1887

Chapter 2.2.1 : Gold-Based Hybridization for Phylogenetic Single-Cell Detection of Prokaryotes in Environmental Samples

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Gold-Based Hybridization for Phylogenetic Single-Cell Detection of Prokaryotes in Environmental Samples, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818821/9781555816025.ch2.2.1-1.gif /docserver/preview/fulltext/10.1128/9781555818821/9781555816025.ch2.2.1-2.gif

Abstract:

The advent of new sophisticated spectroscopic and tomographic techniques arise interest in the study of environmental conditions within microbial habitats on a submicroscopic level. These methods are based on electromagnetic radiation and result in either elemental characterization or structure visualization. Both aspects are relevant for the investigation of microbe-habitat interactions why a correlative detection of microbial cells would be useful. Fluorescence in situ hybridization is an ideal technique to identify and localize microorganisms but requires a cell-detection via fluorescence microscopy which has a limited optical and elemental resolution. Therefore the utilization of nanogold as marker for in situ hybridization approaches is of great potential. Gold labels can be visualized with one of the aforementioned techniques on resolutions beyond light microscopy and allow the identification and localization of single microbial cells in their habitat in situ. The basic principal and potential of this method is described in this chapter giving an overview on the development steps of gold-targeted cell detection as well. Selected results exemplarily show applications in environmental microbiology both via fluorescence microscopy and electron microscopy including elemental mapping.

Citation: Eickhorst T, Schmidt H. 2016. Gold-Based Hybridization for Phylogenetic Single-Cell Detection of Prokaryotes in Environmental Samples, p 2.2.1-1-2.2.1-10. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch2.2.1
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Workflow diagram of the gold-FISH method. Modified from ( ); HRP: horseradish peroxidase, Au: 1.4 nm nanogold particle, AF488: Alexa Fluor 488. Reprinted from ( ) with permission from the publisher. doi: 10.1128/9781555818821.ch2.2.1.f1

Citation: Eickhorst T, Schmidt H. 2016. Gold-Based Hybridization for Phylogenetic Single-Cell Detection of Prokaryotes in Environmental Samples, p 2.2.1-1-2.2.1-10. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch2.2.1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Gold-FISH detected bacteria on polycarbonate filters. (a) hybridized with mono-gold-FISH, probe GAM42a-biotin and AF 488 fluoro-nanogold–streptavidin conjugate. (b) hybridized with gold-FISH, probe GAM42a-HRP, biotinylated tyramide, and AF 488 fluoro-nanogold–streptavidin conjugate. (c) Mixed culture of and strain AK199 hybridized with gold-FISH, probe ROS537-HRP, biotinylated tyramide, and AF 488 fluoro-nanogold–streptavidin conjugate. Numbers indicate corresponding images of (1) fluorescence microscopy, (2) SEM, and (3) BSE. (d) DAPI counterstain of image (c1). (E) Mixed culture of and strain AK199 hybridized with probe NONEUB. Scale bars: fluorescent micrographs 20 µm, SEM/BSE 2 µm. SEM and BSE images reprinted from ( ) with permission from the publisher. doi: 10.1128/9781555818821.ch2.2.1.f2

Citation: Eickhorst T, Schmidt H. 2016. Gold-Based Hybridization for Phylogenetic Single-Cell Detection of Prokaryotes in Environmental Samples, p 2.2.1-1-2.2.1-10. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch2.2.1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Application of gold-FISH to environmental samples. (a) Bacteria in marine sediment, probe EUBI-III, scale bar 20 µm. (b) on the root surface of L. (wetland rice), probe: ALF968; (b1) fluorescence microscopy, scale bar 20 µm; (b2) corresponding SEM-image, scale bar 10 µm; (b3) SEM image at higher magnification (red frame in image b2), scale bar 1 µm. (c) associated with marine diatomes, probe: CF319a, (c1) SEM image, scale bar 5 µm; (c2) BSE-image of red frame in image (c1), scale bar 5 µm; (c3) merged image of SEM (reddish color) and BSE (bluish color) of red frame in (c2), scale bar 1 µm. Parts a and b1–b3 reprinted from ( ) with permission from the publisher. doi: 10.1128/9781555818821.ch2.2.1.f3

Citation: Eickhorst T, Schmidt H. 2016. Gold-Based Hybridization for Phylogenetic Single-Cell Detection of Prokaryotes in Environmental Samples, p 2.2.1-1-2.2.1-10. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch2.2.1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Digital image analysis, elemental mapping, and artifacts of gold-FISH applications. (a) associated with marine diatoms, probe: CF319a, scale bar 5 µm; (a1) SEM image, (a2) result of digital image analysis, purple areas indicate detected bacterial cells and yellow areas indicate non-specific gold deposition; (b) SEM-EDS analysis of a gold-FISH detected cell on a diatom, scale bar 1 µm; (c) elemental mapping of silicon (Si-KA, c1), gold (Au-LA, c2), and merged data including SEM image (c3), scale bar 5 µm; (d) SEM and BSE image of nonspecific gold deposition in soil samples hybridized with gold-FISH, scale bar 5 µm; (e) nonspecific gold deposition on polycarbonate filters in the vicinity of gold-FISH detected cells, scale bar 5 µm. Parts d1 and d2 reprinted from ( , supplementary data) with permission from the publisher. doi: 10.1128/9781555818821.ch2.2.1.f4

Citation: Eickhorst T, Schmidt H. 2016. Gold-Based Hybridization for Phylogenetic Single-Cell Detection of Prokaryotes in Environmental Samples, p 2.2.1-1-2.2.1-10. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch2.2.1
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818821.ch2.2.1
1. Gall JG, Pardue ML. 1969. Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc. Natl. Acad. Sci. U.S.A. 63:378383.[PubMed][CrossRef]
2. Bauman JG, Wiegant J, Borst P, van Duijn P. 1980. A new method for fluorescence microscopical localization of specific DNA sequences by in situ hybridization of fluorochromelabelled RNA. Exp. Cell. Res. 128:485490.[PubMed][CrossRef]
3. Levsky JM, Singer RH. 2003. Fluorescence in situ hybridization: past, present and future. J. Cell. Sci. 116:28332838.[PubMed][CrossRef]
4. DeLong E, Wickham G, Pace N. 1989. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science. 243:13601363.[PubMed][CrossRef]
5. Amann RI, Krumholz L, Stahl DA. 1990. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol. 172:762770.[PubMed]
6. Amann RI, Ludwig W, Schleifer KH. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143169.[PubMed]
7. Hahn D, Amann RI, Ludwig W, Akkermans ADL, Schleifer K-H. 1992. Detection of micro-organisms in soil after in situ hybridization with rRNA-targeted, fluorescently labelled oligonucleotides. J. Gen. Microbiol. 138:879887.[PubMed][CrossRef]
8. Assmus B, Hutzler P, Kirchhof G, Amann R, Lawrence JR, Hartmann A. 1995. In situ localization of Azospirillum brasilense in the rhizosphere of wheat with fluorescently labeled, rRNA-targeted oligonucleotide probes and scanning confocal laser microscopy. Appl. Environ. Microbiol. 61:10131019.[PubMed]
9. Pernthaler A, Pernthaler J, Amann R. 2002. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl. Environ. Microbiol. 68:30943101.[PubMed][CrossRef]
10. Amann R, Fuchs BM. 2008. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat. Rev. Micro. 6:339348.[CrossRef]
11. Ishii K, Mußmann M, MacGregor B, Amann R. 2004. An improved fluorescence in situ hybridization protocol for the identification of bacteria and archaea in marine sediments. FEMS Microbiol. Ecol. 50:203212.[PubMed][CrossRef]
12. Woebken D, Fuchs BM, Kuypers MM, Amann R. 2007. Potential interactions of particle-associated anammox bacteria with bacterial and archaeal partners in the Namibian upwelling system. Appl. Environ. Microbiol. 73:46484657.[PubMed][CrossRef]
13. Schmidt H, Eickhorst T. 2013. Spatio-temporal variability of microbial abundance and community structure in the puddled layer of a paddy soil cultivated with wetland rice (Oryza sativa L.). Appl. Soil. Ecol. 72:93102.[CrossRef]
14. Wagner M, Horn M, Daims H. 2003. Fluorescence in situ hybridisation for the identification and characterisation of prokaryotes. Curr. Opin. Microbiol. 6:302309.[PubMed][CrossRef]
15. Ouverney CC, Fuhrman JA. 1999. Combined microautoradiography-16S rRNA probe technique for determination of radioisotope uptake by specific microbial cell types in situ. Appl. Environ. Microbiol. 65:17461752.[PubMed]
16. Hoshino T, Schramm A. 2010. Detection of denitrification genes by in situ rolling circle amplification-fluorescence in situ hybridization to link metabolic potential with identity inside bacterial cells. Environ. Microbiol. 12:25082517.[PubMed][CrossRef]
17. Moraru C, Lam P, Fuchs BM, Kuypers MMM, Amann R. 2010. GeneFISH—an in situ technique for linking gene presence and cell identity in environmental microorganisms. Environ. Microbiol. 12:30573073.[PubMed][CrossRef]
18. Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF. 2001. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science. 293:484487.[PubMed][CrossRef]
19. Musat N, Halm H, Winterholler B, Hoppe P, Peduzzi S, Hillion F, Horreard F, Amann R, Jørgensen BB, Kuypers MMM. 2008. A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc. Natl. Acad. Sci. U.S.A. 105:1786117866.[PubMed][CrossRef]
20. Moraru C, Amann R. 2012. Crystal ball: fluorescence in situ hybridization in the age of super-resolution microscopy. Syst. Appl. Microbio. 35:549552.[CrossRef]
21. Chang W-S, Halverson LJ. 2003. Reduced water availability influences the dynamics, development, and ultrastructural properties of pseudomonas putida biofilms. J. Bacteriol. 185:61996204.[PubMed][CrossRef]
22. Hallett PD, Karim KH, Bengough AG, Otten W. 2013. Biophysics of the Vadose Zone: from reality to model systems and back again. Vadose. Zone. J. 12. doi: 10.2136/vzj2013.05.0090[CrossRef] http://dx.doi.org/10.2136/vzj2013.05.0090
23. Rennert T, Totsche K, Heister K, Kersten M, Thieme J. 2012. Advanced spectroscopic, microscopic, and tomographic characterization techniques to study biogeochemical interfaces in soil. J. Soils. Sed. 12:323.[CrossRef]
24. Eickhorst T, Tippkötter R. 2008a. Detection of microorganisms in undisturbed soil by combining fluorescence in situ hybridization (FISH) and micropedological methods. Soil. Biol. Biochem. 40:12841293.[CrossRef]
25. Hapca SM, Wang ZX, Otten W, Wilson C, Baveye PC. 2011. Automated statistical method to align 2D chemical maps with 3D X-ray computed micro-tomographic images of soils. Geoderma. 164:146154.[CrossRef]
26. Lehmann J, Solomon D, Kinyangi J, Dathe L, Wirick S, Jacobsen C. 2008. Spatial complexity of soil organic matter forms at nanometre scales. Nat. Geosci. 1:238242.[CrossRef]
27. Mueller CW, Weber PK, Kilburn MR, Hoeschen C, Kleber M, Pett-Ridge J,. 2013. Advances in the analysis of biogeochemical interfaces: NanoSIMS to investigate soil microenvironments, p 146. In Donald LS (ed), Advances in Agronomy. Elsevier Academic Press, San Diego, CA.[CrossRef]
28. Helliwell JR, Sturrock CJ, Grayling KM, Tracy SR, Flavel RJ, Young IM, Whalley WR, Mooney SJ. 2013. Applications of X-ray computed tomography for examining biophysical interactions and structural development in soil systems: a review. Europ. J. Soil. Sci. 64:279297.[CrossRef]
29. Spring S, Lins U, Amann R, Schleifer KH, Ferreira LCS, Esquivel DMS, Farina M. 1998. Phylogenetic affiliation and ultrastructure of uncultured magnetic bacteria with unusually large magnetosomes. Arch. Microbiol. 169:136147.[PubMed][CrossRef]
30. Gérard E, Guyot F, Philippot P, López-García P. 2005. Fluorescence in situ hybridisation coupled to ultra small immunogold detection to identify prokaryotic cells using transmission and scanning electron microscopy. J. Microbiol. Meth. 63:2028.[CrossRef]
31. Ménez B, Rommevaux-Jestin C, Salomé M, Wang Y, Philippot P, Bonneville A, Gérard E. 2007. Detection and phylogenetic identification of labeled prokaryotic cells on mineral surfaces using scanning X-ray microscopy. Chem. Geol. 240:182192.[CrossRef]
32. Hainfeld JF, Powell RD, Furuya FR,. 2002. Microscopic uses of Nanogold, p 85106. In Hacker GW,, Gu J (eds), Gold and Silver Staining: Techniques in Molecular Morphology. CRC Press, Boca Raton, FL.[CrossRef]
33. Powell RD, Halsey CMR, Spector DL, Kaurin SL, McCann J, Hainfeld JF. 1997. A covalent fluorescent-gold immunoprobe: simultaneous detection of a pre-mRNA splicing factor by light and electron microscopy. J. Histochem. Cytochem. 45:947956.[PubMed][CrossRef]
34. Reinhold B, Hurek T. 1988. Localization of diazotrophs in the root interior with special attention to the kallar grass association. Plant Soil. 110:259268.[CrossRef]
35. Levanony H, Bashan Y, Romano B, Klein E. 1989. Ultrastrucural localization and identification of Azospirillum brasilense Cd on and within wheat root by immuno-gold labeling. Plant Soil. 117:207218.[CrossRef]
36. Rogers J, Keevil CW. 1992. Immunogold and fluorescein immunolabelling of Legionella pneumophila within an aquatic biofilm visualized by using episcopic differential interference contrast microscopy. Appl. Environ. Microbiol. 58:23262330.[PubMed]
37. Kenzaka T, Ishidoshiro A, Yamaguchi N, Tani K, Nasu M. 2005. rRNA sequence-based scanning electron microscopic detection of bacteria. Appl. Environ. Microbiol. 71:55235531.[PubMed][CrossRef]
38. Jang A, Tatavarty R, Kim IS. 2012. Bioconjugation of gold nanoparticles with DNA for in situ hybridization. Desalin. Water Treatm. 46:3845.[CrossRef]
39. Schmidt H, Eickhorst T, Mußmann M. 2012. Gold-FISH: a new approach for the in situ detection of single microbial cells combining fluorescence and scanning electron microscopy. Syst. Appl. Microbio. 35:518525.[CrossRef]
40. Kubota K, Morono Y, Ito M, Terada T, Itezono S, Harada H, Inagaki F. 2014. Gold-ISH: A nano-size gold particle-based phylogenetic identification compatible with NanoSIMS. Syst. Appl. Microbiol. 37:261266. doi: 10.1016/j.syapm.2014.02.003.[PubMed][CrossRef] http://dx.doi.org/10.1016/j.syapm.2014.02.003
41. Almstrand R, Drennan DM, Sharp JO. 2015. Polygold-FISH for signal amplification of metallo-labeled microbial cells. J. Basic Microbiol. 54:15.
42. Humbel BM, Sibon OCM, Stierhof YD, Schwarz H. 1995. Ultrasmall gold particles and silver enhancement as a detection system in immunolabeling and in situ hybridization experiments. J. Histochem. Cytochem. 43:735737.[PubMed][CrossRef]
43. Danscher G, Hacker GW, Stoltenberg M,. 2002. Autometallographic tracing of gold, silver, bismuth, mercury, and zinc, p 1327. In Hacker GW,, Gu J (eds), Gold and Silver Staining: Techniques in Molecular Morphology. CRC Press, Boca Raton, FL.[CrossRef]
44. Hainfeld JF, Powell RD,. 2002. Silver- and gold-based autometallography of Nanogold, p 2946. In Hacker GW,, Gu J (eds), Gold and Silver Staining: Techniques in Molecular Morphology. CRC Press, Boca Raton, FL.[CrossRef]
45. Ehrhardt CJ, Haymon RM, Sievert SM, Holden PA. 2009. An improved method for nanogold in situ hybridization visualized with environmental scanning electron microscopy. J. Microsc. 236:510.[PubMed][CrossRef]
46. Weipoltshammer K, Schöfer C, Almeder M, Wachtler F. 2000. Signal enhancement at the electron microscopic level using nanogold and gold-based autometallography. Histochem. Cell. Biol. 114:489495.[PubMed]
47. Schmidt H, Eickhorst T, Tippkotter R. 2012. Evaluation of tyramide solutions for an improved detection and enumeration of single microbial cells in soil by CARD-FISH. J. Microbiol. Meth. 91:399405.[CrossRef]
48. Bennke CM, Neu TR, Fuchs BM, Amann R. 2013. Mapping glycoconjugate-mediated interactions of marine Bacteroidetes with diatoms. Syst. Appl. Microbio. 36:417425.[CrossRef]
49. Jahn KA, Barton DA, Kobayashi K, Ratinac KR, Overall RL, Braet F. 2012. Correlative microscopy: Providing new understanding in the biomedical and plant sciences. Micron. 43:565582.[PubMed][CrossRef]
50. Herrmann AM, Clode PL, Fletcher IR, Nunan N, Stockdale EA, O'Donnell AG, Murphy DV. 2007. A novel method for the study of the biophysical interface in soils using nano-scale secondary ion mass spectrometry. Rapid. Commun. Mass. Spectrom. 21:2934.[PubMed][CrossRef]
51. Clode PL, Kilburn MR, Jones DL, Stockdale EA, Cliff JBIII, Herrmann AM, Murphy DV. 2009. In situ mapping of nutrient uptake in the rhizosphere using nanoscale secondary ion mass spectrometry. Plant. Physiol. 151:17511757.[PubMed][CrossRef]
52. Nuccio EE, Hodge A, Pett-Ridge J, Herman DJ, Weber PK, Firestone MK. 2013. An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Enivron. Microbiol. 15:18701881.[CrossRef]
53. Behrens S, Lösekann T, Pett-Ridge J, Weber PK, Ng WO, Stevenson BS, Hutcheon ID, Relman DA, Spormann AM. 2008. Linking microbial phylogeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed reporter deposition fluorescence in situ hybridization (EL-FISH) and Nano- SIMS. Appl. Environ. Microbiol. 74:31433150.[PubMed][CrossRef]
54. Li T, Wu TD, Mazeas L, Toffin L, Guerquin-Kern JL, Leblon G, Bouchez T. 2008. Simultaneous analysis of microbial identity and function using NanoSIMS. Environ. Microbiol. 10:580588.[PubMed][CrossRef]
55. Thompson AW, Foster RA, Krupke A, Carter BJ, Musat N, Vaulot D, Kuypers MMM, Zehr JP. 2012. Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science. 337:15461550.[PubMed][CrossRef]
56. Woebken D, Burow LC, Prufert-Bebout L, Bebout BM, Hoehler TM, Pett-Ridge J, Singer SW, Spormann AM, Weber PK. 2012. Identification of a novel cyanobacterial group as active diazotrophs in a coastal microbial mat using NanoSIMS analysis. ISME J. 6:14271439.[PubMed][CrossRef]
57. Dekas AE, Poretsky RS, Orphan VJ. 2009. Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia. Science. 326:422426.[PubMed][CrossRef]
58. Eickhorst T, Tippkötter R. 2008b. Improved detection of soil microorganisms using fluorescence in situ hybridization (FISH) and catalyzed reporter deposition (CARD-FISH). Soil. Biol. Biochem. 40:18831891.[CrossRef]
59. Foster RA, Kuypers MMM, Vagner T, Paerl RW, Musat N, Zehr JP. 2011. Nitrogen fixation and transfer in open ocean diatom–cyanobacterial symbioses. ISME J. 5:14841493.[PubMed][CrossRef]
60. Nunan N, Wu KJ, Young IM, Crawford JW, Ritz K. 2003. Spatial distribution of bacterial communities and their relationships with the micro-architecture of soil. FEMS Microl. Ecol. 44:203215.[CrossRef]
61. Ritz K,. 2011. Views of the underworld: in situ visualization of soil biota, p 113. In Ritz K,, Young I (eds), The Architecture and Biology of Soils: Life in Inner Space. CABI Publishing, Wallingford, UK.[CrossRef]
62. Raynaud X, Nunan N. 2014. Spatial ecology of bacteria at the microscale in Soil. PLoS One. 9:e87217.[PubMed][CrossRef]
63. Young IM, Crawford JW, Nunan N, Otten W, Spiers A,. 2008. Microbial distribution in soils: physics and scaling, p 81121. In Sparks DL (ed), Advances in Agronomy. Elsevier Academic Press, San Diego, CA.
64. Mooney SJ, Pridmore TP, Helliwell J, Bennett MJ. 2012. Developing X-ray computed tomography to non-invasively image 3-D root systems architecture in soil. Plant Soil. 352:122.[CrossRef]

Tables

Generic image for table
TABLE 1

Selection of commercially available nanogold particles and conjugates

Citation: Eickhorst T, Schmidt H. 2016. Gold-Based Hybridization for Phylogenetic Single-Cell Detection of Prokaryotes in Environmental Samples, p 2.2.1-1-2.2.1-10. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch2.2.1
Generic image for table
TABLE 2

Original approaches for gold-based detection of single cells

Citation: Eickhorst T, Schmidt H. 2016. Gold-Based Hybridization for Phylogenetic Single-Cell Detection of Prokaryotes in Environmental Samples, p 2.2.1-1-2.2.1-10. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch2.2.1

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error