1887

Chapter 8.8 : Full Identification of Yeasts

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Full Identification of Yeasts, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818814/9781555818814_Chap8.8-1.gif /docserver/preview/fulltext/10.1128/9781555818814/9781555818814_Chap8.8-2.gif

Abstract:

In an era of increasing resistance of yeast species to antifungal agents and a widening range of species capable of causing diseases previously the domain of there is almost no situation in which identification to species level is not warranted. This is especially true given the growth in the number of immunocompromised patients in our society, which has provided more opportunities for yeast infections to occur and to complicate and prolong the recovery period. Molecular methods to identify yeasts directly in specimens and after growth in culture are under development. Peptide nucleic acid fluorescence hybridization (PNA FISH) technology (AdvanDx, Woburn, MA) allows identification of several yeasts directly from blood cultures. Recently, matrix-assisted laser desorption ionization–time of flight mass spectroscopy (MALDI-TOF MS) has been introduced as a method with the potential to identify a wide range of bacteria and fungi. Several research groups have used MALDI-TOF MS to identify a variety of clinically important yeasts ( ). The currently FDA-approved IVD database for the Vitek MS (bioMérieux, Durham, NC) lists 68 yeast species encompassing 12 genera (including 37 species of ).

Citation: Leber A. 2016. Full Identification of Yeasts, p 8.8.1-8.8.14. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch8.8
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555818814.chap8.8
1. Buchan BW, NA. Ledeboer 2013. Advances in identification of clinical yeast isolates by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 51:13591366.
2. Tan KE, Ellis BC, Lee R, Stamper PD, Zhang SX, KC. Carroll 2012. Prospective evaluation of a matrix-assisted laser desorption ionization-time of flight mass spectrometry system in a hospital clinical microbiology laboratory for identification of bacteria and yeasts: a bench-by-bench study for assessing the impact on time to identification and cost-effectiveness. J Clin Microbiol 50:33013308.
3. Wickerham LJ, KA. Burton 1948. Carbon assimilation tests for the classification of yeasts. J Bacteriol 56:363371.
4. LL. Norvell 2011. Melbourne approves a new Code. Mycotaxon 116:481490.
5. A-M Freydiere, Guinet R, P. Boiron 2001. Yeast identification in the clinical microbiology laboratory: phenotypical methods. Med Mycol 39:933.
6. DH. Larone 2011. Medically Important Fungi, 5th ed. ASM Press, Washington, DC.
7. Barnett JA, Payne RW, D. Yarrow 2000. Yeasts: Characteristics and Identification, 3rd ed. Cambridge University Press, Cambridge.
8. KC. Hazen 1995. New and emerging yeast pathogens. Clin Microbiol Rev 8:462478.
9. RM. Atlas 1993. Handbook of Microbiology Media. CRC Press, Boca Raton, FL.
10. Kwon-Chung KJ, Polacheck I, JE. Bennett 1982. Improved diagnostic medium for separation of Cryptococcus neoformans var. neoformans (serotypes A and D) and Cryptococcus neoformans var. gattii (serotypes B and C). J Clin Microbiol 15:535537.
11. Shadomy HJ, Wood-Helie S, Shadomy S, Dismukes WE, Chau RYGroup NMS. 1987. Biochemical serogrouping of clinical isolates of Cryptococcus neoformans. Diagn Microbiol Infect Dis 6:131138.
12. Wolk DM, GD. Roberts 2002. Commercial methods for identification and susceptibility testing of fungi, p 255–255. In Truant AL (ed), Manual of Commercial Methods in Clinical Microbiology. ASM Press, Washington, DC.
13. Sullivan DJ, Westerneng TJ, Haynes KA, Bennett DE, DC. Coleman 1995. Candida dubliniensis sp. nov.: phenotypic and molecular characterization of a novel species associated with oral candidosis in HIV-infected individuals. Microbiology 141:15071521.
14. Gueho E, Midgley G, J. Guillot 1996. The genus Malassezia with description of four new species. Antonie van Leeuwenhoek 69:337355.
15. Hirai A, Kano R, Makimura K, Duarte ER, Hamdan JS, Lachance MA, Yamaguchi H, A. Hasegawa 2004. Malassezia nana sp. nov., a novel lipid-dependent yeast species isolated from animals. Int J Syst Evol Microbiol 54:623627.
16. Sugita T, Tajima M, Takashima M, Amaya M, Saito M, Tsuboi R, A. Nishikawa 2004. A new yeast Malassezia yamatoensis, isolated from a patient with seborrheic dermatitis, and its distribution in patients and healthy subjects. Microbiol Immunol 48:579583.
17. Sugita T, Takashima M, Kodama M, Tsuboi R, A. Nishikawa 2003. Description of a new yeast species, Malassezia japonica, and its detection in patients with atopic dermatitis and healthy subjects. J Clin Microbiol 41:46954699.
18. Sugita T, Takashima M, Shinoda T, Suto H, Unno T, Tsuboi R, Ogawa H, A. Nishikawa 2002. New yeast species, Malassezia dermatis, isolated from patients with atopic dermatitis. J Clin Microbiol 40:13631367.
19. Magee BB, D’Souza TM, PT. Magee 1987. species Strain and species identification by restriction fragment length polymorphisms in the ribosomal DNA repeat of Candida. J Bacteriol 169:16391643.
20. Fujita S, T. Hashimoto 2000. DNA fingerprinting patterns of Candida species using HinfI endonuclease. Int J Syst Evol Microbiol 50:13811389.
21. Scherer S, DA. Stevens 1988. A Candida albicans dispersed repeated gene family and its epidemiologic applications. Proc Natl Acad Sci U S A 85:14521456.
22. Schmid J, Voss E, DR. Soll 1990. Computer-assisted methods for assessing strain relatedness in Candida albicans by fingerprinting with the moderately repetitive sequence Ca3. J Clin Microbiol 28:12361243.
23. Joly S, Pujol C, Schröppel K, DR. Soll 1996. Development of two species-specific fingerprinting probes for broad computer-assisted epidemiological studies of Candida tropicalis. J Clin Microbiol 34:30633071.
24. Lockhart SR, Joly S, Pujol C, Sobel JD, Pfaller MA, DR. Soll 1997. Development and verification of fingerprinting probes for Candida glabrata. Microbiology 143:37333746.
25. Enger L, Joly S, Pujol C, Simonson P, Pfaller MA, DA. Soll 2001. Cloning and characterization of a complex DNA fingerprinting probe for Candida parapsilosis. J Clin Microbiol 39:658669.
26. Boekhout T, RW. Bosboom 1994. Karyotyping of Malassezia yeasts: taxonomic and epidemiological implications. Syst Appl Microbiol 17:146153.
27. Howell SA, Quin C, G. Midgley 1993. Karyotypes of oval cell forms of Malassezia furfur. Mycoses 36:263266.
28. Clemons KV, Feroze F, Holmberg K, DA. Stevens 1997. Comparative analysis of genetic variability among Candida albicans isolates from different geographic locales by three genotypic methods. J Clin Microbiol 35:13321336.
29. Defontaine A, Coarer M, JP. Bouchara 1996. Contribution of various techniques of molecular analysis to strain identification of Candida glabrata. Microb Ecol Health Dis 9:2733.
30. White TC, Bruns T, Lee S, J. Taylor 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, p 315–322. In Innis MA, Gelfand DH, Sninsky JJ, White TC (ed), PCR Protocols. A Guide to Methods and Applications. Academic Press, San Diego.
31. Latouche GN, H-M Daniel, Lee OC, Mitchell TG, Sorrell TC, W. Meyer 1997. Comparison of use of phenotypic and genotypic characteristics for identification of species of the anamorph genus Candida and related teleomorph yeast species. J Clin Microbiol 35:31713180.
32. Wise MG, Healy M, Reece K, Smith R, Walton D, Dutch W, Renwick A, Huong J, Young S, Tarrand J, DP. Kontoyiannis 2007. Species identification and strain differentiation of clinical Candida isolates using the DiversiLab system of automated repetitive sequence-based PCR. J Med Microbiol 56:778787.
33. Thanos M, Schönian G, Meyer W, Schweynoch C, Gräser Y, Mitchell TG, Presber W, H-J. Tietz 1996. Rapid identification of Candida species by DNA fingerprinting with PCR. J Clin Microbiol 34:615621.
34. DA. Soll 2000. The ins and outs of DNA fingerprinting the infectious fungi. Clin Microbiol Rev 13:332370.
35. Carlotti A, Chaib F, Couble A, Bourgeois N, Blanchard V, J. Villard 1997. Rapid identification and fingerprinting of Candida krusei by PCR-based amplification of the species-specific repetitive polymorphic sequence CKRS-1. J Clin Microbiol 35:13371343.
36. Burgener-Kairuz P, J-P Zuber, Jaunin P, Buchman TG, Bille J, M. Rossier 1994. Rapid detection and identification of Candida albicans and Torulopsis (Candida) glabrata in clinical specimens by species-specific nested PCR amplification of a cytochrome P-450 lanosterol-a-demethylase (L1A1) gene fragment. J Clin Microbiol 32:19021907.
37. Chen YC, Eisner JD, Kattar MM, Rassoulian-Barrett SL, LaFe K, Yarfitz SL, Limaye AP, BT. Cookson 2000. Identification of medically important yeasts using PCR-based detection of DNA sequence polymorphisms in the internal transcribed spacer 2 region of the rRNA genes. J Clin Microbiol 38:23022310.
38. De Baere T, Claeys G, Swinne D, Verschraegen G, Muylaert A, Massonet C, M. Vaneechoutte 2002. Identification of cultured isolates of clinically important yeast species using fluorescent fragment length analysis of the amplified internally transcribed rRNA spacer 2 region (ITS2). BMC Microbiol 2:21.
39. Landlinger C, Baskova L, Preuner S, Willinger B, Buchta V, T. Lion 2008. Identification of fungal species by fragment length analysis of the internally transcribed spacer 2 region. Eur J Clin Microbiol Infect Dis 28:613624.
40. Linton CJ, Borman AM, Cheung G, Holmes AD, Szekely A, Palmer MD, Bridge PD, Campbell CK, EM. Johnson 2007. Molecular identification of unusual pathogenic yeast isolates by large ribosomal subunit gene sequencing: 2 years of experience at the United kingdom mycology reference laboratory. J Clin Microbiol 45:11521158.
41. Roy B, SA. Meyer 1998. Confirmation of the distinct genotype groups within the form species Candida parapsilosis J Clin Microbiol 36:216218.
42. Tavanti A, Davidson AD, Gow NA, Maiden MC, FC. Odds 2005. Candida orthopsilosis and Candida metapsilosis spp. nov. to replace Candida parapsilosis groups II and III. J Clin Microbiol 43:284292.
43. Campa D, Tavanti A, Gemignani F, Mogavero CS, Bellini I, Bottari F, Barale R, Landi S, S. Senesi 2008. DNA microarray based on arrayed-primer extension technique for identification of pathogenic fungi responsible for invasive and superficial mycoses. J Clin Microbiol 46:909915.
44. Ng Warren, KC. Hazen 1999. Candida, Cryptococcus, and other yeasts of medical importance, p 11841199. In Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH (ed), Manual of Clinical Microbiology, 7th ed. ASM Press, Washington, DC.
45. Pincus DH, Coleman DC, Pruitt WR, Padhye AA, Salkin IF, Geimer M, Bassel A, Sullivan DJ, Clarke M, V. Hearn 1999. Rapid identification of Candida dubliniensis with commercial yeast identification systems. J Clin Microbiol 37:35333539.
46. Howell SA, KC. Hazen 2011. Candida, Cryptococcus, and other yeasts or medical importance, p 17931821. In Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW (ed), Manual of Clinical Microbiology, 10th ed, vol 2. ASM Press, Washington, DC.
47. Guého E, Improvisi L, de Hoog GS, B. Dupont 1994. account Trichosporon on humans: a practical. Mycoses 37:310.
48. Guillot J, Guého E, Lesourd M, Midgley G, Chévrier G, B. Dupont 1996. Identification of Malassezia species. J Mycol Méd 6:103110.
49. Remel. 1993. Technical information, ascospore agar. TI no. 9046-A. Remel, Lenexa, KS.
1. Snyder JW, RH. Atlas 2006. Handbook of Media for Clinical Microbiology, 2nd ed. CRC Press, Boca Raton, FL.

Tables

Generic image for table
Table 8.8–1

Anamorph-teleomorph binomials of commonly encountered yeasts

Citation: Leber A. 2016. Full Identification of Yeasts, p 8.8.1-8.8.14. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch8.8
Generic image for table
Table 8.8–2

General considerations of two commercial yeast identification systems

Citation: Leber A. 2016. Full Identification of Yeasts, p 8.8.1-8.8.14. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch8.8
Generic image for table
Table 8.8–3

Examples of useful supplemental tests for yeasts

Citation: Leber A. 2016. Full Identification of Yeasts, p 8.8.1-8.8.14. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch8.8
Generic image for table
Table 8.8–4

Culture and biochemical characteristics of yeasts frequently isolated from clinical specimens

Citation: Leber A. 2016. Full Identification of Yeasts, p 8.8.1-8.8.14. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch8.8
Generic image for table
Table 8.8–5

Characteristics of selected spp.

Citation: Leber A. 2016. Full Identification of Yeasts, p 8.8.1-8.8.14. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch8.8
Generic image for table
Table 8.8–6

Fermentation reactions for some spp.

Citation: Leber A. 2016. Full Identification of Yeasts, p 8.8.1-8.8.14. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch8.8
Generic image for table
Table 8.8–7

Key characteristics to differentiate species

Citation: Leber A. 2016. Full Identification of Yeasts, p 8.8.1-8.8.14. In Clinical Microbiology Procedures Handbook, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818814.ch8.8

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error