1887

Chapter 2.1.2 : Anaerobic Cultivation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Anaerobic Cultivation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch2.1.2-1.gif /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch2.1.2-2.gif

Abstract:

Anaerobes are key players in global cycles of elements and nutrition in natural and anthropologic ecosystems and are also causative agents of human and veterinary diseases. Numerous studies have sought to develop culturing techniques for anaerobes to enable the elucidation of their basic physiology, pathogenic mechanisms, and ecological functions. This chapter will describe a brief history of the development of anaerobic culturing techniques from the historical Hungate technique to techniques and apparatuses commonly used in modern laboratories. In addition, recent progress in anaerobic culturing techniques (e.g., single-cell manipulation and isolation, the six-well plating method, the co-culture method, bioreactor-based enrichment, and in situ/in vivo cultivation) will be described, with several examples of the application of these techniques for the isolation of anaerobes from natural and artificial ecosystems.

Citation: Narihiro T, Kamagata Y. 2016. Anaerobic Cultivation, p 2.1.2-1-2.1.2-12. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch2.1.2
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

(a) Gas cylinders for replacing head space (e.g., N, N/CO, and H/CO). (b) Gassing manifold in safety cabinet. All operations can be done aseptically. (c) Gassing manifold in draft chamber (Deoxygenized Gas Pressure Injector types IP-8, Sanshin Industrial, Yokohama, Japan). (d) The medium is dispensed to serum vials and replaced the head space with anoxic gas. (e) Plugging the tube with butyl rubber stoppers. (f), (g) sealing with crimp-closure aluminum seals. (h) Reducing agents (e.g., NaS and -cysteine hydrochloride) can be prepared (the head space has to be replaced with N) and autoclaved in advance. (i) Incubation in thermostatic chamber. (j) Vinyl-type anaerobic chamber (COY Laboratory Products, Grass Lake, MI, USA). doi:10.1128/9781555818821.ch2.1.2.f1

Citation: Narihiro T, Kamagata Y. 2016. Anaerobic Cultivation, p 2.1.2-1-2.1.2-12. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch2.1.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Schematic illustration of brief procedure of six-well plate method with aerobic inoculation. This figure is a reprint with slight modifications from Nakamura et al. ( ) with the permission of the . doi:10.1128/9781555818821.ch2.1.2.f2

Citation: Narihiro T, Kamagata Y. 2016. Anaerobic Cultivation, p 2.1.2-1-2.1.2-12. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch2.1.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

(a) Colonies of strain KNH grown in the gellum gum medium in a well of six-well plate for 3 weeks of incubation at 45°C. (b) Phase contrast microphotograph of strain KNH. Bar indicates 10 µm. This figure is a reprint from the Nakamura et al. ( ) with the permission of . doi:10.1128/9781555818821.ch2.1.2.f3

Citation: Narihiro T, Kamagata Y. 2016. Anaerobic Cultivation, p 2.1.2-1-2.1.2-12. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch2.1.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

(a) Appearance of colonization system (ISCS) after 5 days of incubation in a hydrothermal vent emission. Inner diameter and inner length of the ISCS were 45 and 250 mm, respectively. Filamentous white microbial mat formations were observed. (b) Pumiceous stuffing settled in the ISCS after the 5 days of incubations. Outer diameter and length of the white rings were 6 and 9 mm, respectively. This figure is a reprint from the Nunoura et al. ( ) with the permission of . doi:10.1128/9781555818821.ch2.1.2.f4

Citation: Narihiro T, Kamagata Y. 2016. Anaerobic Cultivation, p 2.1.2-1-2.1.2-12. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch2.1.2
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818821.ch2.1.2
1. Kleinsteuber S, Schleinitz KM, Vogt C. 2012. Key players and team play: anaerobic microbial communities in hydrocarbon-contaminated aquifers. Appl Microbiol Biotechnol 94:851873.[PubMed][CrossRef]
2. Ohkuma M. 2008. Symbioses of flagellates and prokaryotes in the gut of lower termites. Trends Microbiol 16:345352.[PubMed][CrossRef]
3. Sommer F, Backhed F. 2013. The gut microbiota—masters of host development and physiology. Nat Rev Microbiol 11:227238.[PubMed][CrossRef]
4. Ishii S, Ikeda S, Minamisawa K, Senoo K. 2011. Nitrogen cycling in rice paddy environments: past achievements and future challenges. Microbes Environ 26:282292.[PubMed][CrossRef]
5. Flint HJ. 1997. The rumen microbial ecosystem—some recent developments. Trends Microbiol 5:483488.[PubMed][CrossRef]
6. Gray ND, Sherry A, Hubert C, Dolfing J, Head IM. 2010. Methanogenic degradation of petroleum hydrocarbons in subsurface environments remediation, heavy oil formation, and energy recovery. Adv Appl Microbiol 72:137161.[PubMed][CrossRef]
7. Schrenk MO, Huber JA, Edwards KJ. 2010. Microbial provinces in the subseafloor. Ann Rev Mar Sci 2:279304.[PubMed][CrossRef]
8. Laanbroek HJ. 2010. Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review. Ann Bot London 105:141153.[CrossRef]
9. Almeida JR, Favaro LC, Quirino BF. 2012. Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biotechnol Biofuels 5:48.[PubMed][CrossRef]
10. Bokkenheuser V. 1993. The friendly anaerobes. Clin Infect Dis 16(Suppl 4):S427S434.[PubMed][CrossRef]
11. Narihiro T, Sekiguchi Y. 2007. Microbial communities in anaerobic digestion processes for waste and wastewater treatment: a microbiological update. Curr Opin Biotechnol 18:273278.[PubMed][CrossRef]
12. Jones DT, Woods DR. 1986. Acetone-butanol fermentation revisited. Microbiol Rev 50:484524.[PubMed]
13. Abdel-Rahman MA, Tashiro Y, Sonomoto K. 2013. Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv 31:877902.[PubMed][CrossRef]
14. van Niftrik L, Jetten MS. 2012. Anaerobic ammonium-oxidizing bacteria: unique microorganisms with exceptional properties. Microbiol Mol Biol Rev 76:585596.[PubMed][CrossRef]
15. Pester M, Knorr KH, Friedrich MW, Wagner M, Loy A. 2012. Sulfate-reducing microorganisms in wetlands—fameless actors in carbon cycling and climate change. Front Microbiol 3:72.[PubMed][CrossRef]
16. Weber KA, Achenbach LA, Coates JD. 2006. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4:752764.[PubMed][CrossRef]
17. Schink B, Stams AJM,. 2013. Syntrophism among prokaryotes, p. 471493. In Rosenberg E,, DeLong E,, Lory S,, Stackebrandt E,, Thompson F (eds), The prokaryotes, 4th ed, Springer, Berlin.
18. Liu YC, Whitman WB. 2008. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125:171189.[PubMed][CrossRef]
19. Miyamoto K, Li J, McClane BA. 2012. Enterotoxigenic Clostridium perfringens: detection and identification. Microbes Environ 27:343349.[PubMed][CrossRef]
20. Murphy EC, Frick IM. 2013. Gram-positive anaerobic cocci—commensals and opportunistic pathogens. FEMS Microbiol Rev 37:520553.[PubMed][CrossRef]
21. Brook I. 2010. The role of anaerobic bacteria in bacteremia. Anaerobe 16:183189.[PubMed][CrossRef]
22. Wexler HM. 2007. Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev 20:593621.[PubMed][CrossRef]
23. Hatheway CL. 1990. Toxigenic clostridia. Clin Microbiol Rev 3:6698.[PubMed]
24. Pasteur L. 1861. Animalcules infusoires vivant sans gaz oxygène libre et déterminant des fermentations. Comp Rend Acad Sci 52:344347.
25. Hunziker OF. 1902. A Review of the Existing Methods for Cultivating Anaerobic Bacteria. Cornell University Library, Ithaca, NY.
26. Sonnenwirth AC. 1972. Evolution of anaerobic methodology. Am J Clin Nutr 25:12951298.[PubMed]
27. Hall IC. 1929. A review of the development and application of physical and chemical principles in the cultivation of obligately anaerobic bacteria. J Bacteriol 17:255301.[PubMed]
28. Ehrenberg H. 1927. Simple method of producing anaerobic conditions. J Bacteriol 14:391393.[PubMed]
29. Noguchi H. 1911. Method for the pure cultivation of pathogenic Treponema pallidum (Spirochaeta Pallida). J Exp Med 14:99108.[PubMed][CrossRef]
30. Bushnell LD. 1922. A method for the cultivation of anaerobes. J Bacteriol 7:277281.[PubMed]
31. Ayers SH. 1910. A new form of anaerobic jar. Am J Public Hygiene 20:844846.[PubMed]
32. Herrington BL, Knaysi G. 1930. A simple method of growing anaerobes in petri dish cultures. J Bacteriol 19:101103.[PubMed]
33. Morse S, Kopeloff N. 1922. A simple method for anaerobic cultivation in petri dishes. Am J Public Health 12:119121.[CrossRef]
34. Esmarch E. 1886. Ueber eine Modification des Koch'schen Plattenverfahrens zur Isolirung und zum quantitativen Nachweis von Mikroorganismen. Zeits Hyg 1:293301.
35. Thompson R. 1934. A mechanical device which prepares and inoculates rolled tubes. J Bacteriol 28:279287.[PubMed]
36. Wilson GS. 1922. The proportion of viable bacteria in young cultures with especial reference to the technique employed in counting. J Bacteriol 7:405446.[PubMed]
37. Gee H. 1932. Mechanical spinner for Esmarch cultures. J Bacteriol 24:3541.[PubMed]
38. Moir GM, Thomson GI. 1950. Device for preparing roll-tube cultures. J Dairy Res 17:192193.[CrossRef]
39. Hirsch A. 1948. An apparatus made from Meccano parts for the preparation of roll-tube cultures. J Gen Microbiol 2:123125.[CrossRef]
40. Hungate RE. 1950. The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev 14:149.[PubMed]
41. Hungate RE,. 1969. A roll tube method for cultivation of strict anaerobes, p. 117132. In Norris JR,, Ribbons DW (eds), Methods in Microbiology. Academic Press, New York.[CrossRef]
42. Moore WEC. 1966. Techniques for routine culture of fastidious anaerobes. Int J Syst Bacteriol 16:173190.[CrossRef]
43. Hungate RE, Smith W, Clarke RT. 1966. Suitability of butyl rubber stoppers for closing anaerobic roll culture tubes. J Bacteriol 91:908909.[PubMed]
44. Miller TL, Wolin MJ. 1974. A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl Microbiol 27:985987.[PubMed]
45. Attebery HR, Finegold SM. 1969. Combined screw-cap and rubber-stopper closure for Hungate tubes (pre-reduced anaerobically sterilized roll tubes and liquid media). Appl Microbiol 18:558561.[PubMed]
46. Macy JM, Snellen JE, Hungate RE. 1972. Use of syringe methods for anaerobiosis. Am J Clin Nutr 25:13181323.[PubMed]
47. Balch WE, Wolfe RS. 1976. New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressureized atmosphere. Appl Environ Microbiol 32:781791.[PubMed]
48. Wolfe RS. 2011. Techniques for cultivating methanogens. Meth Enzymol 494:122.[PubMed][CrossRef]
49. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS. 1979. Methanogens—re-evaluation of a unique biological group. Microbiol Rev 43:260296.[PubMed]
50. Boone DR, Bryant MP. 1980. Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl Environ Microbiol 40:626632.[PubMed]
51. Beaty PS, Mcinerney MJ. 1987. Growth of Syntrophomonas wolfei in pure culture on crotonate. Arch Microbiol 147:389393.[CrossRef]
52. Bryant MP. 1972. Commentary on the Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr 25:13241328.[PubMed]
53. Joblin KN. 1981. Isolation, enumeration, and maintenance of rumen anaerobic fungi in roll tubes. Appl Environ Microbiol 42:11191122.[PubMed]
54. Wolfe RS, Metcalf WW. 2010. A vacuum-vortex technique for preparation of anoxic solutions or liquid culture media in small volumes for cultivating methanogens or other strict anaerobes. Anaerobe 16:216219.[PubMed][CrossRef]
55. Socransky S, Macdonald JB, Sawyer S. 1959. The cultivation of Treponema microdentium as surface colonies. Arch Oral Biol 1:171172.[PubMed][CrossRef]
56. Keefer CE, Buck TC. 1962. An oxygen free gas chamber for isolating fastidious anaerobic bacteria. J Water Pollut Con F 34:7579.
57. Rosebury T, Reynolds JB. 1964. Continuous anaerobiosis for cultivation of spirochetes. Proc Soc Exp Biol Med 117:813815.[PubMed][CrossRef]
58. Drasar BS. 1967. Cultivation of anaerobic intestinal bacteria. J Pathol Bacteriol 94:417427.[PubMed][CrossRef]
59. Aranki A, Syed SA, Kenney EB, Freter R. 1969. Isolation of anaerobic bacteria from human gingiva and mouse cecum by means of a simplified glove box procedure. Appl Microbiol 17:568576.
60. Speers AM, Cologgi DL, Reguera G. 2009. Anaerobic cell culture. Curr Protoc Microbiol Appendix 4:Appendix 4F.[PubMed]
61. Balish E, Brown JF, Wilkins TD. 1977. Transparent plastic incubator for the anaerobic glove box. Appl Environ Microbiol 33:525527.[PubMed]
62. Metcalf WW, Zhang JK, Wolfe RS. 1998. An anaerobic, intrachamber incubator for growth of Methanosarcina spp. on methanol-containing solid media. Appl Environ Microbiol 64:768770.[PubMed]
63. Novy FG. 1893. Die Kultur Anaeröber Bakterien. Centralbl Bakt 14:581600.
64. Smillie WG. 1917. New anaerobic methods. J Exp Med 26:5966.[PubMed][CrossRef]
65. Brewer JH, Heer AA, Mclaughlin CB. 1955. The use of sodium borohydride for producing hydrogen in an anaerobe jar. Appl Microbiol 3:136136.[PubMed]
66. Brewer JH, Allgeier DL. 1965. Disposable hydrogen generator. Science 147:10331034.[PubMed][CrossRef]
67. Brewer JH, Allgeier DL. 1966. Safe self-contained carbon dioxide-hydrogen anaerobic system. Appl Microbiol 14:985988.[PubMed]
68. Brewer JH, Allgeier DL, McLaughlin CB. 1966. Improved anaerobic indicator. Appl Microbiol 14:135136.[PubMed]
69. Ferguson IR, Phillips KD, Tearle PV. 1975. An evaluation of the carbon dioxide component in the GasPak anaerobic system. J Appl Bacteriol 39:167173.[PubMed][CrossRef]
70. Collee JG, Watt B, Fowler EB, Brown R. 1972. An evaluation of the Gaspak system in the culture of anaerobic bacteria. J Appl Bacteriol 35:7182.[PubMed][CrossRef]
71. Seip WF, Evans GL. 1980. Atmospheric analysis and redox potentials of culture media in the Gaspak System. J Clin Microbiol 11:226233.[PubMed]
72. Ferguson IR, Phillips KD, Willis AT. 1976. Evaluation of “Gaskit” disposable hydrogen and carbon-dioxide generator for culture of anaerobic bacteria. J Appl Bacteriol 41:433437.[PubMed][CrossRef]
73. Miller PH, Wiggs LS, Miller JM. 1995. Evaluation of Anaero Gen system for growth of anaerobic bacteria. J Clin Microbiol 33:23882391.[PubMed]
74. Heizmann WR, Werner H. 1989. GasPak Plus versus Anaerocult A—two carbon dioxide/hydrogen systems for cultivation of anaerobes. Zentr Bakteriol Mikrobiol Hyg A 270:511516.
75. Van Horn KG, Warren K, Baccaglini EJ. 1997. Evaluation of the AnaeroPack system for growth of anaerobic bacteria. J Clin Microbiol 35:21702173.[PubMed]
76. Delaney ML, Onderdonk AB. 1997. Evaluation of the AnaeroPack system for growth of clinically significant anaerobes. J Clin Microbiol 35:558562.[PubMed]
77. Collins C, Petts D. 2008. Culture methods for pathogenic anaerobes: a brief history. Biomed. Scientist. (July) p. 599601.
78. Brazier JS, Smith SA. 1989. Evaluation of the Anoxomat: a new technique for anaerobic and microaerophilic clinical bacteriology. J Clin Pathol 42:640644.[PubMed][CrossRef]
79. Shahin M, Jamal W, Verghese T, Rotimi VO. 2003. Comparative evaluation of anoxomat and conventional anaerobic GasPak jar systems for the isolation of anaerobic bacteria. Med Princ Pract 12:8186.[PubMed][CrossRef]
80. Summanen PH, McTeague M, Vaisanen ML, Strong CA, Finegold SM. 1999. Comparison of recovery of anaerobic bacteria using the Anoxomat, anaerobic chamber, and GasPak jar systems. Anaerobe 5:59.[PubMed][CrossRef]
81. Jencks WP, Regenstein J,. 2010. Ionization constants of acids and bases, p. 595635. In Lundblad RL,, Macdonald F (eds), Handbook of Biochemistry and Molecular Biology. 4th ed. CRC Press, Boca Raton, FL.
82. Sander R. 2014. Compilation of Henry's law constants, version 3.99. Atmos Chem Phys Disc 14:2961530521.[CrossRef]
83. Widdel F, Pfennig N. 1981. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty-acids.1. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments - description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 129:395400.[PubMed][CrossRef]
84. Sekiguchi Y, Yamada T, Hanada S, Ohashi A, Harada H, Kamagata Y. 2003. Anaerolinea thermophila gen. nov., sp nov and Caldilinea aerophila gen. nov., sp nov., novel filamentous thermophiles that represent a previously uncultured lineage of the domain Bacteria at the subphylum level. Int J Syst Evol Microbiol 53:18431851.[PubMed][CrossRef]
85. Yamada T, Sekiguchi Y, Hanada S, Imachi H, Ohashi A, Harada H, Kamagata Y. 2006. Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp nov and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi. Int J Syst Evol Microbiol 56:13311340.[PubMed][CrossRef]
86. Narihiro T, Nobu MK, Kim NK, Kamagata Y, Liu WT. 2015. The nexus of syntrophy-associated microbiota in anaerobic digestion revealed by long-term enrichment and community survey. Environ Microbiol 17:17071720.[PubMed][CrossRef]
87. Iino T, Tamaki H, Tamazawa S, Ueno Y, Ohkuma M, Suzuki K, Igarashi Y, Haruta S. 2013. Candidatus Methanogranum caenicola: a novel methanogen from the anaerobic digested sludge, and proposal of Methanomassiliicoccaceae fam. nov. and Methanomassiliicoccales ord. nov., for a methanogenic lineage of the class Thermoplasmata. Microbes Environ 28:244250.[PubMed][CrossRef]
88. Delgado AG, Parameswaran P, Fajardo-Williams D, Halden RU, Krajmalnik-Brown R. 2012. Role of bicarbonate as a pH buffer and electron sink in microbial dechlorination of chloroethenes. Microb Cell Fact 11:128.[PubMed][CrossRef]
89. Cervantes FJ, Dijksma W, Duong-Dac T, Ivanova A, Lettinga G, Field JA. 2001. Anaerobic mineralization of toluene by enriched sediments with quinones and humus as terminal electron acceptors. Appl Environ Microbiol 67:44714478.[PubMed][CrossRef]
90. Lee YJ, Romanek CS, Wiegel J. 2007. Clostridium aciditolerans sp. nov., an acid-tolerant spore-forming anaerobic bacterium from constructed wetland sediment. Int J Syst Evol Microbiol 57:311315.[PubMed][CrossRef]
91. Gill JW, King KW. 1958. Nutritional characteristics of a Butyrivibrio. J Bacteriol 75:666673.[PubMed]
92. Atlas RM. 2010. Handbook of Microbiological Media, 4th ed. CRC Press, Boca Raton, FL.
93. Hosoya S. 1925. A new method for the cultivation of anaerobic bacilli. Tokyo Imp Univ, Sc Reps Gov Inst Infect Dise 4:103.
94. Hazlewood GP, Nugent JHA. 1978. Leaf fraction 1 protein as a nitrogen-source for growth of a proteolytic rumen bacterium. J Gen Microbiol 106:369371.[CrossRef]
95. Bryant MP. 1959. Bacterial species of the rumen. Bacteriol Rev 23:125153.[PubMed]
96. Bhatnagar L, Henriquet M, Zeikus JG, Aubert JP. 1984. Utilization of mercapto-2-ethanol as medium reductant for determination of the metabolic response of methanogens towards inorganic sulfur-compounds. FEMS Microbiol Lett 22:155158.[CrossRef]
97. Bräuer S, Cadillo-Quiroz H, Ward RJ, Yavitt J, Zinder S. 2011. Methanoregula boonei gen. nov., sp. nov., an acidiphilic methanogen isolated from an acidic peat bog. Int J Syst Evol Microbiol 61:4552.[PubMed][CrossRef]
98. Smith PH, Hungate RE. 1958. Isolation and characterization of Methanobacterium ruminantium n. sp. J Bacteriol 75:713718.[PubMed]
99. Sijpesteijn AK. 1951. On Ruminococcus flavefaciens, a cellulose-decomposing bacterium from the rumen of sheep and cattle. J Gen Microbiol 5:869879.[PubMed][CrossRef]
100. Bryant MP, Robinson IM. 1961. An improved nonselective culture medium for ruminal bacteria and its use in determining diurnal variation in numbers of bacteria in the rumen. J Dairy Sci 44:14461456.[CrossRef]
101. Rothe O, Thomm M. 2000. A simplified method for the cultivation of extreme anaerobic Archaea based on the use of sodium sulfite as reducing agent. Extremophiles 4:247252.[PubMed][CrossRef]
102. de Poorter LM, Geerts WJ, Keltjens JT. 2005. Hydrogen concentrations in methane-forming cells probed by the ratios of reduced and oxidized coenzyme F420. Microbiology 151:16971705.[PubMed][CrossRef]
103. Brock TD, Od'ea K. 1977. Amorphous ferrous sulfide as a reducing agent for culture of anaerobes. Appl Environ Microbiol 33:254256.[PubMed]
104. Zehnder AJ, Wuhrmann K. 1976. Titanium (III) citrate as a nontoxic oxidation-reduction buffering system for the culture of obligate anaerobes. Science 194:11651166.[PubMed][CrossRef]
105. Moench TT, Zeikus JG. 1983. An improved preparation method for a titanium (III) media reductant. J Microbiol Meth 1:199202.[CrossRef]
106. Wachenheim DE, Hespell RB. 1984. Inhibitory effects of titanium (III) citrate on enumeration of bacteria from rumen contents. Appl Environ Microbiol 48:444445.[PubMed]
107. Bräuer SL, Yashiro E, Ueno NG, Yavitt JB, Zinder SH. 2006. Characterization of acid-tolerant H-2/CO2-utilizing methanogenic enrichment cultures from an acidic peat bog in New York State. FEMS Microbiol Ecol 57:206216.[PubMed][CrossRef]
108. Carbonero F, Oakley BB, Purdy KJ. 2010. Improving the isolation of anaerobes on solid media: the example of the fastidious Methanosaeta. J Microbiol Meth 80:203205.[CrossRef]
109. Sekiguchi Y, Takahashi H, Kamagata Y, Ohashi A, Harada H. 2001. In situ detection, isolation, and physiological properties of a thin filamentous microorganism abundant in methanogenic granular sludges: a novel isolate affiliated with a clone cluster, the green non-sulfur bacteria, subdivision I. Appl Environ Microbiol 67:57405749.[PubMed][CrossRef]
110. Yamada T, Imachi H, Ohashi A, Harada H, Hanada S, Kamagata Y, Sekiguchi Y. 2007. Bellilinea caldifistulae gen. nov., sp nov and Longilinea arvoryzae gen. nov., sp nov., strictly anaerobic, filamentous bacteria of the phylum Chloroflexi isolated from methanogenic propionate-degrading consortia. Int J Syst Evol Microbiol 57:22992306.[PubMed][CrossRef]
111. Gregoire P, Fardeau ML, Joseph M, Guasco S, Hamaide F, Biasutti S, Michotey V, Bonin P, Ollivier B. 2011. Isolation and characterization of Thermanaerothrix daxensis gen. nov., sp nov., a thermophilic anaerobic bacterium pertaining to the phylum “Chloroflexi”, isolated from a deep hot aquifer in the Aquitaine Basin. Syst Appl Microbiol 34:494497.[PubMed][CrossRef]
112. Nunoura T, Hirai M, Miyazaki M, Kazama H, Makita H, Hirayama H, Furushima Y, Yamamoto H, Imachi H, Takai K. 2013. Isolation and characterization of a thermophilic, obligately anaerobic and heterotrophic marine Chloroflexi bacterium from a Chloroflexi-dominated microbial community associated with a Japanese shallow hydrothermal system, and proposal for Thermomarinilinea lacunofontalis gen. nov., sp. nov. Microbes Environ 28:223235.[CrossRef]
113. Podosokorskaya OA, Bonch-Osmolovskaya EA, Novikov AA, Kolganova TV, Kublanov IV. 2013. Ornatilinea apprima gen. nov., sp nov., a cellulolytic representative of the class Anaerolineae. Int J Syst Evol Microbiol 63:8692.[PubMed][CrossRef]
114. Yamada T, Sekiguchi Y. 2009. Cultivation of uncultured Chloroflexi subphyla: significance and ecophysiology of formary uncultured Chloroflexi “subphylum I” with natural and biotechnological relevance. Microbes Environ 24:205216.[PubMed][CrossRef]
115. Barber MA. 1904. A new method of isolating microorganisms. J Kansas Med Sot 4:489494.
116. Barber MA. 1920. Use of the single cell method in obtaining pure cultures of anaerobes. J Exp Med 32:295311.[PubMed][CrossRef]
117. Chambers R. 1922. New micromanipulator and methods for the isolation of a single bacterium and the manipulation of living cells. J Infect Dis 31:334343.[CrossRef]
118. Reyniers JA. 1932. A new and simplified micrurgical apparatus especially adapted to single cell isolation. J Bacteriol 23:183192.[PubMed]
119. Skerman VB. 1968. A new type of micromanipulator and microforge. J Gen Microbiol 54:287297.[PubMed][CrossRef]
120. Fröhlich J, König H. 1999. Rapid isolation of single microbial cells from mixed natural and laboratory populations with the aid of a micromanipulator. Syst Appl Microbiol 22:249257.[PubMed][CrossRef]
121. Fröhlich J, König H. 2000. New techniques for isolation of single prokaryotic cells. FEMS Microbiol Rev 24:567572.[PubMed][CrossRef]
122. Hamilton-Brehm SD, Vishnivetskaya TA, Allman SL, Mielenz JR, Elkins JG. 2012. Anaerobic high-throughput cultivation method for isolation of thermophiles using biomass-derived substrates. Meth Mol Biol 908:153168.
123. Borner RA, Aliaga MTA, Mattiasson B. 2013. Microcultivation of anaerobic bacteria single cells entrapped in alginate microbeads. Biotechnol Lett 35:397405.[PubMed][CrossRef]
124. Buerger S, Spoering A, Gavrish E, Leslin C, Ling L, Epstein SS. 2012. Microbial scout hypothesis and microbial discovery. Appl Environ Microbiol 78:32293233.[PubMed][CrossRef]
125. Kenters N, Henderson G, Jeyanathan J, Kittelmann S, Janssen PH. 2011. Isolation of previously uncultured rumen bacteria by dilution to extinction using a new liquid culture medium. J Microbiol Meth 84:5260.[CrossRef]
126. Sizova MV, Hohmann T, Hazen A, Paster BJ, Halem SR, Murphy CM, Panikov NS, Epstein SS. 2012. New approaches for isolation of previously uncultivated oral bacteria. Appl Environ Microbiol 78:194203.[PubMed][CrossRef]
127. Nakamura K, Tamaki H, Kang MS, Mochimaru H, Lee ST, Kamagata Y. 2011. A six-well plate method: less laborious and effective method for cultivation of obligate anaerobic microorganisms. Microbes Environ 26:301306.[PubMed][CrossRef]
128. Matthews AD, Karnauchow PN. 1961. A simple technique for the cultivation of anaerobes. Can Med Assoc J 84:793794.[PubMed]
129. Rosenblatt JE, Stewart PR. 1975. Anaerobic bag culture method. J Clin Microbiol 1:527530.[PubMed]
130. Nakamura K, Takahashi A, Mori C, Tamaki H, Mochimaru H, Takamizawa K, Kamagata Y. 2013. Methanothermobacter tenebrarum sp. nov., a hydrogenotrophic, thermophilic methanogen isolated from gas-associated formation water of a natural gas field. Int J Syst Evol Microbiol 63:715722.[PubMed][CrossRef]
131. Sakai S, Imachi H, Sekiguchi Y, Ohashi A, Harada H, Kamagata Y. 2007. Isolation of key methanogens for global methane emission from rice paddy fields: a novel isolate affiliated with the clone cluster rice cluster I. Appl Environ Microbiol 73:43264331.[PubMed][CrossRef]
132. Sakai S, Imachi H, Hanada S, Ohashi A, Harada H, Kamagata Y. 2008. Methanocella paludicola gen. nov., sp nov., a methane-producing archaeon, the first isolate of the lineage “Rice Cluster I”, and proposal of the new archaeal order Methanocellales ord. nov. Int J Syst Evol Microbiol 58:929936.[PubMed][CrossRef]
133. Imachi H, Sakai S, Sekiguchi Y, Hanada S, Kamagata Y, Ohashi A, Harada H. 2008. Methanolinea tarda gen. nov., sp nov., a methane-producing archaeon isolated from a methanogenic digester sludge. Int J Syst Evol Microbiol 58:294301.[PubMed][CrossRef]
134. Tian JQ, Wang YF, Dong XZ. 2010. Methanoculleus hydrogenitrophicus sp. nov., a methanogenic archaeon isolated from wetland soil. Int J Syst Evol Microbiol 60:21652169.[PubMed][CrossRef]
135. Kato S, Watanabe K. 2010. Ecological and evolutionary interactions in syntrophic methanogenic consortia. Microbes Environ 25:145151.[PubMed][CrossRef]
136. Kindaichi T, Awata T, Suzuki Y, Tanabe K, Hatamoto M, Ozaki N, Ohashi A. 2011. Enrichment using an up-flow column reactor and community structure of marine anammox bacteria from coastal sediment. Microbes Environ 26:6773.[PubMed][CrossRef]
137. Oshiki M, Awata T, Kindaichi T, Satoh H, Okabe S. 2013. Cultivation of planktonic anaerobic ammonium oxidation (anammox) bacteria using membrane bioreactor. Microbes Environ 28:436443.[PubMed][CrossRef]
138. Imachi H, Aoi K, Tasumi E, Saito Y, Yamanaka Y, Saito Y, Yamaguchi T, Tomaru H, Takeuchi R, Morono Y, Inagaki F, Takai K. 2011. Cultivation of methanogenic community from subseafloor sediments using a continuous-flow bioreactor. ISME J 5:19131925.[PubMed][CrossRef]
139. Ettwig KF, van Alen T, van de Pas-Schoonen KT, Jetten MS, Strous M. 2009. Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum. Appl Environ Microbiol 75:36563662.[PubMed][CrossRef]
140. Ettwig KF, Shima S, van de Pas-Schoonen KT, Kahnt J, Medema MH, Op den Camp HJ, Jetten MS, Strous M. 2008. Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ Microbiol 10:31643173.[PubMed][CrossRef]
141. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJ, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJ, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MS, Strous M. 2010. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543548.[PubMed][CrossRef]
142. Meulepas RJ, Jagersma CG, Gieteling J, Buisman CJ, Stams AJ, Lens PN. 2009. Enrichment of anaerobic methanotrophs in sulfate-reducing membrane bioreactors. Biotechnol Bioeng 104:458470.[PubMed][CrossRef]
143. Jagersma GC, Meulepas RJ, Heikamp-de Jong I, Gieteling J, Klimiuk A, Schouten S, Damste JS, Lens PN, Stams AJ. 2009. Microbial diversity and community structure of a highly active anaerobic methane-oxidizing sulfate-reducing enrichment. Environ Microbiol 11:32233232.[PubMed][CrossRef]
144. Deusner C, Meyer V, Ferdelman TG. 2010. High-pressure systems for gas-phase free continuous incubation of enriched marine microbial communities performing anaerobic oxidation of methane. Biotechnol Bioeng 105:524533.[PubMed][CrossRef]
145. Zhang Y, Maignien L, Zhao X, Wang F, Boon N. 2011. Enrichment of a microbial community performing anaerobic oxidation of methane in a continuous high-pressure bioreactor. BMC Microbiol 11:137.[PubMed][CrossRef]
146. Takai K, Inagaki F, Nakagawa S, Hirayama H, Nunoura T, Sako Y, Nealson KH, Horikoshi K. 2003. Isolation and phylogenetic diversity of members of previously uncultivated epsilon-Proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Lett 218:167174.[PubMed]
147. Takai K, Nealson KH, Horikoshi K. 2004. Hydrogenimonas thermophila gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing chemolithoautotroph within the epsilon-Proteobacteria, isolated from a black smoker in a Central Indian Ridge hydrothermal field. Int J Syst Evol Microbiol 54:2532.[PubMed][CrossRef]
148. Takai K, Hirayama H, Nakagawa T, Suzuki Y, Nealson KH, Horikoshi K. 2005. Lebetimonas acidiphila gen. nov., sp. nov., a novel thermophilic, acidophilic, hydrogen-oxidizing chemolithoautotroph within the “Epsilonproteobacteria”, isolated from a deep-sea hydrothermal fumarole in the Mariana Arc. Int J Syst Evol Microbiol 55:183189.[PubMed][CrossRef]
149. Silver BJ, Onstott TC, Rose G, Lin LH, Ralston C, Sherwood-Lollar B, Pfiffner SM, Kieft TL, McCuddy S. 2010. In situ cultivation of subsurface microorganisms in a deep mafic sill: implications for SLiMEs. Geomicrobiol J 27:329348.[CrossRef]
150. Shungu D, Valiant M, Tutlane V, Weinberg E, Weissberger B, Koupal L, Gadebusch H, Stapley E. 1983. GELRITE as an agar substitute in bacteriological media. Appl Environ Microbiol 46:840845.[PubMed]
151. Jeanthon C, L'Haridon S, Reysenbach AL, Corre E, Vernet M, Messner P, Sleytr UB, Prieur D. 1999. Methanococcus vulcanius sp. nov., a novel hyperthermophilic methanogen isolated from East Pacific Rise, and identification of Methanococcus sp. DSM 4213T as Methanococcus fervens sp. nov. Int J Syst Bacteriol 49(2):583589.[PubMed][CrossRef]
152. Jeanthon C, L'Haridon S, Reysenbach AL, Vernet M, Messner P, Sleytr UB, Prieur D. 1998. Methanococcus infernus sp. nov., a novel hyperthermophilic lithotrophic methanogen isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 48(Pt 3):913919.[PubMed][CrossRef]
153. L'Haridon S, Cilia V, Messner P, Raguenes G, Gambacorta A, Sleytr UB, Prieur D, Jeanthon C. 1998. Desulfurobacterium thermolithotrophum gen. nov., sp. nov., a novel autotrophic, sulphur-reducing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 48(3):701711.[CrossRef]
154. Kaksonen AH, Spring S, Schumann P, Kroppenstedt RM, Puhakka JA. 2007. Desulfovirgula thermocuniculi gen. nov., sp. nov., a thermophilic sulfate-reducer isolated from a geothermal underground mine in Japan. Int J Syst Evol Microbiol 57:98102.[PubMed][CrossRef]
155. L'Haridon S, Reysenbach AL, Tindall BJ, Schonheit P, Banta A, Johnsen U, Schumann P, Gambacorta A, Stackebrandt E, Jeanthon C. 2006. Desulfurobacterium atlanticum sp. nov., Desulfurobacterium pacificum sp. nov. and Thermovibrio guaymasensis sp. nov., three thermophilic members of the Desulfurobacteriaceae fam. nov., a deep branching lineage within the Bacteria. Int J Syst Evol Microbiol 56:28432852.[PubMed][CrossRef]
156. L'Haridon S, Miroshnichenko ML, Hippe H, Fardeau ML, Bonch-Osmolovskaya EA, Stackebrandt E, Jeanthon C. 2002. Petrotoga olearia sp. nov. and Petrotoga sibirica sp. nov., two thermophilic bacteria isolated from a continental petroleum reservoir in Western Siberia. Int J Syst Evol Microbiol 52:17151722.[PubMed]
157. Prakash O, Gihring TM, Dalton DD, Chin KJ, Green SJ, Akob DM, Wanger G, Kostka JE. 2010. Geobacter daltonii sp. nov., an Fe(III)- and uranium(VI)-reducing bacterium isolated from a shallow subsurface exposed to mixed heavy metal and hydrocarbon contamination. Int J Syst Evol Microbiol 60:546553.[PubMed][CrossRef]
158. Viulu S, Nakamura K, Okada Y, Saitou S, Takamizawa K. 2013. Geobacter luticola sp. nov., an Fe(III)-reducing bacterium isolated from lotus field mud. Int J Syst Evol Microbiol 63:442448.[PubMed][CrossRef]
159. Pankratov TA, Kirsanova LA, Kaparullina EN, Kevbrin VV, Dedysh SN. 2012. Telmatobacter bradus gen. nov., sp. nov., a cellulolytic facultative anaerobe from subdivision 1 of the Acidobacteria, and emended description of Acidobacterium capsulatum Kishimoto et al. 1991. Int J Syst Evol Microbiol 62:430437.[PubMed][CrossRef]
160. Imachi H, Sakai S, Nagai H, Yamaguchi T, Takai K. 2009. Methanofollis ethanolicus sp nov., an ethanol-utilizing methanogen isolated from a lotus field. Int J Syst Evol Microbiol 59:800805.[PubMed][CrossRef]
161. Taupp M, Mewis K, Hallam SJ. 2011. The art and design of functional metagenomic screens. Curr Opin Biotechnol 22:465472.[PubMed][CrossRef]
162. Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, Darling A, Malfatti S, Swan BK, Gies EA, Dodsworth JA, Hedlund BP, Tsiamis G, Sievert SM, Liu WT, Eisen JA, Hallam SJ, Kyrpides NC, Stepanauskas R, Rubin EM, Hugenholtz P, Woyke T. 2013. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:431437.[PubMed][CrossRef]
163. Nelson KE. 2013. Microbiomes. Microb. Ecol 65:916919.[PubMed][CrossRef]
164. Keller M, Zengler K. 2004. Tapping into microbial diversity. Nat Rev Microbiol 2:141150.[PubMed][CrossRef]
165. Narihiro T, Kamagata Y. 2013. Cultivating yet-to-be cultivated microbes: the challenge continues. Microbes Environ 28:163165.[PubMed][CrossRef]
166. Vartoukian SR, Palmer RM, Wade WG. 2010. Strategies for culture of “unculturable” bacteria. FEMS Microbiol Lett 309:17.[PubMed]
167. Puspita ID, Kamagata Y, Tanaka M, Asano K, Nakatsu CH. 2012. Are uncultivated bacteria really uncultivable? Microbes Environ 27:356366.[PubMed][CrossRef]
168. Euzeby JP. 1997. List of bacterial names with standing in nomenclature: a folder available on the Internet. Int J Syst Bacteriol 47:590592.[PubMed][CrossRef]
169. Pfennig N. 1993. Reflections of a microbiologist, or how to learn from the microbes. Annu Rev Microbiol 47:129.[PubMed][CrossRef]
170. Plugge CM. 2005. Anoxic media design, preparation, and considerations. Environ Microbiol 397:316.
171. Loach PA,. 2010. Oxidation-reduction potentials, absorbance bands and molar absorbance of compounds used in biochemical studies, p. 557563. In Lundblad RL,, Macdonald F (eds), Handbook of Biochemistry and Molecular Biology, 4th ed. CRC Press, Boca Raton, FL.
172. Mickey B, Howard J. 1995. Rigidity of microtubules is increased by stabilizing agents. J Cell Biol 130:909917.[PubMed][CrossRef]
173. Thauer RK, Jungermann K, Decker K. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100180.[PubMed]
174. Cleland WW. 1964. Dithiothreitol, a new protective reagent for SH groups. Biochemistry 3:480482.[PubMed][CrossRef]

Tables

Generic image for table
TABLE 1

Reducing agents used for anaerobic culturing

Citation: Narihiro T, Kamagata Y. 2016. Anaerobic Cultivation, p 2.1.2-1-2.1.2-12. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch2.1.2

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error