria stained with rabbit anti-O103 typing serum detected with anti-rabbit immunoglobulin-Alexa). From reference ; scale bar = 5 µm.

Citation: Stevens M, Frankel G. 2015. The Locus of Enterocyte Effacement and Associated Virulence Factors of Enterohemorrhagic , p 131-155. In Sperandio V, Hovde C (ed), Enterohemorrhagic and Other Shiga Toxin-Producing . ASM Press, Washington, DC. doi: 10.1128/microbiolspec.EHEC-0007-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Genetic organization of LEE of O157:H7. Open reading frames are represented by thick arrows, and putative polycistronic operons are designated by thin arrows. Clear arrows represent open reading frames of unknown function and are designated or , depending on the direction of transcription relative to .

Citation: Stevens M, Frankel G. 2015. The Locus of Enterocyte Effacement and Associated Virulence Factors of Enterohemorrhagic , p 131-155. In Sperandio V, Hovde C (ed), Enterohemorrhagic and Other Shiga Toxin-Producing . ASM Press, Washington, DC. doi: 10.1128/microbiolspec.EHEC-0007-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Schematic representation of the Type III secretion apparatus showing the predicted spatial organization of LEE-encoded proteins. Adapted from reference .

Citation: Stevens M, Frankel G. 2015. The Locus of Enterocyte Effacement and Associated Virulence Factors of Enterohemorrhagic , p 131-155. In Sperandio V, Hovde C (ed), Enterohemorrhagic and Other Shiga Toxin-Producing . ASM Press, Washington, DC. doi: 10.1128/microbiolspec.EHEC-0007-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Scanning electron micrograph showing EspA filaments (arrow) of EHEC O26:H11 strain H19 attaching to the surface of an erythrocyte. From reference . Transmission electron micrograph of an EspA filament of wild-type EPEC O127:H6 strain E2348/69 showing Tir issuing from the tip. EspA filaments were immunolabeled with anti-EspA conjugated to 5-nm diameter gold particles, and Tir was detected with anti-Tir conjugated to 10-nm diameter gold particles. The specificity of Tir staining was confirmed using the same gold-labeled antibodies but an isogenic mutant. Panels B and C from reference .

Citation: Stevens M, Frankel G. 2015. The Locus of Enterocyte Effacement and Associated Virulence Factors of Enterohemorrhagic , p 131-155. In Sperandio V, Hovde C (ed), Enterohemorrhagic and Other Shiga Toxin-Producing . ASM Press, Washington, DC. doi: 10.1128/microbiolspec.EHEC-0007-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Diagram summarizing the activities of a subset of EHEC Type III secreted proteins on the cytoskeleton. Note (a), the Tir:Nck pathway dependent on phosphorylation of the residue equivalent to tyrosine 474 of EPEC O127:H6 Tir operates in some non-O157 EHEC but not prototype O157:H7 strains. Effectors are represented by circles. Adapted from reference .

Citation: Stevens M, Frankel G. 2015. The Locus of Enterocyte Effacement and Associated Virulence Factors of Enterohemorrhagic , p 131-155. In Sperandio V, Hovde C (ed), Enterohemorrhagic and Other Shiga Toxin-Producing . ASM Press, Washington, DC. doi: 10.1128/microbiolspec.EHEC-0007-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Diagram summarizing the activities of a subset of EHEC Type III secreted proteins on signaling pathways leading to inflammation and apoptosis. Effectors are represented by circles. Adapted from reference .

Citation: Stevens M, Frankel G. 2015. The Locus of Enterocyte Effacement and Associated Virulence Factors of Enterohemorrhagic , p 131-155. In Sperandio V, Hovde C (ed), Enterohemorrhagic and Other Shiga Toxin-Producing . ASM Press, Washington, DC. doi: 10.1128/microbiolspec.EHEC-0007-2013
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818791.chap6
1. Tzipori S,, Wachsmuth IK,, Chapman C,, Birden R,, Brittingham J,, Jackson C,, Hogg J . 1986. The pathogenesis of hemorrhagic colitis caused by Escherichia coli O157:H7 in gnotobiotic piglets. J Infect Dis 154 : 712 716.[PubMed] [CrossRef]
2. Knutton S,, Lloyd DR,, McNeish AS . 1987. Adhesion of enteropathogenic Escherichia coli to human intestinal enterocytes and cultured human intestinal mucosa. Infect Immun 55 : 69 77.[PubMed]
3. Knutton S,, Baldwin T,, Williams PH,, McNeish AS . 1989. Actin accumulation at sites of bacterial adhesion to tissue culture cells: basis of a new diagnostic test for enteropathogenic and enterohemorrhagic Escherichia coli . Infect Immun 57 : 1290 1298.[PubMed]
4. Jerse AE,, Yu J,, Tall BD,, Kaper JB . 1990. A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proc Natl Acad Sci USA 87 : 7839 7843.[PubMed] [CrossRef]
5. McDaniel TK,, Jarvis KG,, Donnenberg MS,, Kaper JB . 1995. A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc Natl Acad Sci USA 92 : 1664 1668.[PubMed] [CrossRef]
6. Jarvis KG,, Girón JA,, Jerse AE,, McDaniel TK,, Donnenberg MS,, Kaper JB . 1995. Enteropathogenic Escherichia coli contains a putative type III secretion system necessary for the export of proteins involved in attaching and effacing lesion formation. Proc Natl Acad Sci USA 92 : 7996 8000.[PubMed] [CrossRef]
7. Elliott SJ,, Wainwright LA,, McDaniel TK,, Jarvis KG,, Deng YK,, Lai LC,, McNamara BP,, Donnenberg MS,, Kaper JB . 1998. The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69. Mol Microbiol 28 : 1 4.[PubMed] [CrossRef]
8. Ebel F,, Deibel C,, Kresse AU,, Guzman CA,, Chakraborty T . 1996. Temperature- and medium-dependent secretion of proteins by Shiga toxin-producing Escherichia coli . Infect Immun 64 : 4472 4479.[PubMed]
9. Jarvis KG,, Kaper JB . 1996. Secretion of extracellular proteins by enterohemorrhagic Escherichia coli via a putative type III secretion system. Infect Immun 64 : 4826 4829.[PubMed]
10. Perna NT,, Mayhew GF,, Posfai G,, Elliott S,, Donnenberg MS,, Kaper JB,, Blattner FR . 1998. Molecular evolution of a pathogenicity island from enterohemorrhagic Escherichia coli O157:H7. Infect Immun 66 : 3810 3817.[PubMed]
11. Deng W,, Li Y,, Vallance BA,, Finlay BB . 2001. Locus of enterocyte effacement from Citrobacter rodentium: sequence analysis and evidence for horizontal transfer among attaching and effacing pathogens. Infect Immun 69 : 6323 6335.[PubMed] [CrossRef]
12. Tauschek M,, Strugnell RA,, Robins-Browne RM . 2002. Characterization and evidence of mobilization of the LEE pathogenicity island of rabbit-specific strains of enteropathogenic Escherichia coli . Mol Microbiol 44 : 1533 1550.[PubMed] [CrossRef]
13. Zhu C,, Agin TS,, Elliott SJ,, Johnson LA,, Thate TE,, Kaper JB,, Boedeker EC . 2001. Complete nucleotide sequence and analysis of the locus of enterocyte effacement from rabbit diarrheagenic Escherichia coli RDEC-1. Infect Immun 69 : 2107 2115.[PubMed] [CrossRef]
14. McDaniel TK,, Kaper JB . 1997. A cloned pathogenicity island from enteropathogenic Escherichia coli confers the attaching and effacing phenotype on E. coli K-12. Mol Microbiol 23 : 399 407.[PubMed] [CrossRef]
15. Pósfai G,, Koob MD,, Kirkpatrick HA,, Blattner FR . 1997. Versatile insertion plasmids for targeted genome manipulations in bacteria: isolation, deletion, and rescue of the pathogenicity island LEE of the Escherichia coli O157:H7 genome. J Bacteriol 179 : 4426 4428.[PubMed]
16. Castillo A,, Eguiarte LE,, Souza V . 2005. A genomic population genetics analysis of the pathogenic enterocyte effacement island in Escherichia coli: the search for the unit of selection. Proc Natl Acad Sci USA 102 : 1542 1547.[PubMed] [CrossRef]
17. Müller D,, Benz I,, Liebchen A,, Gallitz I,, Karch H,, Schmidt MA . 2009. Comparative analysis of the locus of enterocyte effacement and its flanking regions. Infect Immun 77 : 3501 3513.[PubMed] [CrossRef]
18. Ogura Y,, Ooka T,, Iguchi A,, Toh H,, Asadulghani M,, Oshima K,, Kodama T,, Abe H,, Nakayama K,, Kurokawa K,, Tobe T,, Hattori M,, Hayashi T . 2009. Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic Escherichia coli . Proc Natl Acad Sci USA 106 : 17939 17944.[PubMed] [CrossRef]
19. Schmidt MA . 2010. LEEways: tales of EPEC, ATEC and EHEC. Cell Microbiol 12 : 1544 1552.[PubMed] [CrossRef]
20. Buss C,, Müller D,, Rüter C,, Heusipp G,, Schmidt MA . 2009. Identification and characterization of Ibe, a novel type III effector protein of A/E pathogens targeting human IQGAP1. Cell Microbiol 11 : 661 677.[PubMed] [CrossRef]
21. Konczy P,, Ziebell K,, Mascarenhas M,, Choi A,, Michaud C,, Kropinski AM,, Whittam TS,, Wickham M,, Finlay B,, Karmali MA . 2008. Genomic O island 122, locus for enterocyte effacement, and the evolution of virulent verocytotoxin-producing Escherichia coli . J Bacteriol 190 : 5832 5840.[PubMed] [CrossRef]
22. Deng W,, Yu HB,, de Hoog CL,, Stoynov N,, Li Y,, Foster LJ,, Finlay BB . 2012. Quantitative proteomic analysis of type III secretome of enteropathogenic Escherichia coli reveals an expanded effector repertoire for attaching/effacing bacterial pathogens. Mol Cell Proteomics 11 : 692 709.[PubMed] [CrossRef]
23. Karmali MA,, Mascarenhas M,, Shen S,, Ziebell K,, Johnson S,, Reid-Smith R,, Isaac-Renton J,, Clark C,, Rahn K,, Kaper JB . 2003. Association of genomic O island 122 of Escherichia coli EDL 933 with verocytotoxin-producing Escherichia coli seropathotypes that are linked to epidemic and/or serious disease. J Clin Microbiol 41 : 4930 4940.[PubMed] [CrossRef]
24. Jores J,, Wagner S,, Rumer L,, Eichberg J,, Laturnus C,, Kirsch P,, Schierack P,, Tschäpe H,, Wieler LH . 2005. Description of a 111-kb pathogenicity island (PAI) encoding various virulence features in the enterohemorrhagic E. coli (EHEC) strain RW1374 (O103:H2) and detection of a similar PAI in other EHEC strains of serotype O103:H2. Int J Med Microbiol 294 : 417 425.[PubMed] [CrossRef]
25. Tobe T,, Beatson SA,, Taniguchi H,, Abe H,, Bailey CM,, Fivian A,, Younis R,, Matthews S,, Marches O,, Frankel G,, Hayashi T,, Pallen MJ . 2006. An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. Proc Natl Acad Sci USA 103 : 14941 14946.[PubMed] [CrossRef]
26. Brady MJ,, Radhakrishnan P,, Liu H,, Magoun L,, Murphy KC,, Mukherjee J,, Donohue-Rolfe A,, Tzipori S,, Leong JM . 2011. Enhanced actin pedestal formation by enterohemorrhagic Escherichia coli O157:H7 adapted to the mammalian host. Front Microbiol 2 : 226. [PubMed] [CrossRef]
27. Hughes DT,, Sperandio V . 2008. Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol 6 : 111 120.[PubMed] [CrossRef]
28. Xu X,, McAteer SP,, Tree JJ,, Shaw DJ,, Wolfson EB,, Beatson SA,, Roe AJ,, Allison LJ,, Chase-Topping ME,, Mahajan A,, Tozzoli R,, Woolhouse ME,, Morabito S,, Gally DL . 2012. Lysogeny with Shiga toxin 2-encoding bacteriophages represses type III secretion in enterohemorrhagic Escherichia coli . PLoS Pathog 8 : e1002672. [PubMed] [CrossRef]
29. Büttner D . 2012. Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria. Microbiol Mol Biol Rev 76 : 262 310.[PubMed] [CrossRef]
30. Pallen MJ,, Beatson SA,, Bailey CM . 2005. Bioinformatics analysis of the locus for enterocyte effacement provides novel insights into type-III secretion. BMC Microbiol 5 : 9. [PubMed] [CrossRef]
31. Creasey EA,, Delahay RM,, Daniell SJ,, Frankel G . 2003. Yeast two-hybrid system survey of interactions between LEE-encoded proteins of enteropathogenic Escherichia coli . Microbiology 149 : 2093 2106.[PubMed] [CrossRef]
32. Ogino T,, Ohno R,, Sekiya K,, Kuwae A,, Matsuzawa T,, Nonaka T,, Fukuda H,, Imajoh-Ohmi S,, Abe A . 2006. Assembly of the type III secretion apparatus of enteropathogenic Escherichia coli . J Bacteriol 188 : 2801 2811.[PubMed] [CrossRef]
33. Sekiya K,, Ohishi M,, Ogino M,, Tamano K,, Sasakawa C,, Abe A . 2001. Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure. Proc Natl Acad Sci USA 98 : 11638 11643.[PubMed] [CrossRef]
34. Deng W,, Puente JL,, Gruenheid S,, Li Y,, Vallance BA,, Vázquez A,, Barba J,, Ibarra JA,, O’Donnell P,, Metalnikov P,, Ashman K,, Lee S,, Goode D,, Pawson T,, Finlay BB . 2004. Dissecting virulence: systematic and functional analyses of a pathogenicity island. Proc Natl Acad Sci USA 101 : 3597 3602.[PubMed] [CrossRef]
35. Mills E,, Baruch K,, Charpentier X,, Kobi S,, Rosenshine I . 2008. Real-time analysis of effector translocation by the type III secretion system of enteropathogenic Escherichia coli . Cell Host Microbe 3 : 104 113.[PubMed] [CrossRef]
36. Berger CN,, Crepin VF,, Baruch K,, Mousnier A,, Rosenshine I,, Frankel G . 2012. EspZ of enteropathogenic and enterohemorrhagic Escherichia coli regulates type III secretion system protein translocation. MBio 3 : e00317-12. [PubMed] [CrossRef]
37. Shames SR,, Deng W,, Guttman JA,, de Hoog CL,, Li Y,, Hardwidge PR,, Sham HP,, Vallance BA,, Foster LJ,, Finlay BB . 2010. The pathogenic E. coli type III effector EspZ interacts with host CD98 and facilitates host cell prosurvival signalling. Cell Microbiol 12 : 1322 1339.[PubMed] [CrossRef]
38. Tatsuno I,, Kimura H,, Okutani A,, Kanamaru K,, Abe H,, Nagai S,, Makino K,, Shinagawa H,, Yoshida M,, Sato K,, Nakamoto J,, Tobe T,, Sasakawa C . 2000. Isolation and characterization of mini-Tn 5Km2 insertion mutants of enterohemorrhagic Escherichia coli O157:H7 deficient in adherence to Caco-2 cells. Infect Immun 68 : 5943 5952.[PubMed] [CrossRef]
39. Dziva F,, van Diemen PM,, Stevens MP,, Smith AJ,, Wallis TS . 2004. Identification of Escherichia coli O157:H7 genes influencing colonization of the bovine gastrointestinal tract using signature-tagged mutagenesis. Microbiology 150 : 3631 3645.[PubMed] [CrossRef]
40. van Diemen PM,, Dziva F,, Stevens MP,, Wallis TS . 2005. Identification of enterohemorrhagic Escherichia coli O26:H– genes required for intestinal colonization in calves. Infect Immun 73 : 1735 1743.[PubMed] [CrossRef]
41. Eckert SE,, Dziva F,, Chaudhuri RR,, Langridge GC,, Turner DJ,, Pickard DJ,, Maskell DJ,, Thomson NR,, Stevens MP . 2011. Retrospective application of transposon-directed insertion site sequencing to a library of signature-tagged mini-Tn 5Km2 mutants of Escherichia coli O157:H7 screened in cattle. J Bacteriol 193 : 1771 1776.[PubMed] [CrossRef]
42. Ritchie JM,, Waldor MK . 2005. The locus of enterocyte effacement-encoded effector proteins all promote enterohemorrhagic Escherichia coli pathogenicity in infant rabbits. Infect Immun 73 : 1466 1474.[PubMed] [CrossRef]
43. Gauthier A,, Robertson ML,, Lowden M,, Ibarra JA,, Puente JL,, Finlay BB . 2005. Transcriptional inhibitor of virulence factors in enteropathogenic Escherichia coli . Antimicrob Agents Chemother 49 : 4101 4109.[PubMed] [CrossRef]
44. Rasko DA,, Moreira CG,, Li de R,, Reading NC,, Ritchie JM,, Waldor MK,, Williams N,, Taussig R,, Wei S,, Roth M,, Hughes DT,, Huntley JF,, Fina MW,, Falck JR,, Sperandio V . 2008. Targeting QseC signaling and virulence for antibiotic development. Science 321 : 1078 1080.[PubMed] [CrossRef]
45. Tree JJ,, Wang D,, McInally C,, Mahajan A,, Layton A,, Houghton I,, Elofsson M,, Stevens MP,, Gally DL,, Roe AJ . 2009. Characterization of the effects of salicylidene acylhydrazide compounds on type III secretion in Escherichia coli O157:H7. Infect Immun 77 : 4209 4220.[PubMed] [CrossRef]
46. Veenendaal AK,, Sundin C,, Blocker AJ . 2009. Small-molecule type III secretion system inhibitors block assembly of the Shigella type III secreton. J Bacteriol 191 : 563 570.[PubMed] [CrossRef]
47. Wang D,, Zetterström CE,, Gabrielsen M,, Beckham KS,, Tree JJ,, Macdonald SE,, Byron O,, Mitchell TJ,, Gally DL,, Herzyk P,, Mahajan A,, Uvell H,, Burchmore R,, Smith BO,, Elofsson M,, Roe AJ . 2011. Identification of bacterial target proteins for the salicylidene acylhydrazide class of virulence-blocking compounds. J Biol Chem 286 : 29922 29931.[PubMed] [CrossRef]
48. Ebel F,, Podzadel T,, Rohde M,, Kresse AU,, Kramer S,, Deibel C,, Guzman CA,, Chakraborty T . 1998. Initial binding of Shiga toxin-producing Escherichia coli to host cells and subsequent induction of actin rearrangements depend on filamentous EspA-containing surface appendages. Mol Microbiol 30 : 147 161.[PubMed] [CrossRef]
49. Knutton S,, Rosenshine I,, Pallen MJ,, Nisan I,, Neves BC,, Bain C,, Wolff C,, Dougan G,, Frankel G . 1998. A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. EMBO J. 17 : 2166 2176.[PubMed] [CrossRef]
50. Daniell SJ,, Takahashi N,, Wilson R,, Friedberg D,, Rosenshine I,, Booy FP,, Shaw RK,, Knutton S,, Frankel G,, Aizawa S . 2001. The filamentous type III secretion translocon of enteropathogenic Escherichia coli . Cell Microbiol 3 : 865 871.[PubMed] [CrossRef]
51. Kenny B,, DeVinney R,, Stein M,, Reinscheid DJ,, Frey EA,, Finlay BB . 1997. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91 : 511 520.[PubMed] [CrossRef]
52. Wolff C,, Nisan I,, Hanski E,, Frankel G,, Rosenshine I . 1998. Protein translocation into host epithelial cells by infecting enteropathogenic Escherichia coli . Mol Microbiol 28 : 143 155.[PubMed] [CrossRef]
53. Daniell SJ,, Kocsis E,, Morris E,, Knutton S,, Booy FP,, Frankel G . 2003. 3D structure of EspA filaments from enteropathogenic Escherichia coli . Mol Microbiol 49 : 301 308.[PubMed] [CrossRef]
54. Crepin VF,, Shaw R,, Abe CM,, Knutton S,, Frankel G . 2005. Polarity of enteropathogenic Escherichia coli EspA filament assembly and protein secretion. J Bacteriol 187 : 2881 2889.[PubMed] [CrossRef]
55. Creasey EA,, Friedberg D,, Shaw RK,, Umanski T,, Knutton K,, Rosenshine I,, Frankel G . 2003. CesAB is an enteropathogenic Escherichia coli chaperone for the type-III translocator proteins EspA and EspB. Microbiology 149 : 3639 3647.[PubMed] [CrossRef]
56. Wilson RK,, Shaw RK,, Daniell S,, Knutton S,, Frankel G . 2001. Role of EscF, a putative needle complex protein, in the type III protein translocation system of enteropathogenic Escherichia coli . Cell Microbiol 3 : 753 762.[PubMed] [CrossRef]
57. Ide T,, Laarmann S,, Greune L,, Schillers H,, Oberleithner H,, Schmidt MA . 2001. Characterization of translocation pores inserted into plasma membranes by type III-secreted Esp proteins of enteropathogenic Escherichia coli . Cell Microbiol 3 : 669 679.[PubMed] [CrossRef]
58. Kresse AU,, Rohde M,, Guzman CA . 1999. The EspD protein of enterohemorrhagic Escherichia coli is required for the formation of bacterial surface appendages and is incorporated in the cytoplasmic membranes of target cells. Infect Immun 67 : 4834 4842.[PubMed]
59. Wachter C,, Beinke C,, Mattes M,, Schmidt MA . 1999. Insertion of EspD into epithelial target cell membranes by infecting enteropathogenic Escherichia coli . Mol Microbiol 31 : 1695 1707.[PubMed] [CrossRef]
60. Warawa J,, Finlay BB,, Kenny B . 1999. Type III secretion-dependent hemolytic activity of enteropathogenic Escherichia coli . Infect Immun 67 : 5538 5540.[PubMed]
61. Shaw RK,, Daniell S,, Ebel F,, Frankel G,, Knutton S . 2001. EspA filament-mediated protein translocation into red blood cells. Cell Microbiol 3 : 213 222.[PubMed] [CrossRef]
62. Luo W,, Donnenberg MS . 2011. Interactions and predicted host membrane topology of the enteropathogenic Escherichia coli translocator protein EspB. J Bacteriol 193 : 2972 2980.[PubMed] [CrossRef]
63. Neves BC,, Mundy R,, Petrovska L,, Dougan G,, Knutton S,, Frankel G . 2003. CesD2 of enteropathogenic Escherichia coli is a second chaperone for the type III secretion translocator protein EspD. Infect Immun 71 : 2130 2141.[PubMed] [CrossRef]
64. Hartland EL,, Daniell SJ,, Delahay RM,, Neves BC,, Wallis T,, Shaw RK,, Hale C,, Knutton S,, Frankel G . 2000. The type III protein translocation system of enteropathogenic Escherichia coli involves EspA-EspB protein interactions. Mol Microbiol 35 : 1483 1492.[PubMed] [CrossRef]
65. Cleary J,, Lai LC,, Shaw RK,, Straatman-Iwanowska A,, Donnenberg MS,, Frankel G,, Knutton S . 2004. Enteropathogenic Escherichia coli (EPEC) adhesion to intestinal epithelial cells: role of bundle-forming pili (BFP), EspA filaments and intimin. Microbiology 150 : 527 538.[PubMed] [CrossRef]
66. Roe AJ,, Yull H,, Naylor SW,, Woodward MJ,, Smith DG,, Gally DL . 2003. Heterogeneous surface expression of EspA translocon filaments by Escherichia coli O157:H7 is controlled at the posttranscriptional level. Infect Immun 71 : 5900 5909.[PubMed] [CrossRef]
67. Roe AJ,, Naylor SW,, Spears KJ,, Yull HM,, Dransfield TA,, Oxford M,, McKendrick IJ,, Porter M,, Woodward MJ,, Smith DG,, Gally DL . 2004. Co-ordinate single-cell expression of LEE4- and LEE5-encoded proteins of Escherichia coli O157:H7. Mol Microbiol 54 : 337 352.[PubMed] [CrossRef]
68. Naylor SW,, Roe AJ,, Nart P,, Spears K,, Smith DG,, Low JC,, Gally DL . 2005. Escherichia coli O157:H7 forms attaching and effacing lesions at the terminal rectum of cattle and colonization requires the LEE4 operon. Microbiology 151 : 2773 2781.[PubMed] [CrossRef]
69. Nagano K,, Taguchi K,, Hara T,, Yokoyama S,, Kawada K,, Mori H . 2003. Adhesion and colonization of enterohemorrhagic Escherichia coli O157:H7 in cecum of mice. Microbiol Immunol 47 : 125 132.[PubMed] [CrossRef]
70. McNeilly TN,, Mitchell MC,, Rosser T,, McAteer S,, Low JC,, Smith DG,, Huntley JF,, Mahajan A,, Gally DL . 2010. Immunization of cattle with a combination of purified intimin-531, EspA and Tir significantly reduces shedding of Escherichia coli O157:H7 following oral challenge. Vaccine 28 : 1422 1428.[PubMed] [CrossRef]
71. Potter AA,, Klashinsky S,, Li Y,, Frey E,, Townsend H,, Rogan D,, Erickson G,, Hinkley S,, Klopfenstein T,, Moxley RA,, Smith DR,, Finlay BB . 2004. Decreased shedding of Escherichia coli O157:H7 by cattle following vaccination with type III secreted proteins. Vaccine 22 : 362 369.[PubMed] [CrossRef]
72. Neves BC,, Shaw RK,, Frankel G,, Knutton S . 2003. Polymorphisms within EspA filaments of enteropathogenic and enterohemorrhagic Escherichia coli . Infect Immun 71 : 2262 2265.[PubMed] [CrossRef]
73. Asper DJ,, Sekirov I,, Finlay BB,, Rogan D,, Potter AA . 2007. Cross reactivity of enterohemorrhagic Escherichia coli O157:H7-specific sera with non-O157 serotypes. Vaccine 25 : 8262 8269.[PubMed] [CrossRef]
74. Taylor KA,, O’Connell CB,, Luther PW,, Donnenberg MS . 1998. The EspB protein of enteropathogenic Escherichia coli is targeted to the cytoplasm of infected HeLa cells. Infect Immun 66 : 5501 5507.[PubMed]
75. Hamada D,, Hamaguchi M,, Suzuki KN,, Sakata I,, Yanagihara I . 2010. Cytoskeleton-modulating effectors of enteropathogenic and enterohemorrhagic Escherichia coli: a case for EspB as an intrinsically less-ordered effector. FEBS J 277 : 2409 2415.[PubMed] [CrossRef]
76. Iizumi Y,, Sagara H,, Kabe Y,, Azuma M,, Kume K,, Ogawa M,, Nagai T,, Gillespie PG,, Sasakawa C,, Handa H . 2007. The enteropathogenic E. coli effector EspB facilitates microvillus effacing and antiphagocytosis by inhibiting myosin function. Cell Host Microbe 2 : 383 392.[PubMed] [CrossRef]
77. Hauf N,, Chakraborty T . 2003. Suppression of NF-kappa B activation and proinflammatory cytokine expression by Shiga toxin-producing Escherichia coli . J Immunol 170 : 2074 2082.[PubMed] [CrossRef]
78. Donnenberg MS,, Tzipori S,, McKee ML,, O’Brien AD,, Alroy J,, Kaper JB . 1993. The role of the eae gene of enterohemorrhagic Escherichia coli in intimate attachment in vitro and in a porcine model. J Clin Investig 92 : 1418 1424.[PubMed] [CrossRef]
79. Yu J,, Kaper JB . 1992. Cloning and characterization of the eae gene of enterohaemorrhagic Escherichia coli O157:H7. Mol Microbiol 6 : 411 417.[PubMed] [CrossRef]
80. Cornick NA,, Booher SL,, Moon HW . 2002. Intimin facilitates colonization by Escherichia coli O157:H7 in adult ruminants. Infect Immun 70 : 2704 2707.[PubMed] [CrossRef]
81. Dean-Nystrom EA,, Bosworth BT,, Moon HW,, O’Brien AD . 1998. Escherichia coli O157:H7 requires intimin for enteropathogenicity in calves. Infect Immun 66 : 4560 4563.[PubMed]
82. Judge NA,, Mason HS,, O’Brien AD . 2004. Plant cell-based intimin vaccine given orally to mice primed with intimin reduces time of Escherichia coli O157:H7 shedding in feces. Infect Immun 72 : 168 175.[PubMed] [CrossRef]
83. Ritchie JM,, Thorpe CM,, Rogers AB,, Waldor MK . 2003. Critical roles for stx2, eae, and tir in enterohemorrhagic Escherichia coli-induced diarrhea and intestinal inflammation in infant rabbits. Infect Immun 71 : 7129 7139.[PubMed] [CrossRef]
84. Vlisidou I,, Dziva F,, La Ragione RM,, Best A,, Garmendia J,, Hawes P,, Monaghan P,, Cawthraw SA,, Frankel G,, Woodward MJ,, Stevens MP . 2006. Role of intimin-Tir interactions and the Tir-cytoskeleton coupling protein in the colonization of calves and lambs by Escherichia coli O157:H7. Infect Immun 74 : 758 764.[PubMed] [CrossRef]
85. Higgins LM,, Frankel G,, Connerton I,, Gonçalves NS,, Dougan G,, MacDonald TT . 1999. Role of bacterial intimin in colonic hyperplasia and inflammation. Science 285 : 588 591.[PubMed] [CrossRef]
86. Gonçalves NS,, Hale C,, Dougan G,, Frankel G,, MacDonald TT . 2003. Binding of intimin from enteropathogenic Escherichia coli to lymphocytes and its functional consequences. Infect Immun 71 : 2960 2965.[PubMed] [CrossRef]
87. Khare S,, Alali W,, Zhang S,, Hunter D,, Pugh R,, Fang FC,, Libby SJ,, Adams LG . 2010. Vaccination with attenuated Salmonella enterica Dublin expressing E. coli O157:H7 outer membrane protein intimin induces transient reduction of fecal shedding of E. coli O157:H7 in cattle. BMC Vet Res 6 : 35. [PubMed] [CrossRef]
88. Oliveira AF,, Cardoso SA,, Almeida FB,, de Oliveira LL,, Pitondo-Silva A,, Soares SG,, Hanna ES . 2012. Oral immunization with attenuated Salmonella vaccine expressing Escherichia coli O157:H7 intimin gamma triggers both systemic and mucosal humoral immunity in mice. Microbiol Immunol 56 : 513 522.[PubMed] [CrossRef]
89. Dean-Nystrom EA,, Gansheroff LJ,, Mills M,, Moon HW,, O’Brien AD . 2002. Vaccination of pregnant dams with intimin(O157) protects suckling piglets from Escherichia coli O157:H7 infection. Infect Immun 70 : 2414 2418.[PubMed] [CrossRef]
90. Gansheroff LJ,, Wachtel MR,, O’Brien AD . 1999. Decreased adherence of enterohemorrhagic Escherichia coli to HEp-2 cells in the presence of antibodies that recognize the C-terminal region of intimin. Infect Immun 67 : 6409 6417.[PubMed]
91. Frankel G,, Candy DC,, Everest P,, Dougan G . 1994. Characterization of the C-terminal domains of intimin-like proteins of enteropathogenic and enterohemorrhagic Escherichia coli, Citrobacter freundii, and Hafnia alvei . Infect Immun 62 : 1835 1842.[PubMed]
92. Deibel C,, Dersch P,, Ebel F . 2001. Intimin from Shiga toxin-producing Escherichia coli and its isolated C-terminal domain exhibit different binding properties for Tir and a eukaryotic surface receptor. Int J Med Microbiol 290 : 683 691.[PubMed] [CrossRef]
93. McKee ML,, O’Brien AD . 1996. Truncated enterohemorrhagic Escherichia coli (EHEC) O157:H7 intimin (EaeA) fusion proteins promote adherence of EHEC strains to HEp-2 cells. Infect Immun 64 : 2225 2233.[PubMed]
94. Liu H,, Magoun L,, Leong JM . 1999. beta1-chain integrins are not essential for intimin-mediated host cell attachment and enteropathogenic Escherichia coli-induced actin condensation. Infect Immun 67 : 2045 2049.[PubMed]
95. Rosenshine I,, Ruschkowski S,, Stein M,, Reinscheid DJ,, Mills SD,, Finlay BB . 1996. A pathogenic bacterium triggers epithelial signals to form a functional bacterial receptor that mediates actin pseudopod formation. EMBO J 15 : 2613 2624.[PubMed]
96. Rosenshine I,, Donnenberg MS,, Kaper JB,, Finlay BB . 1992. Signal transduction between enteropathogenic Escherichia coli (EPEC) and epithelial cells: EPEC induces tyrosine phosphorylation of host cell proteins to initiate cytoskeletal rearrangement and bacterial uptake. EMBO J 11 : 3551 3560.[PubMed]
97. Deibel C,, Kramer S,, Chakraborty T,, Ebel F . 1998. EspE, a novel secreted protein of attaching and effacing bacteria, is directly translocated into infected host cells, where it appears as a tyrosine-phosphorylated 90 kDa protein. Mol Microbiol 28 : 463 474.[PubMed] [CrossRef]
98. DeVinney R,, Stein M,, Reinscheid D,, Abe A,, Ruschkowski S,, Finlay BB . 1999. Enterohemorrhagic Escherichia coli O157:H7 produces Tir, which is translocated to the host cell membrane but is not tyrosine phosphorylated. Infect Immun 67 : 2389 2398.[PubMed]
99. Batchelor M,, Prasannan S,, Daniell S,, Reece S,, Connerton I,, Bloomberg G,, Dougan G,, Frankel G,, Matthews S . 2000. Structural basis for recognition of the translocated intimin receptor (Tir) by intimin from enteropathogenic Escherichia coli . EMBO J 19 : 2452 2464.[PubMed] [CrossRef]
100. Kelly G,, Prasannan S,, Daniell S,, Fleming K,, Frankel G,, Dougan G,, Connerton I,, Matthews S . 1999. Structure of the cell-adhesion fragment of intimin from enteropathogenic Escherichia coli . Nat Struct Biol 6 : 313 318.[PubMed] [CrossRef]
101. Luo Y,, Frey EA,, Pfuetzner RA,, Creagh AL,, Knoechel DG,, Haynes CA,, Finlay BB,, Strynadka NC . 2000. Crystal structure of enteropathogenic Escherichia coli intimin-receptor complex. Nature 405 : 1073 1077.[PubMed] [CrossRef]
102. Kenny B . 1999. Phosphorylation of tyrosine 474 of the enteropathogenic Escherichia coli (EPEC) Tir receptor molecule is essential for actin nucleating activity and is preceded by additional host modifications. Mol Microbiol 31 : 1229 1241.[PubMed] [CrossRef]
103. de Grado M,, Abe A,, Gauthier A,, Steele-Mortimer O,, DeVinney R,, Finlay BB . 1999. Identification of the intimin-binding domain of Tir of enteropathogenic Escherichia coli . Cell Microbiol 1 : 7 17.[PubMed] [CrossRef]
104. Hartland EL,, Batchelor M,, Delahay RM,, Hale C,, Matthews S,, Dougan G,, Knutton S,, Connerton I,, Frankel G . 1999. Binding of intimin from enteropathogenic Escherichia coli to Tir and to host cells. Mol Microbiol 32 : 151 158.[PubMed] [CrossRef]
105. Yi Y,, Ma Y,, Gao F,, Mao X,, Peng H,, Feng Y,, Fan Z,, Wang G,, Guo G,, Yan J,, Zeng H,, Zou Q,, Gao GF . 2010. Crystal structure of EHEC intimin: insights into the complementarity between EPEC and EHEC. PLoS One 5 : e15285. [PubMed] [CrossRef]
106. Liu H,, Radhakrishnan P,, Magoun L,, Prabu M,, Campellone KG,, Savage P,, He F,, Schiffer CA,, Leong JM . 2002. Point mutants of EHEC intimin that diminish Tir recognition and actin pedestal formation highlight a putative Tir binding pocket. Mol Microbiol 45 : 1557 1573.[PubMed] [CrossRef]
107. Adu-Bobie J,, Frankel G,, Bain C,, Gonçalves AG,, Trabulsi LR,, Douce G,, Knutton S,, Dougan G . 1998. Detection of intimins alpha, beta, gamma, and delta, four intimin derivatives expressed by attaching and effacing microbial pathogens. J Clin Microbiol 36 : 662 668.[PubMed]
108. Oswald E,, Schmidt H,, Morabito S,, Karch H,, Marchés O,, Caprioli A . 2000. Typing of intimin genes in human and animal enterohemorrhagic and enteropathogenic Escherichia coli: characterization of a new intimin variant. Infect Immun 68 : 64 71.[PubMed] [CrossRef]
109. Zhang WL,, Kohler B,, Oswald E,, Beutin L,, Karch H,, Morabito S,, Caprioli A,, Suerbaum S,, Schmidt H . 2002. Genetic diversity of intimin genes of attaching and effacing Escherichia coli strains. J Clin Microbiol 40 : 4486 4492.[PubMed] [CrossRef]
110. Tzipori S,, Gunzer F,, Donnenberg MS,, de Montigny L,, Kaper JB,, Donohue-Rolfe A . 1995. The role of the eaeA gene in diarrhea and neurological complications in a gnotobiotic piglet model of enterohemorrhagic Escherichia coli infection. Infect Immun 63 : 3621 3627.[PubMed]
111. Mallick EM,, Brady MJ,, Luperchio SA,, Vanguri VK,, Magoun L,, Liu H,, Sheppard BJ,, Mukherjee J,, Donohue-Rolfe A,, Tzipori S,, Leong JM,, Schauer DB . 2012. Allele- and Tir-independent functions of intimin in diverse animal infection models. Front Microbiol 3 : 11. [PubMed] [CrossRef]
112. Phillips AD,, Navabpour S,, Hicks S,, Dougan G,, Wallis T,, Frankel G . 2000. Enterohaemorrhagic Escherichia coli O157:H7 target Peyer’s patches in humans and cause attaching/effacing lesions in both human and bovine intestine. Gut 47 : 377 381.[PubMed] [CrossRef]
113. Phillips AD,, Frankel G . 2000. Intimin-mediated tissue specificity in enteropathogenic Escherichia coli interaction with human intestinal organ cultures. J Infect Dis 181 : 1496 1500.[PubMed] [CrossRef]
114. Fitzhenry RJ,, Pickard DJ,, Hartland EL,, Reece S,, Dougan G,, Phillips AD,, Frankel G . 2002. Intimin type influences the site of human intestinal mucosal colonisation by enterohaemorrhagic Escherichia coli O157:H7. Gut 50 : 180 185.[PubMed] [CrossRef]
115. Girard F,, Batisson I,, Frankel GM,, Harel J,, Fairbrother JM . 2005. Interaction of enteropathogenic and Shiga toxin-producing Escherichia coli and porcine intestinal mucosa: role of intimin and Tir in adherence. Infect Immun 73 : 6005 6016.[PubMed] [CrossRef]
116. Mundy R,, Schüller S,, Girard F,, Fairbrother JM,, Phillips AD,, Frankel G . 2007. Functional studies of intimin in vivo and ex vivo: implications for host specificity and tissue tropism. Microbiology 153 : 959 967.[CrossRef]
117. Naylor SW,, Low JC,, Besser TE,, Mahajan A,, Gunn GJ,, Pearce MC,, McKendrick IJ,, Smith DG,, Gally DL . 2003. Lymphoid follicle-dense mucosa at the terminal rectum is the principal site of colonization of enterohemorrhagic Escherichia coli O157:H7 in the bovine host. Infect Immun 71 : 1505 1512.[PubMed] [CrossRef]
118. Sheng H,, Lim JY,, Knecht HJ,, Li J,, Hovde CJ . 2006. Role of Escherichia coli O157:H7 virulence factors in colonization at the bovine terminal rectal mucosa. Infect Immun 74 : 4685 4693.[PubMed] [CrossRef]
119. Kudva IT,, Hovde CJ,, John M . 2013. Adherence of non-O157 Shiga toxin-producing Escherichia coli to bovine recto-anal junction squamous epithelial cells appears to be mediated by mechanisms distinct from those used by O157. Foodborne Pathog Dis 10 : 375 381.[PubMed] [CrossRef]
120. Kudva IT,, Griffin RW,, Krastins B,, Sarracino DA,, Calderwood SB,, John M . 2012. Proteins other than the locus of enterocyte effacement-encoded proteins contribute to Escherichia coli O157:H7 adherence to bovine rectoanal junction stratified squamous epithelial cells. BMC Microbiol 12 : 103. [PubMed] [CrossRef]
121. Sinclair JF,, O’Brien AD . 2002. Cell surface-localized nucleolin is a eukaryotic receptor for the adhesin intimin-gamma of enterohemorrhagic Escherichia coli O157:H7. J Biol Chem 277 : 2876 2885.[PubMed] [CrossRef]
122. Sinclair JF,, Dean-Nystrom EA,, O’Brien AD . 2006. The established intimin receptor Tir and the putative eucaryotic intimin receptors nucleolin and beta1 integrin localize at or near the site of enterohemorrhagic Escherichia coli O157:H7 adherence to enterocytes in vivo. Infect Immun 74 : 1255 1265.[PubMed] [CrossRef]
123. Sinclair JF,, O’Brien AD . 2004. Intimin types alpha, beta, and gamma bind to nucleolin with equivalent affinity but lower avidity than to the translocated intimin receptor. J Biol Chem 279 : 33751 33758.[PubMed] [CrossRef]
124. Frankel G,, Lider O,, Hershkoviz R,, Mould AP,, Kachalsky SG,, Candy DCA,, Cahalon L,, Humphries MJ,, Dougan G . 1996. The cell-binding domain of intimin from enteropathogenic Escherichia coli binds to beta1 integrins. J Biol Chem 271 : 20359 20364.[PubMed] [CrossRef]
125. Muza-Moons MM,, Koutsouris A,, Hecht G . 2003. Disruption of cell polarity by enteropathogenic Escherichia coli enables basolateral membrane proteins to migrate apically and to potentiate physiological consequences. Infect Immun 71 : 7069 7078.[PubMed] [CrossRef]
126. Campellone KG,, Rankin S,, Pawson T,, Kirschner MW,, Tipper DJ,, Leong JM . 2004. Clustering of Nck by a 12-residue Tir phosphopeptide is sufficient to trigger localized actin assembly. J Cell Biol 164 : 407 416.[PubMed] [CrossRef]
127. Kenny B,, Ellis S,, Leard AD,, Warawa J,, Mellor H,, Jepson MA . 2002. Co-ordinate regulation of distinct host cell signalling pathways by multifunctional enteropathogenic Escherichia coli effector molecules. Mol Microbiol 44 : 1095 1107.[PubMed] [CrossRef]
128. Campellone KG,, Giese A,, Tipper DJ,, Leong JM . 2002. A tyrosine-phosphorylated 12-amino-acid sequence of enteropathogenic Escherichia coli Tir binds the host adaptor protein Nck and is required for Nck localization to actin pedestals. Mol Microbiol 43 : 1227 1241.[PubMed] [CrossRef]
129. Gruenheid S,, DeVinney R,, Bladt F,, Goosney F,, Gelkop S,, Gish GD,, Pawson T,, Finlay BB . 2001. Enteropathogenic E. coli Tir binds Nck to initiate actin pedestal formation in host cells. Nat Cell Biol 3 : 856 859.[PubMed] [CrossRef]
130. Rohatgi R,, Nollau P,, Ho H,, Kirschner MW,, Mayer BJ . 2001. Nck and phosphatidylinositol 4,5-bisphosphate synergistically activate actin polymerization through the N-WASP-Arp2/3 pathway. J Biol Chem 276 : 26448 26452.[PubMed] [CrossRef]
131. Lommel S,, Benesch S,, Rottner K,, Franz T,, Wehland J,, Kuhn R . 2001. Actin pedestal formation by enteropathogenic Escherichia coli and intracellular motility of Shigellaflexneri are abolished in N-WASP-defective cells. EMBO Rep 2 : 850 857.[PubMed] [CrossRef]
132. Garber JJ,, Takeshima F,, Antón IM,, Oyoshi MK,, Lyubimova A,, Kapoor A,, Shibata T,, Chen F,, Alt FW,, Geha RS,, Leong JM,, Snapper SB . 2012. Enteropathogenic Escherichia coli and vaccinia virus do not require the family of WASP-interacting proteins for pathogen-induced actin assembly. Infect Immun 80 : 4071 4077.[PubMed] [CrossRef]
133. Lommel S,, Benesch S,, Rohde M,, Wehland J,, Rottner K . 2004. Enterohaemorrhagic and enteropathogenic Escherichia coli use different mechanisms for actin pedestal formation that converge on N-WASP. Cell Microbiol 6 : 243 254.[PubMed] [CrossRef]
134. DeVinney R,, Puente JL,, Gauthier A,, Goosney D,, Finlay BB . 2001. Enterohaemorrhagic and enteropathogenic Escherichia coli use a different Tir-based mechanism for pedestal formation. Mol Microbiol 41 : 1445 1458.[PubMed] [CrossRef]
135. Brady MJ,, Campellone KG,, Ghildiyal M,, Leong JM . 2007. Enterohaemorrhagic and enteropathogenic Escherichia coli Tir proteins trigger a common Nck-independent actin assembly pathway. Cell Microbiol 9 : 2242 2253.[PubMed] [CrossRef]
136. Campellone KG,, Brady MJ,, Alamares JG,, Rowe DC,, Skehan BM,, Tipper DJ,, Leong JM . 2006. Enterohaemorrhagic Escherichia coli Tir requires a C-terminal 12-residue peptide to initiate EspF-mediated actin assembly and harbours N-terminal sequences that influence pedestal length. Cell Microbiol 8 : 1488 1503.[PubMed] [CrossRef]
137. Vingadassalom D,, Kazlauskas A,, Skehan B,, Cheng HC,, Magoun L,, Robbins D,, Rosen MK,, Saksela K,, Leong JM . 2009. Insulin receptor tyrosine kinase substrate links the E. coli O157:H7 actin assembly effectors Tir and EspF(U) during pedestal formation. Proc Natl Acad Sci USA 106 : 6754 6759.[PubMed] [CrossRef]
138. Weiss SM,, Ladwein M,, Schmidt D,, Ehinger J,, Lommel S,, Städing K,, Beutling U,, Disanza A,, Frank R,, Jänsch L,, Scita G,, Gunzer F,, Rottner K,, Stradal TE . 2009. IRSp53 links the enterohemorrhagic E. coli effectors Tir and EspF U for actin pedestal formation. Cell Host Microbe 5 : 244 258.[PubMed] [CrossRef]
139. Campellone KG,, Leong JM . 2005. Nck-independent actin assembly is mediated by two phosphorylated tyrosines within enteropathogenic Escherichia coli Tir. Mol Microbiol 56 : 416 432.[PubMed] [CrossRef]
140. Campellone KG,, Robbins D,, Leong JM . 2004. EspF U is a translocated EHEC effector that interacts with Tir and N-WASP and promotes Nck-independent actin assembly. Dev Cell 7 : 217 228.[PubMed] [CrossRef]
141. Garmendia J,, Phillips AD,, Carlier MF,, Chong Y,, Schüller S,, Marches O,, Dahan S,, Oswald E,, Shaw RK,, Knutton S,, Frankel G . 2004. TccP is an enterohaemorrhagic Escherichia coli O157:H7 type III effector protein that couples Tir to the actin-cytoskeleton. Cell Microbiol 6 : 1167 1183.[PubMed] [CrossRef]
142. Cheng HC,, Skehan BM,, Campellone KG,, Leong JM,, Rosen MK . 2008. Structural mechanism of WASP activation by the enterohaemorrhagic E. coli effector EspF(U). Nature 454 : 1009 1013.[PubMed] [CrossRef]
143. Sallee NA,, Rivera GM,, Dueber JE,, Vasilescu D,, Mullins RD,, Mayer BJ,, Lim WA . 2008. The pathogen protein EspF(U) hijacks actin polymerization using mimicry and multivalency. Nature 454 : 1005 1008.[PubMed] [CrossRef]
144. Campellone KG,, Cheng HC,, Robbins D,, Siripala AD,, McGhie EJ,, Hayward RD,, Welch MD,, Rosen MK,, Koronakis V,, Leong JM . 2008. Repetitive N-WASP-binding elements of the enterohemorrhagic Escherichia coli effector EspF(U) synergistically activate actin assembly. PLoS Pathog 4 : e1000191. [PubMed] [CrossRef]
145. Garmendia J,, Carlier MF,, Egile C,, Didry D,, Frankel G . 2006. Characterization of TccP-mediated N-WASP activation during enterohaemorrhagic Escherichia coli infection. Cell Microbiol 8 : 1444 1455.[PubMed] [CrossRef]
146. Vingadassalom D,, Campellone KG,, Brady MJ,, Skehan B,, Battle SE,, Robbins D,, Kapoor A,, Hecht G,, Snapper SB,, Leong JM . 2010. Enterohemorrhagic E. coli requires N-WASP for efficient type III translocation but not for EspF U-mediated actin pedestal formation. PLoS Pathog 6 : e1001056. [PubMed] [CrossRef]
147. Bai L,, Schüller S,, Whale A,, Mousnier A,, Marches O,, Wang L,, Ooka T,, Heuschkel R,, Torrente F,, Kaper JB,, Gomes TA,, Xu J,, Phillips AD,, Frankel G . 2008. Enteropathogenic Escherichia coli O125:H6 triggers attaching and effacing lesions on human intestinal biopsy specimens independently of Nck and TccP/TccP2. Infect Immun 76 : 361 368.[PubMed] [CrossRef]
148. Schüller S,, Chong Y,, Lewin J,, Kenny B,, Frankel G,, Phillips AD . 2007. Tir phosphorylation and Nck/N-WASP recruitment by enteropathogenic and enterohaemorrhagic Escherichia coli during ex vivo colonization of human intestinal mucosa is different to cell culture models. Cell Microbiol 9 : 1352 1364.[PubMed] [CrossRef]
149. Crepin VF,, Girard F,, Schüller S,, Phillips AD,, Mousnier A,, Frankel G . 2010. Dissecting the role of the Tir:Nck and Tir:IRTKS/IRSp53 signalling pathways in vivo. Mol Microbiol 75 : 308 323.[PubMed] [CrossRef]
150. Ritchie JM,, Brady MJ,, Riley KN,, Ho TD,, Campellone KG,, Herman IM,, Donohue-Rolfe A,, Tzipori S,, Waldor MK,, Leong JM . 2008. EspF U, a type III-translocated effector of actin assembly, fosters epithelial association and late-stage intestinal colonization by E. coli O157:H7. Cell Microbiol 10 : 836 847.[PubMed] [CrossRef]
151. Ogura Y,, Ooka T,, Whale A,, Garmendia J,, Beutin L,, Tennant S,, Krause G,, Morabito S,, Chinen I,, Tobe T,, Abe H,, Tozzoli R,, Caprioli A,, Rivas M,, Robins-Browne R,, Hayashi T,, Frankel G . 2007. TccP2 of O157:H7 and non-O157 enterohemorrhagic Escherichia coli (EHEC): challenging the dogma of EHEC-induced actin polymerization. Infect Immun 75 : 604 612.[PubMed] [CrossRef]
152. Whale AD,, Hernandes RT,, Ooka T,, Beutin L,, Schüller S,, Garmendia J,, Crowther L,, Vieira MA,, Ogura Y,, Krause G,, Phillips AD,, Gomes TA,, Hayashi T,, Frankel G . 2007. TccP2-mediated subversion of actin dynamics by EPEC 2—a distinct evolutionary lineage of enteropathogenic Escherichia coli . Microbiology 153 : 1743 1755.[PubMed] [CrossRef]
153. Sanger JM,, Chang R,, Ashton F,, Kaper JB,, Sanger JW . 1996. Novel form of actin-based motility transports bacteria on the surfaces of infected cells. Cell Motil Cytoskeleton 34 : 279 287.[PubMed] [CrossRef]
154. Perna NT,, Plunkett G 3rd,, Burland V,, Mau B,, Glasner JD,, Rose DJ,, Mayhew GF,, Evans PS,, Gregor J,, Kirkpatrick HA,, Pósfai G,, Hackett J,, Klink S,, Boutin A,, Shao Y,, Miller L,, Grotbeck EJ,, Davis NW,, Lim A,, Dimalanta ET,, Potamousis KD,, Apodaca J,, Anantharaman TS,, Lin J,, Yen G,, Schwartz DC,, Welch RA,, Blattner FR . 2001. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409 : 529 533.[PubMed] [CrossRef]
155. Hayashi T,, Makino K,, Ohnishi M,, Kurokawa K,, Ishii K,, Yokoyama K,, Han CG,, Ohtsubo E,, Nakayama K,, Murata T,, Tanaka M,, Tobe T,, Iida T,, Takami H,, Honda T,, Sasakawa C,, Ogasawara N,, Yasunaga T,, Kuhara S,, Shiba T,, Hattori M,, Shinagawa H . 2001. Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res 8 : 11 22.[PubMed] [CrossRef]
156. Deng W,, Li Y,, Hardwidge PR,, Frey EA,, Pfuetzner RA,, Lee S,, Gruenheid S,, Strynakda NC,, Puente JL,, Finlay BB . 2005. Regulation of type III secretion hierarchy of translocators and effectors in attaching and effacing bacterial pathogens. Infect Immun 73 : 2135 2146.[PubMed] [CrossRef]
157. Wang D,, Roe AJ,, McAteer S,, Shipston MJ,, Gally DL . 2008. Hierarchal type III secretion of translocators and effectors from Escherichia coli O157:H7 requires the carboxy terminus of SepL that binds to Tir. Mol Microbiol 69 : 1499 1512.[PubMed] [CrossRef]
158. Charpentier X,, Oswald E . 2004. Identification of the secretion and translocation domain of the enteropathogenic and enterohemorrhagic Escherichia coli effector Cif, using TEM-1 beta-lactamase as a new fluorescence-based reporter. J Bacteriol 186 : 5486 5495.[PubMed] [CrossRef]
159. Asadulghani M,, Ogura Y,, Ooka T,, Itoh T,, Sawaguchi A,, Iguchi A,, Nakayama K,, Hayashi T . 2009. The defective prophage pool of Escherichia coli O157:prophage-prophage interactions potentiate horizontal transfer of virulence determinants. PLoS Pathog 5 : e1000408. [PubMed] [CrossRef]
160. Marchès O,, Ledger TN,, Boury M,, Ohara M,, Tu X,, Goffaux F,, Mainil J,, Rosenshine I,, Sugai M,, De Rycke J,, Oswald E . 2003. Enteropathogenic and enterohaemorrhagic Escherichia coli deliver a novel effector called Cif, which blocks cell cycle G2/M transition. Mol Microbiol 50 : 1553 1567.[PubMed] [CrossRef]
161. Taieb F,, Nougayrède JP,, Oswald E . 2011. Cycle inhibiting factors (cifs): cyclomodulins that usurp the ubiquitin-dependent degradation pathway of host cells. Toxins (Basel) 3 : 356 368.[PubMed] [CrossRef]
162. Holmes A,, Mühlen S,, Roe AJ,, Dean P . 2010. The EspF effector, a bacterial pathogen’s Swiss army knife. Infect Immun 78 : 4445 4453.[PubMed] [CrossRef]
163. Marchés O,, Wiles S,, Dziva F,, La Ragione RM,, Schüller S,, Best A,, Phillips AD,, Hartland EL,, Woodward MJ,, Stevens MP,, Frankel G . 2005. Characterization of two non-locus of enterocyte effacement-encoded type III-translocated effectors, NleC and NleD, in attaching and effacing pathogens. Infect Immun 73 : 8411 8417.[PubMed] [CrossRef]
164. Wong AR,, Pearson JS,, Bright MD,, Munera D,, Robinson KS,, Lee SF,, Frankel G,, Hartland EL . 2011. Enteropathogenic and enterohaemorrhagic Escherichia coli: even more subversive elements. Mol Microbiol 80 : 1420 1438.[PubMed] [CrossRef]
165. Nadler C,, Baruch K,, Kobi S,, Mills E,, Haviv G,, Farago M,, Alkalay I,, Bartfeld S,, Meyer TF,,