Chapter 2.1.1 : Detection of Specific Taxa Using Chromogenic and Fluorogenic Media

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Detection of Specific Taxa Using Chromogenic and Fluorogenic Media, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch2.1.1-1.gif /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch2.1.1-2.gif


Enzymatic substrates are widely used in microbiology to study metabolic pathways, to monitor metabolism and to detect, enumerate and identify microorganisms. In general, fluorogenic and chromogenic enzyme substrates have proved to be a powerful tool, utilizing specific enzymatic activities of certain microorganisms. By incorporation of these substrates into primary selective media, enumeration and detection can be performed directly on the isolation plate. Methods and media based on the application of these substrates enable specific and rapid detection of a variety of microorganisms. Examples of target pathogens include Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, Salmonella spp. and Vibrio spp. The inclusion of multiple chromogenic substrates into culture media facilitates the differentiation of polymicrobial cultures.

This paper describes some developments in chromogenic and fluorogenic culture media in microbiological diagnostic in particular in food- and water microbiology.

Citation: Manafi M. 2016. Detection of Specific Taxa Using Chromogenic and Fluorogenic Media, p 2.1.1-1-2.1.1-9. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch2.1.1
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Structure of 4-Methylumbellieryl-beta-D-glucuronide (MUG) for detection of . doi:10.1128/9781555818821.ch2.1.1.f1

Citation: Manafi M. 2016. Detection of Specific Taxa Using Chromogenic and Fluorogenic Media, p 2.1.1-1-2.1.1-9. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch2.1.1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Structure of X-GAL (5-bromo-4chloro-3-indolyl-beta-D-galactopyranoside) for detection of coliforms. doi:10.1128/9781555818821.ch2.1.1.f2

Citation: Manafi M. 2016. Detection of Specific Taxa Using Chromogenic and Fluorogenic Media, p 2.1.1-1-2.1.1-9. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch2.1.1
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Manafi M. 2000. New developments in chromogenic and fluorogenic culture media. Int J Food Microbiol 60:205218.[PubMed][CrossRef]
2. Manafi M, Kneifel W, Bascomb S. 1991. Fluorogenic and chromogenic substrates used in bacterial diagnostics. Microbiol Rev 55:335348.[PubMed]
3. Orenga S, James AL, Manafi M, Perry JD, Pincus DH. 2009. Enzymatic substrates in microbiology. J Microbiol Meth 79:139155.[CrossRef]
4. Druggan P., 2012. Chromogens, fluorogens, trojan horses and their use in culture media, p. 623646. In Corry JEL,, Curtis GDW,, Baird RM (eds), Handbook of Culture Media for Food and Water Microbiology, 3rd ed. RSC Publishing, UK.
5. Bredie WL, de Boer E. 1992. Evaluation of the MPN, Anderson-Baird-Parker, Petrifilm E. coli and Fluorocult ECD method for enumeration of E. coli in foods of animal origin. Int J Food Microbiol 16:197208.[PubMed][CrossRef]
6. Hartman PA., 1989. The MUG glucuronidase test for E. coli in food and water, p. 290308. In Turano A, (ed), Rapid Methods and Automation in Microbiology and ImmunologyBrixia Academic Press, Brescia, Italy.
7. Frampton EW, Restaino L. 1993. Methods for E. coli identification in food, water and clinical samples based on ß-glucuronidase detection. J Appl Bacteriol 74:223233.[PubMed][CrossRef]
8. Manafi M. 1995. New medium for the simultaneous detection of total coliforms and E. coli in water. Poster, 95th Meeting of the American Society for Microbiology. Washington, DC. Abstr. P-43, p. 389.
9. Manafi M, Rosmann H. 1998. Evaluation of Readycult presence-absence test for detection of total coliforms and E. coli in water. Poster, 98th Meeting of the American Society for Microbiology, Atlanta, GA. Abstr. Q-263, p. 464.
10. Brenner KP, Rankin CC, Roybal YR, Stelma GN, Scarpino PV, Dufour AP. 1993. New medium for simultaneous detection of total coliforms and E. coli in water. Appl Environ Microbiol 59:35343544.[PubMed]
11. Hahn G, Wittrock E. 1991. Comparison of chromogenic and fluorogenic substances for differentiation of coliforms and E. coli in soft cheese. Acta Microbiol Hung 38:265271.[PubMed]
12. Alonso JL, Soriano K, Amoros I, Ferrus MA. 1998. Quantitative determination of E. coli and fecal coliforms in water using a chromogenic medium. J Environ Sci Health 33:12291248.[CrossRef]
13. Feldsine PT, Falbo-Nelson MT, Hustead D. 1994. Colicomplete® substrate-supporting disc method for confirmed detection of total coliforms and E. coli in all foods, Comparative study. J AOAC Int 77:5863.
14. Grant MA. 1997. A new membrane filtration medium for simultaneous detection and enumeration of E. coli and total coliforms. Appl Environ Microbiol 63:35263530.[PubMed]
15. Bettelheim KA. 1998. Reliability of CHROMagar O157 for the detection of enterohaemorrhagic E. coli EHEC O157 but not EHEC belonging to other serogroups. Appl Environ Microbiol 85:425428.[CrossRef]
16. Bettelheim KA. 1998. Studies of E. coli cultured on Rainbow agar O157 with particular reference to enterohaemorrhagic E. coli (EHEC). Microbiol Immunol 42:265269.[PubMed][CrossRef]
17. Bochner BR. 1995. Rainbow Agar VTEC, a new chromogenic culture medium for detecting verotoxin-producing E. coli. Poster, Australian Society for Microbiology, Poster 2.1.
18. Restaino L, Frampton EW, Turner KM, Allison DR. 1999. A chromogenic plating medium for isolating E. coli O157:H7 from beef. Lett Appl Microbiol 29:2630.[PubMed][CrossRef]
19. Monnery I, Freydière AM, Baron C, Rousset AM, Tigaud S, Boude-Chevalier M, de Montclosand H, Gille Y. 1994. Evaluation of two new chromogenic media for detection of Salmonella in stools. Eur J Clin Microbiol Infect Dis 13:257261.[PubMed][CrossRef]
20. Gaillot O, DiCamillo P, Berche P, Courcol R, Savage C. 1999. Comparison of CHROMagar Salmonella medium and Hektoen enteric agar for isolation of Salmonellae from stool samples. J Clin Microbiol 37:762765.[PubMed]
21. Perry JD, Ford M, Taylor J, Jones AL, Freeman R, Gould FK. 1999. ABC medium, a new chromogenic agar for the selective isolation of Salmonella spp. J Clin Microbiol 37:766768.[PubMed]
22. Rambach A. 1990. New plate medium for facilitated differentiation of Salmonella spp. from Proteus spp. and other enteric bacteria. Appl Environ Microbiol 56:301303.[PubMed]
23. Schönenbrücher V, Mallinson ET, Bülte M. 2008. A comparison of standard cultural methods for the detection of foodborne Salmonella species including three new chromogenic plating media. Int J Food Microbiol 123:6166.[PubMed][CrossRef]
24. Song KY, Hyeon JY, Shin HC, Park CK, Choi IS, Seo KH. 2008. Evaluation of a chromogenic medium supplemented with glucose for detecting Enterobacter sakazakii. J Microbiol Biotechnol 18:579584.[PubMed]
25. Restaino L, Frampton EW, Lionberg WC, Becker RJA. 2006. Chromogenic plating medium for the isolation and identification of Enterobacter sakazakii from foods, food ingredients, and environmental sources. J Food Prot 69:315322.[PubMed]
26. Renaud N, Lecci L, Courcol RJ, Simonet M, Gaillot O. 2013. CHROMagar Yersinia, a new chromogenic agar for screening of potentially pathogenic Yersinia enterocolitica isolates in stools. J Clin Microbiol 51:11841187.[PubMed][CrossRef]
27. Willems E, Cartuyvels R, Magerman K, Verhaegen J. 2013. Evaluation of 3 different agar media for rapid detection of extended-spectrum β-lactamase-producing Enterobacteriaceae from surveillance samples. Diagn Microbiol Infect Dis 76:1619.[PubMed][CrossRef]
28. Hara-Kudo Y, Nishina T, Nakagawa H, Konuma H, Hasegawa J, Kumugai S. 2001. Improved method for detection of Vibrio parahaemolyticus in seafood. Appl Environ Microbiol 67:58195823.[PubMed][CrossRef]
29. Su YC, Duan J, Wu WH. 2005. Selectivity and specificity of a chromogenic medium for detecting Vibrio parahaemolyticus. J Food Prot 68:14541456.[PubMed]
30. Gaillot O, Wetsch M, Fortineau N, Berche P. 2000. Evaluation of CHROMagar S. aureus, a new chromogenic medium, for isolation and presumptive identification of Staphylococcus aureus from human clinical specimens. J Clin Microbiol 38:15871591.[PubMed]
31. Perry JD, Rennison C, Butterworth LA, Hopley AL, Gould FK. 2003. Evaluation of S. aureus ID, a new chromogenic agar medium for detection of Staphylococcus aureus. J Clin Microbiol 41:56955698.[PubMed][CrossRef]
32. Denys GA, Renzi PB, Koch KM, Wissel CM. 2013. Three-way comparison of BBL CHROMagar MRSA II, MRSA Select, and spectra MRSA for detection of methicillin-resistant Staphylococcus aureus isolates in nasal surveillance cultures. J Clin Microbiol 51:202205.[PubMed][CrossRef]
33. Restaino L, Frampton EW, Irbe RM, Schabert G, Spitz H. 1999. Isolation and detection of L. monocytogenes using fluorogenic and chromogenic substrates for phosphatidylinositol-specific phospholipase C. J Food Protect 62:244251.
34. Reissbrodt R. 2004. New chromogenic plating media for detection and enumeration of pathogenic Listeria spp.-an overview. Int J Food Microbiol 95:19.[PubMed][CrossRef]
35. Peng H, Ford V, Frampton EW, Restaino L, Shelef LA, Spitz H. 2001. Isolation and enumeration of Bacillus cereus from foods on a novel chromogenic plating medium. Food Microbiol 18:231238.[CrossRef]
36. Juergensmeyer MA, Gingras BA, Restaino L, Frampton EW. 2006. A selective chromogenic agar that distinguishes Bacillus anthracis from Bacillus cereus and Bacillus thuringiensis. J Food Prot 69:20022006.[PubMed]
37. Fricker M, Reissbrodt R, Ehling-Schulz M. 2008. Evaluation of standard and new chromogenic selective plating media for isolation and identification of Bacillus cereus. Int J Food Microbiol 121:2734.[PubMed][CrossRef]
38. Marston CK, Beesley C, Helsel L, Hoffmaster AR. 2008. Evaluation of two selective media for the isolation of Bacillus anthracis. Lett Appl Microbiol 47:2530.[PubMed][CrossRef]
39. Dufour AP. 1980. A 24-hour membrane filter procedure for enumerating enterococci. Abstract, 80th American Society for Microbiology, Washington, DC. Q-69, p. 205.
40. Manafi M, Windhager K. 1997. Rapid identification of enterococci in water with a new chromogenic assay. Poster, 97th Meeting of the American Society for Microbiology, Miami, FL. Abstr. P-107, p. 453.
41. Miranda JM, Franco CM, Vázquez BI, Fente CA, Barros-Velázquez J, Cepeda A. 2005. Evaluation of Chromocult enterococci agar for the isolation and selective enumeration of Enterococcus spp. in broilers. Lett Appl Microbiol 41:153156.[PubMed][CrossRef]
42. Budnick GE, Howard RT, Mayo DR. 1996. Evaluation of Enterolert for enumeration of enterococci in recreational waters. Appl Environ Microbiol 62:38813884.[PubMed]
43. Cuzon G, Naas T, Fortineau N, Nordmann P. 2008. Novel chromogenic medium for detection of vancomycin-resistant Enterococcus faecium and Enterococcus faecalis. J Clin Microbiol 46:24422444.[PubMed][CrossRef]
44. Stamper PD, Shulder S, Bekalo P, Manandhar D, Ross TL, Speser S, Kingery J, Carroll KC. 2010. Evaluation of BBL CHROMagar VanRE for detection of vancomycin-resistant Enterococci in rectal swab specimens. J Clin Microbiol 48:42944297.[PubMed][CrossRef]
45. Manafi M, Waldherr K, Kundi M. 2013. Evaluation of CP Chromo Select Agar for the enumeration of Clostridium perfringens from water. Int J Food Microbiol 167:9295.[PubMed][CrossRef]
46. Eckert C, Burghoffer B, Lalande V, Barbut F. 2013. Evaluation of the chromogenic agar chromID C. difficile. J Clin Microbiol 51:10021004.[PubMed][CrossRef]
47. Schets FM, Medema GJ, Havelaar AH. 1993. Comparison of Colilert with Dutch standard enumeration methods for E. coli and total colifoms in water. Lett Appl Microbiol 17:1719.[CrossRef]
48. Lee JV, Lightfoot NF, Tillett HE. 1995. An evaluation of presence/absence tests for coliform organisms and E. coli. Int. Conf. on Coliforms and E. coli, Problem or Solution?, Leeds, UK.
49. Byamukama D, Kansiime F, Mach RL, Farnleitner AH. 2000. Determination of E. coli contamination with chromocult coliform agar showed a high level of discrimination efficiency for differing fecal pollution levels in tropical waters of Kampala, Uganda. Appl Environ Microbiol 66:864868.[PubMed][CrossRef]
50. Rice EW, Allen MJ, Brenner DJ, Edberg SC. 1991. Assay for ß-glucuronidase in species of the genus Escherichia and its application for drinking-water analysis. Appl Environ Microbiol 57:592593.[PubMed]
51. Manafi M, Kremsmair B. 2001. Comparative evaluation of different chromogenic/fluorogenic media for detecting E. coli O157H:7 in food. Int J Food Microbiol 71:257262.[PubMed][CrossRef]
52. Vernozy-Rozand C, Mazuy-Cruchaudet C, Bavai C, Montet MP, Bonin V, Dernburgand A, Richard Y. 2005. Growth and survival of E coli O157:H7 during the manufacture and ripening of raw goat milk lactic cheeses. Int J Food Microbiol 105:8388.[PubMed][CrossRef]
53. Kühn H, Wonde B, Rabsch W, Reissbrodt R. 1994. Evaluation of Rambach agar for detection of Salmonella subspecies I to VI. Appl Environ Microbiol 60:749751.[PubMed]
54. Humbert F, Salvat G, Colin P, Lahellec C, Bennejean G. 1989. Rapid identification of Salmonella from poultry meat products by using “Mucap test”. Int J Food Microbiol 8:7983.[PubMed][CrossRef]
55. Warren BR, Parish ME, Schneider KR. 2005. Comparison of chromogenic Shigella spp. plating medium with standard media for the recovery of Shigella boydii and Shigella sonnei from tomato surfaces. J Food Prot 68:621624.[PubMed]
56. García-Aguayo JM, Ubeda P, Gobernado M. 1999. Evaluation of xylose-galactosidase medium, a new plate for the isolation of Salmonella, Shigella, Yersinia and Aeromonas species. Eur J Clin Microbiol Infect Dis 18:7778.[PubMed][CrossRef]
57. Druggan P, Iversen C. 2009. Culture media for the isolation of Cronobacter spp. Inter J Food Microbiol 136:169178.[CrossRef]
58. Iversen C, Forsythe SJ. 2007. Comparison of media for the isolation of Enterobacter sakazakii. Appl Environ Microbiol 73:4852.[PubMed][CrossRef]
59. Lehner A, Nitzsche S, Breeuwer P, Diep B, Thelen K, Stephan R. 2006. Comparison of two chromogenic media and evaluation of two molecular based identification systems for Enterobacter sakazakii detection. BMC Microbiol 6:15.[PubMed][CrossRef]
60. Leuschner RG, Bew J. 2004. A medium for the presumptive detection of Enterobacter sakazakii in infant formula: interlaboratory study. J AOAC Int 87:604613.[PubMed]
61. Oh SW, Kang DH. 2004. Fluorogenic selective and differential medium for isolation of Enterobacter sakazakii. Appl Environ Microbiol 70:56925694.[PubMed][CrossRef]
62. Kola A, Kohler C, Pfeifer Y, Schwab F, Kühn K, Schulz K, Balau V, Breitbach K, Bast A, Witte W, Gastmeier P, Steinmetz I. 2012. High prevalence of extended-spectrum-β-lactamase-producing Enterobacteriaceae in organic and conventional retail chicken meat, Germany. J ntimicrob Chemother 67:26312634.[CrossRef]
63. Weagant SD. 2008. A new chromogenic agar medium for detection of potentially virulent Yersinia enterocolitica. J Microbiol Meth 72:185190.[CrossRef]
64. Duan J, Su YC. 2005. Comparison of a chromogenic medium with thiosulfate-citrate-bile salts-sucrose agar for detecting Vibrio parahaemolyticus. J Food Sci 70:125128.[CrossRef]
65. Nakashima Y, Oho M, Kusaba K, Nagasawa Z, Komatsu O, Manome I, Araki K, Oishi H, Nakashima M. 2007. A chromogenic substrate culture plate for early identification of Vibrio vulnificus and isolation of other marine Vibrios. Ann Clin Lab Sci 37:330334.[PubMed]
66. Cerdà-Céllular M, Jofr J, Blanch AR. 2000. A selective media and a specific probe for detection of V. vulnificus. Appl Environ Microbiol 66:855859.[CrossRef]
67. Blanco-Abad V, Ansede-Bermejo J, Rodriguez-Castro A, Martinez-Urtaza J. 2009. Evaluation of different procedures for the optimized detection of Vibrio parahaemolyticus in mussels and environmental samples. Int J Food Microbiol 129:229236.[PubMed][CrossRef]
68. Rosec JP, Causse V, Cruz B, Rauzier J, Carnat L. 2012. The international standard ISO/TS 21872–1 to study the occurence of total and pathogenic Vibrio parahaemolyticus and Vibrio cholerae in seafood: ITS improvement by use of a chromogenic medium and PCR. Int J Food Microbiol 157:189194.[PubMed][CrossRef]
69. Schleifer KH, Killper-Bälz R. 1984. Transfer of Streptococcus faecalis and Streptococcus faecium to the genus Enterococcus nom. rev. as Enterococcus faecalis comb. nov. and Enterococcus faecium comb. nov. Int J Syst Bacteriol 34:3134.[CrossRef]
70. Slanetz LW, Bartley CH. 1957. Numbers of enterococci in water, sewage, and feces determined by the membrane filter technique with an improved medium. J Bacteriol 74:591595.[PubMed]
71. Hernandez JF, Pourcher AM, Delattre JM, Oger C, Loeuillard JL. 1993. MPN miniaturized procedure for the enumeration of faecal enterococci in fresh and marine waters, the MUST procedure. Wat Res 27:597606.[CrossRef]
72. Littel K, Hartman PA. 1983. Fluorogenic selective and differential medium for isolation of faecal streptococci. Appl Environ Microbiol 45:622627.[PubMed]
73. Niemi RM, Ahtiainen J. 1995. Enumeration of intestinal enterococci and interfering organisms with Slanetz-Bartley agar, KF streptococcus agar and the MUST method. Lett Appl Microbiol 20:9297.[PubMed][CrossRef]
74. Rhodes MW, Kator H. 1997. Enumeration of enterococcus sp. using a modified mE method. J Appl Microbiol 83:120126.[PubMed][CrossRef]
75. Messer W, Dufour A. 1998. A rapid, specific membrane filtration procedure for enumeration of enterococci in recreational water. Appl Environ Microbiol 62:38813884.
76. Adcock PW, Saint CP. 2001. Rapid confirmation of C. perfringens by using chromogenic and fluorogenic substrates. Appl Environ Microbiol 67:43824384.[PubMed][CrossRef]
77. Camilli A, Goldfine H, Portnoy DA. 1991. L. monocytogenes mutants lacking phosphatidylinositol-specific phospholipase C are avirulent. J Exp Med 173:751754.[PubMed][CrossRef]
78. Gouin E, Mengaud J, Cossart P. 1994. The virulence gene cluster of L. monocytogenes is also present in Listeria ivanovii, an animal pathogen, and Listeria seeligeri, a non-pathogenic species. Infect Immun 62:35503553.[PubMed]
79. Hechelmann H, Albert T, Reissbrodt R. 2002. Characterization of new chromogenic plating media for detection and enumeration of L. monocytogenes. Poster , “Food Micro,” Lillehammer, Norway.
80. Roczen D, Knödlseder M, Friedrich K, Schabert G, Spitz H, Müller R, Reissbrodt R. 2003. Development of a new chromogenic L. monocytogenes plating medium and comparison with three other chromogenic plating media. Poster, Meeting of the American Society for Microbiology, Washington DC, Poster O-48.
81. Stessl B, Luf W, Wagner M, Schoder D. 2009. Performance testing of six chromogenic ALOA-type media for the detection of L. monocytogenes. J Appl Microbiol 106:651659.[PubMed][CrossRef]
82. Tallent SM, Kotewicz KM, Strain EA, Bennett RW. 2012. Efficient isolation and identification of Bacillus cereus group. J AOAC Int 95:446451.[PubMed][CrossRef]
83. Chevalier P, Royand D, Savoie L. 1991. X-α-Gal-based medium for simultaneous enumeration of bifidobacteria and lactic acid bacteria in milk. J Microbiol Meth 13:7583.[CrossRef]


Generic image for table

Example of commercial chromogenic and fluorogenic culture media

Citation: Manafi M. 2016. Detection of Specific Taxa Using Chromogenic and Fluorogenic Media, p 2.1.1-1-2.1.1-9. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch2.1.1

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error