1887

Chapter 2.1.3 : New Devices for Cultivation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

New Devices for Cultivation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch2.1.3-1.gif /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch2.1.3-2.gif

Abstract:

One of the most important observations in microbiology is that the vast majority of microorganisms from most environments on the planet do not grow on artificial media. This is a significant impediment for both academic and applied microbiology, necessitating innovations in cultivation technologies. Several recently advanced methodologies offer a promise to close the gap between the high richness of environmental species and low number of their cultivable representatives. This chapter will describe the state of the art in microbial cultivation methods, their principles and application. These methods are categorized into two types: “in situ cultivation” whereby microbes are cultivated in situ, and “high throughput cultivation”, mostly in vitro. In the first group, the following methods are described in detail, 1) Diffusion chamber, 2) i-chip, 3) Microbial trap, and 4) Hollow Fiber Membrane Chamber. In the second group, we focus on Gel miro-droplets (GMDs) based cultivation and micro-fabrication based technologies. The chapter will also discuss their relative merits and respective biases.

Citation: Aoi Y, Epstein S. 2016. New Devices for Cultivation, p 2.1.3-1-2.1.3-8. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch2.1.3
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Photographic (a) and schematic (b) image of the diffusion chamber. A polycarbonate membrane is attached to the bottom of the metal disc, the other membrane is glued to the upper surface of disc. The inner space is filled with microbial cells mixed with agar. After the inoculation and assembly the diffusion chamber is placed in the natural environment for incubation. (A part of the figure is reprinted from ). doi:10.1128/9781555818821.ch2.1.3.f1

Citation: Aoi Y, Epstein S. 2016. New Devices for Cultivation, p 2.1.3-1-2.1.3-8. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch2.1.3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Isolation chip, or i-chip, for high-throughput microbial cultivation : (a) dipping a plate with multiple through-holes into a suspension of cells leads to capturing (on average) single cell (b); (c) i-chip assembly; membranes cover arrays of through-holes from each side: Upper and bottom plates with matching holes press the membranes against the central (loaded) plate. Screws provide sufficient pressure to seal the content of individual through-holes, each becoming a miniature diffusion chamber containing (on average) a single cell. (Reprinted from [2010], ed. R. H. Baltz, J. E. Davies, and A. Demain, Washington, DC, ASM Press.). doi:10.1128/9781555818821.ch2.1.3.f2

Citation: Aoi Y, Epstein S. 2016. New Devices for Cultivation, p 2.1.3-1-2.1.3-8. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch2.1.3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Photographs of a 48-chamber HFMC showing (a) overall system, (b) membrane part, (c) injection part, and (d) cross-sectional SEM image of a hollow fiber membrane. Bar represents 200 µm. (Reprinted from ). doi:10.1128/9781555818821.ch2.1.3.f3

Citation: Aoi Y, Epstein S. 2016. New Devices for Cultivation, p 2.1.3-1-2.1.3-8. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch2.1.3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Microscopic image of GMDs before the incubation (a) and containing microcolony after the incubation (b); the bright area in the droplet shown in (b) is a microbial colony. The microcolony containing GMDs was sorted by using cell sorter FACS Aria II (Becton Dickinson) after the incubation. Bars represent 20 µm. doi:10.1128/9781555818821.ch2.1.3.f4

Citation: Aoi Y, Epstein S. 2016. New Devices for Cultivation, p 2.1.3-1-2.1.3-8. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch2.1.3
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818821.ch2.1.3
1. Staley JT, Konopka A. 1985. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321346.[PubMed][CrossRef]
2. DeLong EF. 1992. Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:56855689.[PubMed][CrossRef]
3. Dojka MA, Harris JK, Pace NR. 2000. Expanding the known diversity and environmental distribution of an uncultured phylogenetic division of bacteria. Appl Environ Microbiol 66:16171621.[PubMed][CrossRef]
4. Fuhrman JA, McCallum K, Davis AA. 1992. Novel major archaebacterial group from marine plankton. Nature 356:148149.[PubMed][CrossRef]
5. Giovannoni SJ, Britschgi TB, Moyer CL, Field KG. 1990. Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:6063.[PubMed][CrossRef]
6. Hugenholtz P, Goebel BM, Pace NR. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:47654774.[PubMed]
7. Liesack W, Stackebrandt E. 1992. Occurrence of novel groups of the domain Bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment. J Bacteriol 174:50725078.[PubMed]
8. Ravenschlag K, Sahm K, Pernthaler J, Amann R. 1999. High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol 65:39823989.[PubMed]
9. Ward DM, Weller R, Bateson MM. 1990. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345:6365.[PubMed][CrossRef]
10. Bruns A, Cypionka H, Overmann J. 2002. Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the central Baltic Sea. Appl Environ Microbiol 68:39783987.[PubMed][CrossRef]
11. Bruns A, Nubel U, Cypionka H, Overmann J. 2003. Effect of signal compounds and incubation conditions on the culturability of freshwater bacterioplankton. Appl Environ Microbiol 69:19801989.[PubMed][CrossRef]
12. Connon SA, Giovannoni SJ. 2002. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 68:38783885.[PubMed][CrossRef]
13. Cho JC, Giovannoni SJ. 2004. Cultivation and growth characteristics of a diverse group of oligotrophic marine gammaproteobacteria. Appl Environ Microbiol 70:432440.[PubMed][CrossRef]
14. Davis KER, Joseph SJ, Janssen PH. 2005. Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl Environ Microbiol 71:826834.[PubMed][CrossRef]
15. Janssen PH, Yates PS, Grinton BE, Taylor PM, Sait M. 2002. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl Environ Microbiol 68:23912396.[PubMed][CrossRef]
16. Joseph SJ, Hugenholtz P, Sangwan P, Osborne CA, Janssen PH. 2003. Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl Environ Microbiol 69:72107215.[PubMed][CrossRef]
17. Sangwan P, Kovac S, Davis KER, Sait M, Janssen PH. 2005. Detection and cultivation of soil Verrucomicrobia. Appl Environ Microbiol 71:84028410.[PubMed][CrossRef]
18. Sipkema D, Schippers K, Maalcke WJ, Yang Y, Salim S, Blanch HW. 2011. Multiple approaches to enhance the cultivability of bacteria associated with the marine sponge Haliclona (gellius) sp. Appl Environ Microbiol 77:21302140.[PubMed][CrossRef]
19. Stevenson BS, Eichorst SA, Wertz JT, Schmidt TM, Breznak JA. 2004. New strategies for cultivation and detection of previously uncultured microbes. Appl Environ Microbiol 70:47484755.[PubMed][CrossRef]
20. Tamaki H, Sekiguchi Y, Hanada S, Nakamura K, Nomura N, Matsumura M, Kamagata Y. 2005. Comparative analysis of bacterial diversity in freshwater sediment of a shallow eutrophic lake by molecular and improved cultivation-based techniques. Appl Environ Microbiol 71:21622169.[PubMed][CrossRef]
21. Aoi Y, Kinoshita T, Hata T, Ohta H, Obokata H, Tsuneda S. 2009. Hollow-fiber membrane chamber as a device for in situ environmental cultivation. Appl Environ Microbiol 75:38263833.[PubMed][CrossRef]
22. Ben-Dov E, Kramarsky-Winter E, Kushmaro A. 2009. An in situ method for cultivating microorganisms using a double encapsulation technique. FEMS Microbiol Ecol 68:363371.[PubMed][CrossRef]
23. Bollmann A, Lewis K, Epstein SS. 2007. Incubation of environmental samples in a diffusion chamber increases the diversity of recovered isolates. Appl Environ Microbiol 73:63866390.[PubMed][CrossRef]
24. Bollmann A, Palumbo AV, Lewis K, Epstein SS. 2010. Isolation and physiology of bacteria from contaminated subsurface sediments. Appl Environ Microbiol 76:74137419.[PubMed][CrossRef]
25. Ferrari BC, Binnerup SJ, Gillings M. 2005. Microcolony cultivation on a soil substrate membrane system selects for previously uncultured soil bacteria. Appl Environ Microbiol 71:87148720.[PubMed][CrossRef]
26. Gavrish E, Bollmann A, Epstein S, Lewis K. 2008. A trap for in situ cultivation of filamentous actinobacteria. J Microbiol Meth 72:257262.[CrossRef]
27. Kaeberlein T, Lewis K, Epstein SS. 2002. Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296:11271129.[PubMed][CrossRef]
28. Nichols D, Cahoon N, Trakhtenberg EM, Pham L, Mehta A, Belanger A, Kanigan T, Lewis K, Epstein SS. 2010. Use of Ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl Environ Microbiol 76:24452450.[PubMed][CrossRef]
29. Sizova MV, Hohmann T, Hazen A, Paster BJ, Halem SR, Murphy CM, Panikov NS, Epstein SS. 2012. Cultivability of oral bacteria: new approaches for isolation of previously uncultivated species. Appl Environ Microbiol 78:194203.[PubMed][CrossRef]
30. Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schäberle TF, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman VA, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K. 2015. A new antibiotic kills pathogens without detectable resistance. Nature 517:455459.[PubMed][CrossRef]
31. Gavrish E, Sit CS, Cao S, Kandror O, Spoering A, Peoples A, Ling L, Fetterman A, Hughes D, Bissell A, Torrey H, Akopian T, Mueller A, Epstein S, Goldberg A, Clardy J, Lewis K. 2014. Lassomycin, a ribosomally synthesized cyclic peptide, kills Mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2. Chem Biol 21:509518.[PubMed][CrossRef]
32. Akselband Y, Cabral C, Castor TP, Chikarmane HM, McGrath P. 2006. Enrichment of slow-growing marine microorganisms from mixed cultures using gel microdrop (GMD) growth assay and fluorescence-activated cell sorting. J Exp Mar Biol Ecol 329:196205.[CrossRef]
33. Katsuragi T, Tanaka S, Nagahiro S, Tani Y. 2000. Gel microdroplet technique leaving microorganisms alive for sorting by flow cytometry. J Microbiol Meth 42:8186.[CrossRef]
34. Manome A, Zhang H, Tani Y, Katsuragi T, Kurane R, Tsuchida T. 2001. Application of gel microdroplet and flow cytometry techniques to selective enrichment of non-growing bacterial cells. FEMS Microbiol Lett 197:2933.[PubMed][CrossRef]
35. Nir R, Lamed R, Gueta L, Sahar E. 1990. Single-cell entrapment and microcolony development within uniform microspheres amenable to flow cytometry. Appl Environ Microbiol 56:28702875.[PubMed]
36. Park J, Kerner A, Burns MA, Lin XN. 2011. Microdroplet-enabled highly parallel co-cultivation of microbial communities. PLoS One 6:e17019.[PubMed][CrossRef]
37. Weaver JC, Williams GB, Klibanov A, Demain AL. 1988. Gel microdroplets: rapid detection and enumeration of individual microorganisms by their metabolic activity. Nat Biotechnol 6:10841089.[CrossRef]
38. Zengler K, Toledo G, Rappé M, Elkins J, Mathur EJ, Short JM, Keller M. 2002. Cultivating the uncultured. Proc Natl Acad Sci USA 99:1568115686.[PubMed][CrossRef]
39. Eun YJ, Utada AS, Copeland MF, Takeuchi S, Weibel DB. 2011. Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation. ACS Chem Biol 6:260266.[PubMed][CrossRef]
40. Joensson HN, Svahn HA. 2012. Droplet microfluidics—A tool for single-cell analysis. Angew Chem Int Ed 51:1217612192.[CrossRef]
41. Ingham CJ, van Hylckama Vlieg, JET. 2008. MEMS and the microbe. Lab Chip 8:16041616.[PubMed][CrossRef]
42. Ingham CJ, Sprenkels A, Bomer J, Molenaar D, van den Berg A, van Hylckama Vlieg JET, de Vos WM. 2007. The micro-Petri dish, a million-well growth chip for the culture and high-throughput screening of microorganisms. Proc Natl Acad Sci USA 104:1821718222.[PubMed][CrossRef]
43. Hesselman MC, Odoni DI, Ryback BM, de Groot S, van Heck RGA, Keijsers J, Kolkman, Nieuwenhuijse D, van Nuland YM, Sebus E, Spee R, de Vries H, Wapenaar MT, Ingham CJ, Schroën K, Martins dos Santos VAP, Spaans SK, Hugenholtz F, van Passel MWJ. 2012. A multi-platform flow device for microbial (Co-) cultivation and microscopic analysis. PLoS One 7:e36982.[PubMed][CrossRef]
44. Winterberg H. 1898. Zur Methodik der Bakterienzahlung. Z Hyg Infektionskr 29:7593.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error