1887

Chapter 3.18 : Identification of Gram-Positive Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Identification of Gram-Positive Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818814/9781555818814_Chap3.18-1.gif /docserver/preview/fulltext/10.1128/9781555818814/9781555818814_Chap3.18-2.gif

Abstract:

Unlike Gram-negative rods, it can be difficult to definitively identify Gram-positive cocci and rods to the genus and species levels. Many kits for staphylococcal identification have proven to be less sensitive than desired, and DNA studies have indicated that many streptococci have been historically misidentified. Gram-positive rods have been difficult to identify because there are hundreds of validly named species found in the environment or that are part of the normal microbiota of the human body, including the skin, mucosal membranes, oropharynx, and genitourinary and gastrointestinal tracts. Thus, it is not within the scope of this handbook to provide the means to identify all isolates; rather, the goal is to allow investigators to detect and identify the most common pathogenic microorganisms in the human biosphere and to limit other identifications to those bacteria that are involved in disease from invasively collected specimens. The figures and tables that follow are designed to allow rapid determination of the agents of infection and to provide guidance for when to use a kit or pursue other identification methods. Because of the increasing microbial diversity, the emergence of common pathogens having rare or unique phenotypic characteristics, and the identification of new pathogens with incompletely defined phenotypes, more laboratories are relying on a combination of phenotypic and genotypic methods to report an accurate identification for many bacteria. Therefore, indications where molecular identification using DNA target sequencing may be useful are included here ( ).

Citation: Leber A. 2016. Identification of Gram-Positive Bacteria, p 3.18.1.1-3.18.2.22. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch3.18
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 3.18.1–1
Figure 3.18.1–1

Flowchart for identification of catalase-positive, Gram-positive cocci. “DNA probe +” refers to commercial probes which target ; however, such probes can also be positive for the closely related species . Differentiation of these species is described in footnotes to Table 3.18.1–2 .

Citation: Leber A. 2016. Identification of Gram-Positive Bacteria, p 3.18.1.1-3.18.2.22. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch3.18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.18.1–2
Figure 3.18.1–2

Flowchart for identification of catalase-negative, Gram-positive cocci, either beta-hemolytic or nonhemolytic, with morphology of group B streptococci.

Citation: Leber A. 2016. Identification of Gram-Positive Bacteria, p 3.18.1.1-3.18.2.22. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch3.18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.18.1–3
Figure 3.18.1–3

Flowchart for identification of Gram-positive, catalase-negative cocci that are not beta-hemolytic. R, resistant; S, susceptible; Pos, positive; Neg, negative.

Citation: Leber A. 2016. Identification of Gram-Positive Bacteria, p 3.18.1.1-3.18.2.22. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch3.18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.18.1–4
Figure 3.18.1–4

Flowchart for identification of PYR-positive, catalase-negative, Gram-positive cocci. R, resistant; S, susceptible; VRE, vancomycin-resistant enterococci; MGP, methyl-α--glucopyranoside.

Citation: Leber A. 2016. Identification of Gram-Positive Bacteria, p 3.18.1.1-3.18.2.22. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch3.18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.18.1–5
Figure 3.18.1–5

Guide to distinguish genera and significant species of Gram-positive rods. VP, Voges-Proskauer. (Refer to section 6 for aerobic actinomycetes.)

Citation: Leber A. 2016. Identification of Gram-Positive Bacteria, p 3.18.1.1-3.18.2.22. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch3.18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Algorithm 1
Algorithm 1

Citation: Leber A. 2016. Identification of Gram-Positive Bacteria, p 3.18.1.1-3.18.2.22. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch3.18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.18.2–1
Figure 3.18.2–1

Identification scheme for Gram-negative diplococci; also see Table 3.18.2–1 .

Citation: Leber A. 2016. Identification of Gram-Positive Bacteria, p 3.18.1.1-3.18.2.22. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch3.18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.18.2–2
Figure 3.18.2–2

Identification scheme for Gram-negative rods that do not grow on BAP aerobically in 5% CO. CYE, charcoal-yeast extract agar.

Citation: Leber A. 2016. Identification of Gram-Positive Bacteria, p 3.18.1.1-3.18.2.22. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch3.18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.18.2–3
Figure 3.18.2–3

Identification scheme for Gram-negative rods that grow on BAP with 5% CO but do not grow well on MAC in 48 h.

Citation: Leber A. 2016. Identification of Gram-Positive Bacteria, p 3.18.1.1-3.18.2.22. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch3.18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.18.2–4
Figure 3.18.2–4

Identification scheme for Gram-negative rods that grow on BAP and MAC.

Citation: Leber A. 2016. Identification of Gram-Positive Bacteria, p 3.18.1.1-3.18.2.22. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch3.18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.18.2–5
Figure 3.18.2–5

Identification scheme for Gram-negative rods that grow well on BAP and MAC and are not identified from Fig. 3.18.2–4 .

Citation: Leber A. 2016. Identification of Gram-Positive Bacteria, p 3.18.1.1-3.18.2.22. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch3.18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.18.2–6
Figure 3.18.2–6

Identification scheme for Gram-negative rods that grow on BAP and MAC and are not identified by Fig. 3.18.2–4 and 3.18.2–5 .

Citation: Leber A. 2016. Identification of Gram-Positive Bacteria, p 3.18.1.1-3.18.2.22. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch3.18
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818814.chap3.18
1. Bharadwaj R, Swaminathan S, Salimnia H, Fairfax M, Frey A, Chandrasekar PH. 2012. Clinical impact of the use of 16S rRNA sequencing method for the identification of “difficult-to-identify” bacteria in immunocompromised hosts. Transpl Infect Dis 14:206212.
2. CLSI. 2008. Interpretive Criteria for Identification of Bacteria and Fungi by DNA target sequencing. Approved guideline. CLSI document MM18-A. CLSI, Wayne, PA.
3. Bernard K. 2012. The genus corynebacterium and other medically relevant coryneform-like bacteria. J Clin Microbiol 50:31523158.
4. Wade WG, Kononen E. 2011. Propionibacterium, Lactobacillus, Actinomyces, and other non-spore-forming anaerobic gram-positive rods, p 817833. In Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW (ed), Manual of Clinical Microbiology, 10th ed, vol 1. ASM Press, Washington, DC.
5. Hall V. 2008. Actinomyces—gathering evidence of human colonization and infection. Anaerobe 14:17.
6. Conville PS, Witebsky FG. 2011. Nocardia, Rhodococcus, Gordonia, Actinomadura, Streptomyces and other aerobic actinomycetes, p 443471. In Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW (ed), Manual of Clinical Microbiology, 10th ed, vol 1. ASM Press, Washington, DC.
7. Doern CD. 2013. Charting uncharted territory: a review of the verification and implementation process for matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for organism identification. Clin Microbiol Newsl 35:6978.
8. Patel R. 17 April 2013. Matrix-assisted laser desorption ionization-time of flight mass spectrometry in clinical microbiology. Clin Infect Dis doi:10.1093/cid/cit247.
9. Bergeron M, Dauwalder O, Gouy M, Freydiere AM, Bes M, Meugnier H, Benito Y, Etienne J, Lina G, Vandenesch F, Boisset S. 2011. Species identification of staphylococci by amplification and sequencing of the tuf gene compared to the gap gene and by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Eur J Clin Microbiol Infect Dis 30:343354.
10. Fang H, Ohlsson AK, Ullberg M, Ozenci V. 2012. Evaluation of species-specific PCR, Bruker MS, VITEK MS and the VITEK 2 system for the identification of clinical Enterococcus isolates. Eur J Clin Microbiol Infect Dis 31:30733077.
11. Schulthess B, Brodner K, Bloemberg GV, Zbinden R, Bottger EC, Hombach M. 2013. Identification of Gram-positive cocci by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry: comparison of different preparation methods and implementation of a practical algorithm for routine diagnostics. J Clin Microbiol 51:18341840.
12. Zbinden A, Mueller NJ, Tarr PE, Eich G, Schulthess B, Bahlmann AS, Keller PM, Bloemberg GV. 2012. Streptococcus tigurinus, a novel member of the Streptococcus mitis group, causes invasive infections. J Clin Microbiol 50:29692973.
13. Zbinden A, Mueller NJ, Tarr PE, Sproer C, Keller PM, Bloemberg GV. 2012. Streptococcus tigurinus sp. nov., isolated from blood of patients with endocarditis, meningitis and spondylodiscitis. Int J Syst Evol Microbiol 62:29412945.
14. Dubois D, Segonds C, Prere MF, Marty N, Oswald E. 2013. Identification of clinical Streptococcus pneumoniae isolates among other alpha and nonhemolytic streptococci by use of the Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system. J Clin Microbiol 51:18611867.
15. Christensen JJ, Dargis R, Hammer M, Justesen US, Nielsen XC, Kemp MDanish MALDI-TOF MS Study Group. 2012. Matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis of Gram-positive, catalase-negative cocci not belonging to the Streptococcus or Enterococcus genus and benefits of database extension. J Clin Microbiol 50:17871791.
16. Theel ES, Schmitt BH, Hall L, Cunningham SA, Walchak RC, Patel R, Wengenack NL. 2012. Formic acid-based direct, on-plate testing of yeast and Corynebacterium species by Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 50:30933095.
17. Vila J, Juiz P, Salas C, Almela M, de la Fuente CG, Zboromyrska Y, Navas J, Bosch J, Aguero J, de la Bellacasa JP, Martinez-Martinez L. 2012. Identification of clinically relevant Corynebacterium spp., Arcanobacterium haemolyticum and Rhodococcus equi by matrix-assisted laser desorption ionization–time of flight mass spectrometry. J Clin Microbiol 50:17451749.
18. Farfour E, Leto J, Barritault M, Barberis C, Meyer J, Dauphin B, Le Guern AS, Lefleche A, Badell E, Guiso N, Leclercq A, Le Monnier A, Lecuit M, Rodriguez-Nava V, Bergeron E, Raymond J, Vimont S, Bille E, Carbonnelle E, Guet-Revillet H, Lecuyer H, Beretti JL, Vay C, Berche P, Ferroni A, Nassif X, Join-Lambert O. 2012. Evaluation of the Andromas matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of aerobically growing Gram-positive bacilli. J Clin Microbiol 50:27022707.
19. Funke G, Bernard KA. 2011. Coryneform Gram-positive rods, p 413442. In Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW (ed), Manual of Clinical Microbiology, 10th ed, vol 1. ASM Press, Washington, DC.
20. Schlegel L, Grimont F, Ageron E, Grimont PA, Bouvet A. 2003. Reappraisal of the taxonomy of the Streptococcus bovis/Streptococcus equinus complex and related species: description of Streptococcus gallolyticus subsp. gallolyticus subsp. nov., S. gallolyticus subsp. macedonicus subsp. nov. and S. gallolyticus subsp. pasteurianus subsp. nov. Int J Syst Evol Microbiol 53:631645.
21. Poyart C, Quesne G, Trieu-Cuot P. 2002. Taxonomic dissection of the Streptococcus bovis group by analysis of manganese-dependent superoxide dismutase gene (sodA) sequences: reclassification of ‘Streptococcus infantarius subsp. coli’ as Streptococcus lutetiensis sp. nov. and of Streptococcus bovis biotype 11.2 as Streptococcus pasteurianus sp. nov. Int J Syst Evol Microbiol 52:12471255.
22. Lazarovitch T, Shango M, Levine M, Brusovansky R, Akins R, Hayakawa K, Lephart PR, Sobel JD, Kaye KS, Marchaim D. 2013. The relationship between the new taxonomy of Streptococcus bovis and its clonality to colon cancer, endocarditis, and biliary disease. Infection 41:329337.
23. Romero B, Morosini MI, Loza E, Rodriguez-Banos M, Navas E, Canton R, Campo RD. 2011. Reidentification of Streptococcus bovis isolates causing bacteremia according to the new taxonomy criteria: still an issue? J Clin Microbiol 49:32283233.
24. Becker K, von Eiff C. 2011. Staphylococcus, Micrococcus, and other catalase-positive cocci, p 308330. In Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW (ed), Manual of Clinical Microbiology, 10th ed, vol 1. ASM Press, Washington, DC.
25. Facklam R. 2002. What happened to the streptococci: overview of taxonomic and nomenclature changes. Clin Microbiol Rev 15:613630.
26. Ruoff KL. 2002. Miscellaneous catalase-negative, Gram-positive cocci: emerging opportunists. J Clin Microbiol 40:11291133.
27. Spellerberg B, Brandt C. 2011. Streptococcus, p 331349. In Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW (ed), Manual of Clinical Microbiology, 10th ed, vol 1. ASM Press, Washington, DC.
28. Takada K, Saito M, Tsudukibashi O, Hiroi T, Hirasawa M. 4 January 2013. Streptococcus orisasini sp. nov. and Streptococcus dentasini sp. nov. isolated from the oral cavity of donkeys. Int J Syst Evol Microbiol doi:10.1099/ijs.0.047142-0.
29. Jensen A, Hoshino T, Kilian M. 7 December 2012. Taxonomy of the Anginosus group of the genus Streptococcus and description of Streptococcus anginosus subsp. whileyi subsp. nov. and Streptococcus constellatus subsp. viborgensis subsp. nov. Int J Syst Evol Microbiol doi:10.1099/ijs.0.043232-0.
30. Huch M, De Bruyne K, Cleenwerck I, Bub A, Cho G, Watzl B, Snauwaert I, Franz CMAP, Vandamme P. 7 June 2013. Streptococcus rubneri sp. nov., isolated from the human throat. Int J Syst Evol Microbiol doi:10.1099/ijs.0.048538-0.
31. Fulde M, Valentin-Weigand P. 2013. Epidemiology and pathogenicity of zoonotic streptococci. Curr Top Microbiol Immunol 368:4981.
32. Rolo D, Simoes AS, Domenech A, Fenoll A, Linares J, de Lencastre H, Ardanuy C, Sa-Leao R. 2013. Disease isolates of Streptococcus pseudopneumoniae and non-typeable S. pneumoniae presumptively identified as atypical S. pneumoniae in Spain. PLoS One 8:e57047.
33. Martins Teixeira L, Siqueira Carvalho MD, Shewmaker PL, Facklam RR. 2011. Enterococcus, p 350364. In Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW (ed), Manual of Clinical Microbiology, 10th ed, vol 1. ASM Press, Washington, DC.
34. Ruoff KL. 2011. Aerococcus, Abiotrophia, and other aerobic catalase-negative, Gram-positive cocci, p 365376. In Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW (ed), Manual of Clinical Microbiology, 10th ed, vol 1. ASM Press, Washington, DC.
35. Facklam RR. 2001. Newly described, difficult-to-identify, catalase-negative Gram-positive cocci. Clin Microbiol Newsl 23:17.
36. Wellinghausen N. 2011. Listeria and Erysipelothrix, p 403412. In Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW (ed), Manual of Clinical Microbiology, 10th ed, vol 1. ASM Press, Washington, DC.
37. Stevens DL, Bryant AE, Berger A, von Eichel-Streiber C. 2011. Clostridium, p 834857. In Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW (ed), Manual of Clinical Microbiology, 10th ed, vol 1. ASM Press, Washington, DC.
38. Yassin AF, Hupfer H, Siering C, Schumann P. 2011. Comparative chemotaxonomic and phylogenetic studies on the genus Arcanobacterium Collins et al. 1982 emend. Lehnen et al. 2006: proposal for Trueperella gen. nov. and emended description of the genus Arcanobacterium. Int J Syst Evol Microbiol 61:12651274.
39. Bernard KA, Funke G. 2012. Genus Corynebacterium, p 245289. In Whitman WB, Parte A, Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Ludwig W, Suzuki K-I (ed), Bergey’s Manual of Systematic Bacteriology, vol 5. The Actinobacteria. Springer, New York, NY.
40. Khamis A, Raoult D, La Scola B. 2004. rpoB gene sequencing for identification of Corynebacterium species. J Clin Microbiol 42:39253931.
41. Logan NA, Hoffmaster AR, Shadomy SV, Stauffer KE. 2011. Bacillus and other aerobic endospore-forming bacteria, p 381402. In Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW (ed), Manual of Clinical Microbiology, 10th ed, vol 1. ASM Press, Washington, DC.
42. Bernard K, Pacheco AL, Cunningham I, Gill N, Burdz T, Wiebe D. 2013. Emendation of the species Corynebacterium propinquum to include strains which produce urease. Int J Syst Evol Microbiol 63:21462154.
1. CLSI. 2008. Abbreviated Identification of Bacteria and Yeast, 2nd ed. Approved standard M35-A2. CLSI, Wayne, PA.
2. Farmer JJIII, Davis BR, Hickman-Brenner FW, McWhorter A, Huntley-Carter GP, Asbury MA, Riddle C, Wathen-Grady HG, Elias C, Fanning GR, Steigerwalt AG, O’Hara CM, Morris GK, Smith PB, Brenner DJ. 1985. Biochemical identification of new species and biogroups of Enterobacteriaceae isolated from clinical specimens. J Clin Microbiol 21:4676.
3. Schreckenberger PC. 2012. Practical Approach to the Identification of Glucose-Nonfermenting Gram-Negative Bacilli, 5th ed. Loyola University Chicago, Maywood, IL.
4. Versalovic J, Carroll KC, Funke G, Jorgensen JH., Landry ML, Warnock DW (ed). 2011. Manual of Clinical Microbiology, 10th ed. ASM Press, Washington, DC.
5. Weyant RS, Moss CW, Weaver RE, Hollis DG, Jordan JG, Cook EC, Daneshvar MI. 1995. Identification of Unusual Pathogenic Gram-Negative Aerobic and Facultatively Anaerobic Bacteria, 2nd ed. Williams & Wilkins, Baltimore, MD.
6. Winn W, Allen S, Janda W, Koneman E, Procop G, Schreckenberger P, Woods G. 2006. Koneman’s Color Atlas and Textbook of Diagnostic Microbiology, 6th ed. Lippincott Williams & Wilkins, Baltimore, MD.
7. Evangelista AT, Truant AL, Bourbeau P. 2002. Rapid systems and instruments for the identification of bacteria, p 2249. In Truant AL (ed), Manual of Commercial Methods in Microbiology. ASM Press, Washington, DC.
8. CLSI. 2007. Interpretive Criteria for Identification of Bacteria and Fungi by DNA Target Sequencing. Approved standard MM18-A. CLSI, Wayne, PA.
9. Petti CA, Polage CR, Schreckenberger P. 2005. The role of 16S rRNA gene sequencing in identification of microorganisms misidentified by conventional methods. J Clin Microbiol 43:61236125.
10. Clark AE, Kaleta EJ, Arora A, Wolk DM. 2013. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin Microbiol Rev 26:547603.
11. Patel R. 2013. MALDI-TOF mass spectrometry: transformative proteomics for clinical microbiology. Clin Chem 59:340342.
12. Patel R. 2013. Matrix-assisted laser desorption ionization – time of flight mass spectrometry in clinical microbiology. Clin Infect Dis 57:564572.
13. Seng P, Drancourt M, Gouriet F, La Scola B, Fournier P-E, Rolain JM, Raoult D. 2009. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49:543551.
14. Schreckenberger AP, Schreckenberger PC. 2012. WIP (Web ID Program). http://pschreck.com.
15. Catlin BW. 1975. Cellular elongation under the influence of antibacterial agents: a way to differentiate coccobacilli from cocci. J Clin Microbiol 1:102105.
16. Rennie RP, Brosnikoff C, Shokopes S, Reller LB, Mirrett S, Janda W, Ristow K, Krilcich A. 2008. Multicenter evaluation of the new Vitek 2 Neisseria-Haemophilus identification card. J Clin Microbiol 46:26812685.
17. American Society for Microbiology. 2013. Sentinel Level Clinical Laboratory Protocols for Suspected Biological Threat Agents and Emerging Infectious Diseases. American Society for Microbiology, Washington, DC. http://www.asm.org/index.php/guidelines/sentinel-guidelines.
18. D’Amato RF, Eriques LA, Tomforde KN, Singerman E. 1978. Rapid identification of Neisseria gonorrhoeae and Neisseria meningitidis by using enzymatic profiles. J Clin Microbiol 7:7781.
19. Janda WM, Gaydos CA. 2007. Neisseria, p 601621. In Murray PR, Baron EJ, Jorgensen JH, Landry ML, Pfaller MA (ed), Manual of Clinical Microbiology, 9th ed. ASM Press, Washington, DC.
20. Yajko DM, Chu A, Hadley WK. 1984. Rapid confirmatory identification of Neisseria gonorrhoeae with lectins and chromogenic substrates. J Clin Microbiol 19:380382.
21. Norsko-Lauritsen N, Killian M. 2006. Reclassification of Actinobacillus actinomycetemcomitans, Haemophilus aphrophilus, Haemophilus paraphrophilus, and Haemophilus segnis as Aggregatibacter actinomycetemcomitans gen. nov., comb. nov., Aggregatibacter aphrophilus comb. nov. and Aggregatibacter segnis comb. nov., and emended description of Aggregatibacter aphrophilus to include V factor-dependent and V factor-independent isolates. Int J Syst Evol Microbiol 56:21352146.
22. Schreckenberger P, Daneshvar MI, Hollis DG. 2007. Acinetobacter, Achromobacter, Chryseobacterium, Moraxella, and other nonfermentative Gram-negative rods, p 770802. In Murray PR, Baron EJ, Jorgensen JH, Landry ML, Pfaller MA (ed), Manual of Clinical Microbiology, 9th ed. ASM Press, Washington, DC.
23. Geißdörfer W, Tandler R, Schlundt C, Weyand M, Daniel WG, Schoerner C. 2007. Fatal bioprosthetic aortic valve endocarditis due to Cardiobacterium valvarum. J Clin Microbiol 45:23242326.
24. Hofstad T, Olsen I, Eribe ER, Falsen E, Collins MD, Lawson PA. 2000. Dysgonomonas gen. nov. to accommodate Dysgonomonas gadei sp. nov., an organism isolated from a human gallbladder, and Dysgonomonas capnocytophagoides (formerly CDC group DF-3). Int J Syst Evol Microbiol 50:21892195.
25. Lawson PA, Falsen E, Inganas E, Weyant RS, Collins MD. 2002. Dysgonomonas mossii sp. nov., from human sources. Syst Appl Microbiol 25:194197.
26. Zbinden R, von Graevenitz A. 2011. Actinobacillus, Capnocytophaga, Eikenella, Kingella, Pasteurella, and other fastidious or rarely encountered Gram-negative rods, p 574587. In Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW (ed), Manual of Clinical Microbiology, 10th ed. ASM Press, Washington, DC.
27. Bothelo E, Gouriet F, Fournier P-E, Roux V, Habib G, Thuny F, Metras D, Raoult D, Casalta J-P. 2006. Endocarditis caused by Cardiobacterium valvarum. J Clin Microbiol 44:637658.
28. Schreckenberger PC, Lindquist D. 2007. Algorithms for identification of aerobic Gram-negative bacteria, p 371376. In Murray PR, Baron EJ, Jorgensen JH, Landry ML, Pfaller MA (ed), Manual of Clinical Microbiology, 9th ed. ASM Press, Washington, DC.
29. Henry DA, Speert DP. 2011. Pseudomonas, p 677691. In Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW (ed), Manual of Clinical Microbiology, 10th ed. ASM Press, Washington, DC.
30. Abbott SL, Janda JM, Johnson JA, Farmer JJIII. 2011. Vibrio and related organisms, p 666676. In Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW (ed), Manual of Clinical Microbiology, 10th ed. ASM Press, Washington, DC.
31. Horneman AJ, Ali A. 2011. Aeromonas, p 658665. In Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW (ed), Manual of Clinical Microbiology, 10th ed. ASM Press, Washington, DC.
32. Janda JM, Powers C, Bryant RG, Abbott SL. 1988. Current perspectives on the epidemiology and pathogenesis of clinically significant Vibrio spp. Clin Microbiol Rev 1:245267.
33. Schriefer ME, Petersen JM. 2011. Yersinia, p 627638. In Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW (ed), Manual of Clinical Microbiology, 10th ed. ASM Press, Washington, DC.
34. Henry DA, Mahenthiralingham E, Vandamme P, Coeyne T, Speert DP. 2001. Phenotypic methods for determining genomovar status of the Burkholderia cepacia complex. J Clin Microbiol 39:10731078.
35. LiPuma JJ, Currie BJ, Peacock SJ, Vandamme PAR. 2011. Burkholderia, Stenotrophomonas, Ralstonia, Cupriavidus, Pandoraea, Brevundimonas, Comamonas, Delftia, and Acidovorax, p 692713. In Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW (ed), Manual of Clinical Microbiology, 10th ed. ASM Press, Washington, DC.
36. Laffineur K, Janssens M, Charlier J, Avesani V, Wauters G, Delmée M. 2002. Biochemical and susceptibility tests useful for identification of nonfermenting Gram-negative rods. J Clin Microbiol 40:10851087.

Tables

Generic image for table
Table 3.18.1–1

Key biochemical reactions of the common and/or significant Gram-positive cocci that are always or nearly always catalase positive with large white to yellow colonies

Citation: Leber A. 2016. Identification of Gram-Positive Bacteria, p 3.18.1.1-3.18.2.22. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch3.18
Generic image for table
Table 3.18.1–2

Separation of the common groups of viridans group streptococci isolated from human clinical specimens (PYR-negative, LAP-positive, 6.5% NaCl-negative cocci in chains)

Citation: Leber A. 2016. Identification of Gram-Positive Bacteria, p 3.18.1.1-3.18.2.22. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch3.18
Generic image for table
Table 3.18.1–3

Common species of and other PYR-positive cocci in chains

Citation: Leber A. 2016. Identification of Gram-Positive Bacteria, p 3.18.1.1-3.18.2.22. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch3.18
Generic image for table
Table 3.18.1–4a

Phenotypic characteristics of PYR-positive, catalase-negative or weakly positive, Gram-positive cocci (excluding

Citation: Leber A. 2016. Identification of Gram-Positive Bacteria, p 3.18.1.1-3.18.2.22. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch3.18
Generic image for table
Table 3.18.1–4b

Phenotypic characteristics of PYR-negative, catalase-negative, Gram-positive cocci

Citation: Leber A. 2016. Identification of Gram-Positive Bacteria, p 3.18.1.1-3.18.2.22. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch3.18
Generic image for table
Table 3.18.1–5

Catalase-negative, Gram-positive rods that can grow aerobically or facultatively anaerobically

Citation: Leber A. 2016. Identification of Gram-Positive Bacteria, p 3.18.1.1-3.18.2.22. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch3.18
Generic image for table
Table 3.18.1–6

Catalase-positive, Gram-positive rods which usually have yellow- or pink-pigmented colonies

Citation: Leber A. 2016. Identification of Gram-Positive Bacteria, p 3.18.1.1-3.18.2.22. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch3.18
Generic image for table
Table 3.18.1–7

Large, regular catalase-positive, Gram-positive rods that usually produce spores and are usually motile

Citation: Leber A. 2016. Identification of Gram-Positive Bacteria, p 3.18.1.1-3.18.2.22. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch3.18
Generic image for table
Table 3.18.1–8

Urease-positive spp. of clinical importance

Citation: Leber A. 2016. Identification of Gram-Positive Bacteria, p 3.18.1.1-3.18.2.22. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch3.18
Generic image for table
Table 3.18.1–9

Catalase-positive, urease-negative, Gram-positive rods, excluding spp. and yellow- or pink-pigmented rods

Citation: Leber A. 2016. Identification of Gram-Positive Bacteria, p 3.18.1.1-3.18.2.22. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch3.18
Generic image for table
Table 3.18.1–10

Urease-negative spp. of clinical importance

Citation: Leber A. 2016. Identification of Gram-Positive Bacteria, p 3.18.1.1-3.18.2.22. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch3.18
Generic image for table
Table 3.18.2–1

Biochemical reactions of and related oxidase-positive diplococcus and rods that may grow on Thayer-Martin or similar selective agar

Citation: Leber A. 2016. Identification of Gram-Positive Bacteria, p 3.18.1.1-3.18.2.22. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch3.18
Generic image for table
Table 3.18.2–2

Biochemical reactions of and species that satellite on BAP

Citation: Leber A. 2016. Identification of Gram-Positive Bacteria, p 3.18.1.1-3.18.2.22. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch3.18
Generic image for table
Table 3.18.2–3

Differential biochemical reactions for indole-positive, Gram-negative rods that grow poorly on MAC in 48 h

Citation: Leber A. 2016. Identification of Gram-Positive Bacteria, p 3.18.1.1-3.18.2.22. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch3.18
Generic image for table
Table 3.18.2–4

Gram-negative rods that grow on BAP but are catalase negative or weak, with poor growth on MAC in 48

Citation: Leber A. 2016. Identification of Gram-Positive Bacteria, p 3.18.1.1-3.18.2.22. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch3.18
Generic image for table
Table 3.18.2–5

Biochemical differentiation of non-yellow-pigmented, Gram-negative rods that are catalase positive and indole negative but do not grow well on MAC

Citation: Leber A. 2016. Identification of Gram-Positive Bacteria, p 3.18.1.1-3.18.2.22. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch3.18
Generic image for table
Table 3.18.2–6

Biochemical characteristics of the nonmotile, yellow, nonfermenting, Gram-negative rods that are catalase positive

Citation: Leber A. 2016. Identification of Gram-Positive Bacteria, p 3.18.1.1-3.18.2.22. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch3.18
Generic image for table
Table 3.18.2–7

Biochemical differentiation of the motile, yellow, non-glucose-fermenting, Gram-negative rods

Citation: Leber A. 2016. Identification of Gram-Positive Bacteria, p 3.18.1.1-3.18.2.22. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch3.18
Generic image for table
Table 3.18.2–8

Characteristics of the common pathogenic oxidase-positive, glucose-fermenting rods that grow on MAC and are not yellow pigmented

Citation: Leber A. 2016. Identification of Gram-Positive Bacteria, p 3.18.1.1-3.18.2.22. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch3.18
Generic image for table
Table 3.18.2–9

Differentiation of from similar bacteria

Citation: Leber A. 2016. Identification of Gram-Positive Bacteria, p 3.18.1.1-3.18.2.22. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch3.18
Generic image for table
Table 3.18.2–10

Biochemical reactions of non-glucose-fermenting, Gram-negative rods that are catalase positive, oxidase negative or delayed, and grow well on MAC within 48 h

Citation: Leber A. 2016. Identification of Gram-Positive Bacteria, p 3.18.1.1-3.18.2.22. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch3.18
Generic image for table
Table 3.18.2–11

Characteristics of complex and related polymyxin B-resistant organisms

Citation: Leber A. 2016. Identification of Gram-Positive Bacteria, p 3.18.1.1-3.18.2.22. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch3.18
Generic image for table
Table 3.18.2–12

Biochemical reactions of nonyellow Gram-negative rods that are oxidase positive and grow well on MAC within 48 h

Citation: Leber A. 2016. Identification of Gram-Positive Bacteria, p 3.18.1.1-3.18.2.22. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch3.18

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error