1887

Chapter 12.4 : SB I T

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

SB I T, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818814/9781555818814_Chap12.4-1.gif /docserver/preview/fulltext/10.1128/9781555818814/9781555818814_Chap12.4-2.gif
There is no abstract provided for this chapter. We are in the process of generating a full text preview. Please bookmark and return later.
Citation: Leber A. 2016. SB I T, p 12.4.1.1-12.4.2.20. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch12.4
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 12.4.2–1
Figure 12.4.2–1

Left panels represent electropherograms before normalization, with marker peaks illustrated (open circles). Right panels represent normalized electropherograms, with marker peaks removed. A, low, broad markers; B, low-intensity electropherogram.

Citation: Leber A. 2016. SB I T, p 12.4.1.1-12.4.2.20. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch12.4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12.4.2–2
Figure 12.4.2–2

Normalized electropherogram for with several high-intensity peaks.

Citation: Leber A. 2016. SB I T, p 12.4.1.1-12.4.2.20. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch12.4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12.4.2–3
Figure 12.4.2–3

Overlay of two related strains of illustrating peak differences (arrows).

Citation: Leber A. 2016. SB I T, p 12.4.1.1-12.4.2.20. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch12.4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12.4.2–4
Figure 12.4.2–4

Dendogram of a cluster of infections. P = patterns representing identical isolates with >97% similarity and no band differences. G = group indicating related isolates with 95-97% similarity and one band difference. Bracket illustrates related or identical isolates. Arrows indicate band differences between isolates.

Citation: Leber A. 2016. SB I T, p 12.4.1.1-12.4.2.20. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch12.4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12.4.2–5
Figure 12.4.2–5

Similarity matrix of cluster.

Citation: Leber A. 2016. SB I T, p 12.4.1.1-12.4.2.20. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch12.4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12.4.2–6
Figure 12.4.2–6

Scatter plot of cluster. The circled numbers illustrate the related isolates.

Citation: Leber A. 2016. SB I T, p 12.4.1.1-12.4.2.20. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch12.4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12.4.2–7
Figure 12.4.2–7

PFGE analysis of chromosomal DNA digested with I. Isolates 1, 2, and 3 differ by up to three bands, indicating they are similar. Isolate 4 differs from isolates 1 to 3 by ≥7 bands, indicating they are different and likely unrelated.

Citation: Leber A. 2016. SB I T, p 12.4.1.1-12.4.2.20. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch12.4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12.4.2–8
Figure 12.4.2–8

PFGE analysis of chromosomal DNA digested with I. Isolates 2 and 3 are indistinguishable and differ from isolate 1 by only two bands, indicating they are similar. Isolate 4 differs from isolates 1 to 3 by ≥7 bands, indicating they are different and likely unrelated.

Citation: Leber A. 2016. SB I T, p 12.4.1.1-12.4.2.20. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch12.4
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818814.chap12.4
1. Bosshard PP, Abels S, Zbinden R, Bottger EC, Altwegg M. 2003. Ribosomal DNA sequencing for identification of aerobic gram-positive rods in the clinical laboratory (an 18-month evaluation). J Clin Microbiol 41:41344140.
2. Tang YW, Ellis NM, Hopkins MK, Smith DH, Dodge DE, Persing DH. 1998. Comparison of phenotypic and genotypic techniques for identification of unusual aerobic pathogenic gram-negative bacilli. J Clin Microbiol 36:36743679.
3.CLSI. 2008. Interpretative Criteria for Identification of Bacteria and Fungi by DNA Target Sequencing. Approved Guideline MM18-A. CLSI, Wayne, PA.
4. Bottger EC. 2005. Rapid determination of bacterial ribosomal RNA sequences by direct sequencing of enzymatically amplified DNA. FEMS Microbiol Lett 53:171176.
5. Christensen JJ, Andresen K, Justesen T, Kemp M. 2005. Ribosomal DNA sequencing: experiences from use in the Danish National Reference Laboratory for Identification of Bacteria. APMIS 113:621628.
6. Patel JB, Leonard DG, Pan X, Musser JM, Berman RE, Nachamkin I. 2000. Sequence-based identification of Mycobacterium species using the MicroSeq 500 16S rDNA bacterial identification system. J Clin Microbiol 38:246251.
7. Patel JB, Wallace RJJr, Brown-Elliott BA, Taylor T, Imperatrice C, Leonard DG, Wilson RW, Mann L, Jost KC, Nachamkin I. 2004. Sequence-based identification of aerobic actinomycetes. J Clin Microbiol 42:25302340.
8. Petti CA, Simmon KE, Miro JM, Hoen B, Marco F, Chu VH, Athan E, Bukovski S, Bouza E, Bradley S, Fowler VG, Giannitsioti E, Gordon D, Reinbott P, Korman T, Lang S, Garcia-de-la-Maria C, Raglio A, Morris AJ, Plesiat P, Ryan S, Doco-Lecompte T, Tripodi F, Utili R, Wray D, Federspiel JJ, Boisson K, Reller LB, Murdoch DR, Woods CW. 2008. Genotypic diversity of coagulase-negative staphylococci causing endocarditis: a global perspective. J Clin Microbiol 46:17801784.
9. Simmon KE, Hall L, Woods CW, Marco F, Miro JM, Cabell C, Hoen B, Marin M, Utili R, Giannitsioti E, Doco-Lecompte T, Bradley S, Mirrett S, Tambic A, Ryan S, Gordon D, Jones P, Korman T, Wray D, Reller LB, Tripodi MF, Plesiat P, Morris AJ, Lang S, Murdoch DR, Petti CA. 2008. Phylogenetic analysis of viridans group streptococci causing endocarditis. J Clin Microbiol 46:30873090.
10. Simmon KE, Pounder JI, Greene JN, Walsh F, Anderson CM, Cohen S, Petti CA. 2007. Identification of an emerging pathogen, Mycobacterium massiliense, by rpoB sequencing of clinical isolates collected in the United States. J Clin Microbiol 45:19781980.
11. Yamamoto S, Bouvet PJ, Harayama S. 1999. Phylogenetic structures of the genus Acinetobacter based on gyrB sequences: comparison with the grouping by DNA-DNA hybridization. Int J Syst Bacteriol 49(Pt 1):8795.
12. Woese CR. 1987. Bacterial evolution. Microbiol Rev 51:221271.
13. Fox GE, Wisotzkey JD, Jurtshuk PJr. 1992. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166170.
14. Petti CA. 2007. Detection and identification of microorganisms by gene amplification and sequencing. Clin Infect Dis 44:11081114.
15. Fontana C, Favaro M, Pelliccioni M, Pistoia ES, Favalli C. 2005. Use of the MicroSeq 500 16S rRNA gene-based sequencing for identification of bacterial isolates that commercial automated systems failed to identify correctly. J Clin Microbiol 43:615619.
16. Simmon KE, Croft AC, Petti CA. 2006. Application of SmartGene IDNS software to partial 16S rRNA gene sequences for a diverse group of bacteria in a clinical laboratory. J Clin Microbiol 44:44004406.
17. Kolbert CP, Rys PN, Hopkins M, Lynch DT, Germer JJ, O’Sullivan CE, Trampuz A, Patel R. 2003. 16S Ribosomal DNA Sequence Analysis for Identification of Bacteria in a Clinical Microbiology Laboratory, p 361378. In: Persing DH, Tang Y-W, Versalovic J (ed), Molecular Microbiology: Diagnostic Principles and Practices, 1st ed. ASM Press, Washington, DC.
18. Schwarz P, Bretagne S, Gantier JC, Garcia-Hermoso D, Lortholary O, Dromer F, Dannaoui E. 2006. Molecular identification of zygomycetes from culture and experimentally infected tissues. J Clin Microbiol 44:340349.
19. Alvarez E, Sutton DA, Cano J, Fothergill AW, Stchigel A, Rinaldi MG, Guarro J. 2009. Spectrum of zygomycete species identified in clinically significant specimens in the United States. J Clin Microbiol 47:16501656.
20. Perdomo H, Sutton DA, Garcia D, Fothergill AW, Gene J, Cano J, Summerbell RC, Rinaldi MG, Guarro J. 2011. Molecular and phenotypic characterization of Phialemonium and Lecythophora isolates from clinical samples. J Clin Microbiol 49:12091216.
21. Tuohy MJ, Hall GS, Sholtis M, Procop GW. 2005. Pyrosequencing as a tool for the identification of common isolates of Mycobacterium sp. Diagn Microbiol Infect Dis 51:245250.
22. Heller LC, Jones M, Widen RH. 2008. Comparison of DNA pyrosequencing with alternative methods for identification of mycobacteria. J Clin Microbiol 46:20922094.
23. Luna RA, Fasciano LR, Jones SC, Boyanton BLJr, Ton TT, Versalovic J. 2007. DNA pyrosequencing-based bacterial pathogen identification in a pediatric hospital setting. J Clin Microbiol 45:29852992.
24. Pounder JI, Simmon KE, Barton CA, Hohmann SL, Brandt ME, Petti CA. 2007. Discovering potential pathogens among fungi identified as nonsporulating molds. J Clin Microbiol 45:568571.
1.CLSI. 2007. Molecular Methods for Bacterial Strain Typing; Approved Guideline. MM11-A. CLSI, Wayne, PA.
2. Bertelli C, Greub G. 2013. Rapid bacterial genome sequencing: methods and applications in clinical microbiology. Clini Microbiol Infect 19:803813.
3. Reuter S, Ellington MJ, Cartwright EJ, Koser CU, Torok ME, Gouliouris T, Harris SR, Brown NM, Holden MT, Quail M, Parkhill J, Smith GP, Bentley SD, Peacock SJ. 2013. Rapid bacterial whole-genome sequencing to enhance diagnostic and public health microbiology. JAMA Intern Med 173:13971404.
4. Koser CU, Holden MT, Ellington MJ, Cart-wright EJ, Brown NM, Ogilvy-Stuart AL, Hsu LY, Chewapreecha C, Croucher NJ, Harris SR, Sanders M, Enright MC, Dougan G, Bentley SD, Parkhill J, Fraser LJ, Betley JR, Schulz-Trieglaff OB, Smith GP, Peacock SJ. 2012. Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak. N Engl J Med 366:22672275.
5. Sherry NL, Porter JL, Seemann T, Watkins A, Stinear TP, Howden BP. 2013. Outbreak investigation using high-throughput genome sequencing within a diagnostic microbiology laboratory. J Clin Microbiol 51:13961401.
6. Clarridge JEIII, Harrington AT, Roberts MC, Soge OO, Maquelin K. 2013. Impact of strain typing methods on assessment of relationship between paired nares and wound isolates of methicillin-resistant Staphylococcus aureus. J Clin Microbiol 51:224231.
7. Hall BG, Kirkup BC, Riley MC, Barlow M. 2013. Clustering acinetobacter strains by optical mapping. Genome Biol Evol 5:11761184.
8. te Witt R, Vaessen N, Melles DC, Lekkerkerk WS, van der Zwaan EA, Zandijk WH, Severin JA, Vos MC. 2013. Good performance of the SpectraCellRA system for typing of methicillin-resistant Staphylococcus aureus isolates. J Clini Microbiol 51:14341438.
9. Schuetz AN, Huard RC, Eshoo MW, Massire C, Della-Latta P, Wu F, Jenkins SG. 2012. Identification of a novel Acinetobacter baumannii clone in a US hospital outbreak by multilocus polymerase chain reaction/electros-pray-ionization mass spectrometry. Diagn Microbiol Infect Dis 72:1419.
10. Wolters M, Rohde H, Maier T, Belmar-Campos C, Franke G, Scherpe S, Aepfelbacher M, Christner M. 2011. MALDI-TOF MS fingerprinting allows for discrimination of major methicillin-resistant Staphylococcus aureus lineages. Int J Med Microbiol 301:6468.
1. Tenover FC, Gay EA, Frye S, Eells SJ, Healy M, McGowan JEJr. 2009. Comparison of typing results obtained for methicillin-resistant Staphylococcus aureus isolates with the DiversiLab system and pulsed-field gel electrophoresis. J Clin Microbiol 47:24522457.
2. Bourdon N, Lemire A, Fines-Guyon M, Auzou M, Perichon B, Courvalin P, Cattoir V, Leclercq R. 2011. Comparison of four methods, including semi-automated rep-PCR, for the typing of vancomycin-resistant Enterococcus faecium. J Microbiol Methods 84:7480.
3. Overdevest IT, Willemsen I, Elberts S, Verhulst C, Rijnsburger M, Savelkoul P, Kluytmans JA. 2011. Evaluation of the DiversiLab typing method in a multicenter study assessing horizontal spread of highly resistant gram-negative rods. J Clin Microbiol 49:35513554.
4. Brolund A, Haeggman S, Edquist PJ, Gezelius L, Olsson-Liljequist B, Wisell KT, Giske CG. 2010. The DiversiLab system versus pulsed-field gel electrophoresis: character-isation of extended spectrum beta-lactamase producing Escherichia coli and Klebsiella pneumoniae. J Microbiol Methods 83:224230.
5. Pitout JD, Campbell L, Church DL, Wang PW, Guttman DS, Gregson DB. 2009. Using a commercial DiversiLab semiautomated repetitive sequence-based PCR typing technique for identification of Escherichia coli clone ST131 producing CTX-M-15. J Clin Microbiol 47:12121215.
6. Church DL, Chow BL, Lloyd T, Gregson DB. Evaluation of automated repetitive-sequence-based PCR (DiversiLab) compared to PCR ribotyping for rapid molecular typing of community- and nosocomial-acquired Clostridium difficile. Diagn Microbiol Infect Dis 70:183190.
7. Eckert C, Van Broeck J, Spigaglia P, Burghoffer B, Delmee M, Mastrantonio P, Barbut F. 2011. Comparison of a commercially available repetitive-element PCR system (DiversiLab) with PCR ribotyping for typing of clostridium difficile strains. J Clin Microbiol 49:33523354.
8. Pasanen T, Kotila SM, Horsma J, Virolainen A, Jalava J, Ibrahem S, Antikainen J, Mero S, Tarkka E, Vaara M, Tissari P. 2011. Comparison of repetitive extragenic palindromic sequence-based PCR with PCR ribotyping and pulsed-field gel electrophoresis in studying the clonality of Clostridium difficile. Clin Microbiol Infect 17:166175.
9. Bourdon N, Lemire A, Fines-Guyon M, Auzou M, Perichon B, Courvalin P, Cattoir V, Leclercq R. 2011. Comparison of four methods, including semi-automated rep-PCR, for the typing of vancomycin-resistant Enterococcus faecium. J Microbiol Methods 84:74-80.
10. Overdevest IT, Willemsen I, Elberts S, Verhulst C, Rijnsburger M, Savelkoul P, Kluytmans JA. 2011. Evaluation of the DiversiLab typing method in a multicenter study assessing horizontal spread of highly resistant gram-negative rods. J Clin Microbiol 49:35513554.
11. Westblade LF, Chamberland RR, Mac-Cannell D, Collins R, Dubberke ER, Dunne WMJr., Burnham CA. 2013. Development and evaluation of a novel, semiautomated Clostridium difficile typing platform. J Clin Microbiol 51:621624.
46. Sabat AJ, Budimir A, Nashev D, Sa-Leao R, van Dijl J, Laurent F, Grundmann H, Friedrich AW; ESCMID Study Group of Epidemiological Markers (ESGEM). 2013. Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Euro Surveill 18:20380.
1. Pfaller MA, Caliendo AM, Versalovic J. 2010. Chromosomal restriction fragment analysis by pulsed-field gel electrophoresis: application to molecular epidemiology, p 12.4.5.112.4.5.7.. In Garcia LS (ed), Clinical Microbiology Procedures Handbook, 3rd ed. ASM Press, Washington, DC.;
2. CLSI. 2007. Molecular Methods for Bacterial Strain Typing; Approved Guideline. CLSI, Wayne, PA.
3. Ribot EM, Fair MA, Gautom R, Cameron DN, Hunter SB, Swaminathan B, Barrett TJ. 2006. Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157:H7, Salmonella, and Shigella for PulseNet. Foodborne Pathog Dis 3:5967.
4. Golanbar GD, Lam CK, Chu YM, Cueva C, Tan SW, Silva I, Xu HH. 2011. Phenotypic and molecular characterization of Acinetobacter clinical isolates obtained from inmates of California correctional facilities. J Clin Microbiol 49:21212131.
5. Goering RV. 2010. Pulsed field gel electrophoresis: a review of application and interpretation in the molecular epidemiology of infectious disease. Infect Genet Evol 10:866875.
6. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan B. 1995. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:22332239.
53. Gerner-Smidt P, Hyytia-Trees E, Rota PA. 2011 Molecular epidemiology. In Versalovic J (ed), Manual of Clinical Microbiology. ASM Press, Washington, DC.
54. Hunter SB, Vauterin P, Lambert-Fair MA, Van Duyne MS, Kubota K, Graves L, Wrigley D, Barrett T, Ribot E. 2005. Establishment of a universal size standard strain for use with the PulseNet standardized pulsed-field gel electrophoresis protocols: converting the national databases to the new size standard. J Clin Microbiol 43:10451050.
55. Sabat AJ, Budimir A, Nashev D, Sa-Leao R, van Dijl J, Laurent F, Grundmann H, Friedrich AW. 2013. Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Euro Surveill18:20380.
56. Singh A, Goering RV, Simjee S, Foley SL, Zervos MJ. 2006. Application of molecular techniques to the study of hospital infection. Clin Microbiol Rev 19:512530.
57. Tenover FC, Arbeit RD, Goering RV. 1997. How to select and interpret molecular strain typing methods for epidemiological studies of bacterial infections: a review for healthcare epidemiologists. Molecular Typing Working Group of the Society for Healthcare Epidemiology of America. Infect Control Hosp Epidemiol 18:426439.
58. van Belkum A, Tassios PT, Dijkshoorn L, Haeggman S, Cookson B, Fry NK, Fussing V, Green J, Feil E, Gerner-Smidt P, Brisse S, Struelens M. 2007. Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clin Microbiol Infect 13(Suppl 3):146.
1. Frenay HM, Bunschoten AE, Schouls LM, van Leeuwen WJ, Vandenbroucke-Grauls CM, Verhoef J, Mooi FR. 1996. Molecular typing of methicillin-resistant Staphylococcus aureus on the basis of protein A gene polymorphism. Eur J Clin Microbiol Infect Dis 15:6064.
2. Ruppitsch W, Indra A, Stoger A, Mayer B, Stadlbauer S, Wewalka G, Allerberger F. 2006. Classifying spa types in complexes improves interpretation of typing results for methicillin-resistant Staphylococcus aureus. J Clin Microbiol 44:24422448.
3. Strommenger B, Kettlitz C, Weniger T, Harmsen D, Friedrich AW, Witte W. 2006. Assignment of Staphylococcus isolates to groups by spa typing, SmaI macrorestriction analysis, and multilocus sequence typing. J Clin Microbiol 44:25332540.
4. Strommenger B, Braulke C, Heuck D, Schmidt C, Pasemann B, Nubel U, Witte W. 2008. spa Typing of Staphylococcus aureus as a frontline tool in epidemiological typing. J Clin Microbiol 46:574581.
5. Slatko BE, Kieleczawa J, Ju J, Gardner AF, Hendrickson CL, Ausubel FM. 2011. “First generation” automated DNA sequencing technology. Curr Protoc Mol Biol. Chapter 7:Unit 7.2. 6. CLSI. 2014. Nucleic Acid Sequencing Methods in Diagnostic Laboratory Medicine; Approved Guideline, 2nd ed. CLSI, Wayne, PA.
7. Kahl BC, Mellmann A, Deiwick S, Peters G, Harmsen D. 2005. Variation of the polymorphic region X of the protein A gene during persistent airway infection of cystic fibrosis patients reflects two independent mechanisms of genetic change in Staphylococcus aureus. J Clin Microbiol 43:502505.
8. Koreen L, Ramaswamy SV, Graviss EA, Naidich S, Musser JM, Kreiswirth BN. 2004. spa typing method for discriminating among Staphylococcus aureus isolates: implications for use of a single marker to detect genetic micro- and macrovariation. J Clin Microbiol 42:792799.
9. Basset P, Nubel U, Witte W, Blanc DS. 2012. Evaluation of adding a second marker to overcome Staphylococcus aureus spa typing homoplasies. J Clin Microbiol 50:14751477.
10. Senn L, Zanetti G, Bally F, Chuard C, Cometta A, Burr M, Eisenring MC, Basset P, Blanc DS. 2011. Investigation of classical epidemiological links between patients harbouring identical, non-predominant meticillin-resistant Staphylococcus aureus genotypes and lessons for epidemiological tracking. J Hosp Infect 79:202205.
68. Gerner-Smidt P, Hyytia-Trees E, Rota PA. 2011 Molecular epidemiology. In Versalovic J, ed. Manual of Clinical Microbiology. ASM Press, Washington, DC.
69. Sabat AJ, Budimir A, Nashev D, Sa-Leao R, van Dijl J, Laurent F, Grundmann H, Friedrich AW. 2013. Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Euro Surveill 18:20380.
70. van Belkum A, Tassios PT, Dijkshoorn L, Haeggman S, Cookson B, Fry NK, Fussing V, Green J, Feil E, Gerner-Smidt P, Brisse S, Struelens M. 2007. Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clin Microbiol Infect 13(Suppl 3):146.
71. Hallin M, Deplano A, Denis O, De Mendonca R, De Ryck R, Struelens MJ. 2007. Validation of pulsed-field gel electrophoresis and spa typing for long-term, nationwide epidemiological surveillance studies of Staphylococcus aureus infections. J Clin Microbiol 45:127133.
1. Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. 2000. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol 38:10081015.
2. Prager EM, Wilson AC. 1978. Construction of phylogenetic trees for proteins and nucleic acids: empirical evaluation of alternative matrix methods. J Mol Evol 11:129142.
3. Huson DH. 1998. SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14:6873.
4. Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG. 2004. eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol 186:15181530.
5. Maiden MC. 2006. Multilocus sequence typing of bacteria. Annu Rev Microbiol 60:561588.
6. Priest FG, Barker M, Baillie LW, Holmes EC, Maiden MC. 2004. Population structure and evolution of the Bacillus cereus group. J Bacteriol 186:79597970.
78. Aanensen DM, Spratt BG. 2005. The multilocus sequence typing network: mlst.net. Nucleic Acids Res 33(Web Server issue):W72833.

Tables

Generic image for table
Table 124.1–1

Selected available reagents, kits, and software for sequence-based identification of bacteria or fungi

Citation: Leber A. 2016. SB I T, p 12.4.1.1-12.4.2.20. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch12.4
Generic image for table
Table 124.2–1

Example electrophoresis conditions for selected organisms

Citation: Leber A. 2016. SB I T, p 12.4.1.1-12.4.2.20. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch12.4
Generic image for table
Table 124.2–2

The seven loci and primers for multilocus sequence typing of located at http://www.mlst.net/

Citation: Leber A. 2016. SB I T, p 12.4.1.1-12.4.2.20. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch12.4

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error