1887

Chapter 2.2.2 : Assessment of Prokaryotic Biological Activity at the Single-Cell Level by Combining Microautoradiography and Fluorescence Hybridization

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Assessment of Prokaryotic Biological Activity at the Single-Cell Level by Combining Microautoradiography and Fluorescence Hybridization, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch2.2.2-1.gif /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch2.2.2-2.gif

Abstract:

The assessment of prokaryotic metabolic function in situ is challenged by the complexity of natural microbial communities, by the lack of information about the genetics of most environmental microbes, and the fact most prokaryotes are yet uncultured. Techniques that measure activity at the single cell level and simultaneously allow for taxonomic identification, despite being labor intensive, provide a window into a world once known only as the microbial black box. In this chapter, three of such approaches that combine microautoradiography with FISH are explored, with a focus on Substrate-Tracking Auto-Radiography Fluorescence In Situ Hybridization (STARFISH). The technical aspects of the protocols were summarized for a better understanding of the applications, their strengths and limitations. These techniques can quantitatively interrogate whether organisms of interest can metabolize particular substrates without the need of cultivation. Examples of various applications are presented. Advancement in high-throughput DNA sequencing technologies has quickly generated large amount of microbial genomic information. Techniques like STARFISH can be applied to validate in silico genetic predictions of microbial metabolic function.

Citation: Ouverney C. 2016. Assessment of Prokaryotic Biological Activity at the Single-Cell Level by Combining Microautoradiography and Fluorescence Hybridization, p 2.2.2-1-2.2.2-8. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch2.2.2
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Protocol overview. Major steps involved in labeling cells with FISH and MAR for interrogation about the capability of cells to be metabolic active when exposed to a generic (mixture of amino acids) or specific substrate in a natural mixed microbial community. doi:10.1128/9781555818821.ch2.2.2.f1

Citation: Ouverney C. 2016. Assessment of Prokaryotic Biological Activity at the Single-Cell Level by Combining Microautoradiography and Fluorescence Hybridization, p 2.2.2-1-2.2.2-8. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch2.2.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Imaging and quantification of group-specific microbial cells using STARFISH. Samples treated for STARFISH on a Teflon-coated cover glass can be analyzed by various fluorescence signals as well as transmitted light excitation. In this example, cells were tagged with three labels, (A) Cy3-tagged oligonucleotide probe targeting a group-specific prokaryote, (B) YO-PRO-1 DNA staining dye, and (C) H-substrate. Each label was detected and scored with a different light source. The Cy3-probe-labeled cells (Ex 550 nm, Em 570 nm) provide records of the total number of cells belonging to the phylogenetic group the probe targets. YO-PRO-1 is a DNA-binding dye (Ex 491 nm, Em 509 nm) that labels most viable cells, providing the total cell count (usually reported as cells/ml). Finally, the transmitted light shows the results from the radioactive nutrient incorporation into prokaryotic biomass, shown as the black markings on the photographic emulsion. By combining the three different microscopic field of views one can determine (i) (A + B) the percentage of a specific phylogenetic group in the community (counts in field A divided by counts in field B over the same area), in other words, the # Cy3-probe-labeled cells / # YO-PRO-1-labeled cells. In addition, (ii) (Panels B + C) the percentage of the total cells that take up the radioactive substrate can be quantified by the # H-positive cells / # YO-PRO-1-labeled cells. Finally, (iii) the distribution of uptake within each phylogenetic group ((# probe-labeled cells + # H-positive cells) / # YO-PRO-1-labeled cells). Notice that many of the radioactive marking (black dots) along the TM7 filaments are outside the cells themselves (Panels B + C). Such phenomenon is due to the radionuclide (beta participle from tritium) ability to travel a few microns away from the source. doi:10.1128/9781555818821.ch2.2.2.f2

Citation: Ouverney C. 2016. Assessment of Prokaryotic Biological Activity at the Single-Cell Level by Combining Microautoradiography and Fluorescence Hybridization, p 2.2.2-1-2.2.2-8. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch2.2.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Triple-labeled uncultured TM7 bacteria using STARFISH. The same field of view is shown in Fig. 2 and description of the three labels (a) Cy3-TM7905-probe targeting the 16S rRNA, (b) YO-PRO-1 DNA dye, and (b) trititated amino acids incorporated into bacterial biomass are described in detail in Fig. 2 legend. The black dots in Panel C indicate exposed silver grains in the photographic emulsion. Some silver grains do not seem to correlate to a bacterial cell labeled with either the YO-PRO-1 dye (b) or the Cy3-probe (a), possibly due to physical stress against the Kodak NTB2 liquid emulsion during the procedure as discussed in the text, which should be avoided. However, it is possible that the bacterial cells were small and not on the same focal plane as the silver grains since these clusters of cells form biofilms up to several microns in diameter. Images were captured at 1,000 × total magnification with a Zeiss Axioscope-A 1 epifluorescence microscope equipped with a Hamamatsu camera model ORCA R2 and AxioVision 4.7 image capturing software with frame averaging. Scale bar = 10 µm. doi:10.1128/9781555818821.ch2.2.2.f3

Citation: Ouverney C. 2016. Assessment of Prokaryotic Biological Activity at the Single-Cell Level by Combining Microautoradiography and Fluorescence Hybridization, p 2.2.2-1-2.2.2-8. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch2.2.2
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818821.ch2.2.2
1. Schloss PD, Handelsman J. 2004. Status of the microbial census. Microbiol Mol Biol Rev 68:686691.[PubMed][CrossRef]
2. Kovatcheva-Datchary P, Zoetendal EG, Venema K, de Vos WM, Smidt H. 2009. Tools for the tract: understanding the functionality of the gastrointestinal tract. Ther Adv Gastroenterol 2:922.[CrossRef]
3. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, Lakshmanan A, Wade WG. 2010. The human oral microbiome. J Bacteriol 192:50025017.[PubMed][CrossRef]
4. Brock TD, Brock ML. 1966. Autoradiography as a tool in microbial ecology. Nature 209:734736.[PubMed][CrossRef]
5. Paerl HW. 1984. Alteration of microbial metabolic activities in association with detritus. Bull Marine Sciences 35:393408.
6. Brock TD,. 1987. The study of microorganisms in situ: progress and problems, p 117. In Fletcher M, Gray TRG, Jones JG (eds.), Ecology of microbial communities. Cambridge University Press, New York.
7. Carman KR. 1990. Radioactive labeling of a natural assemblage of marine sedimentary bacteria and microalgae for trophic studies: an autoradiographic study. Microb Ecol 19:279290.[PubMed][CrossRef]
8. Andreasen K, Nielsen PH. 1997. Application of microautoradiography to the study of substrate uptake by filamentous microorganisms in activated sludge. Appl Environ Microbiol 63:36623668.[PubMed]
9. Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST. 1994. Bergey's Manual of Determinative Bacteriology, 9th ed. Williams & Wilkins, Baltimore, MD.
10. Fuhrman JA, Azam F. 1982. Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surfaxe waters: evaluation and field results. Mar Biol 66:109120.[CrossRef]
11. Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F. 1983. The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257263.[CrossRef]
12. Simon M. 1985. Specific uptake rates of amino acids by attached and free-living bacteria in a mesotrophic lake. Appl Environ Microbiol 49:12541259.[PubMed]
13. Fuhrman JA,. 1992. Bacterioplankton roles in cycling of organic matter: the microbial food web, p 361383. In Falkowski PG, Woodhead AD (eds.), Primary Productivity and Biogeochemical Cycles in the Sea. Plenum Press, New York, NY.
14. Azam F, Smith DC, Steward GF, Hagström Å. 1993. Bacteria-organic matter coupling and its significance for oceanic carbon cycling. Microb Ecol 28:167179.[CrossRef]
15. Karner M, Fuhrman JA. 1997. Determination of active marine bacterioplankton: a comparison of universal 16 s rRNA probes, autoradiography, and nucleoid staining. Appl Environ Microbiol 63:12081213.[PubMed]
16. Lee N, Nielsen PH, Andreasen KH, Juretschko S, Nielsen JL, Schleifer K-H, Wagner M. 1999. Combination of fluorescent in situ hybridization and microautoradiography—a new tool for structure-function analyses in microbial ecology. Appl Environ Microbiol 65:12891297.[PubMed]
17. Cottrell MT, Kirchman DL. 2000. Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol 66:16921697.[PubMed][CrossRef]
18. Ouverney CC, Fuhrman JA. 1999. Combined microautoradiography-16S rRNA probe technique for determination of radioisotope uptake by specific microbial cell types in situ. Appl Environ Microbiol 65:17461752.[PubMed]
19. Amann R, Kuhl M. 1998. In situ methods for assessment of microorganisms and their activities. Curr Opin Microbiol 1:352358.[PubMed][CrossRef]
20. Gasol JM, Duarte CM. 2000. Comparative analyses in aquatic microbial ecology: how far do they go? FEMS Microbiol Ecol 31:99106.[PubMed][CrossRef]
21. Radajewski S, Ineson P, Parekh NR, Murrell JC. 2000. Stable-isotope probing as a tool in microbial ecology. Nature 403:646649.[PubMed][CrossRef]
22. Dahllof I. 2002. Molecular community analysis of microbial diversity. Curr Opin Biotechnol 13:213217.[PubMed][CrossRef]
23. Radajewski S, Webster G, Reay DS, Morris SA, Ineson P, Nedwell DB, Prosser JI, Murrell JC. 2002. Identification of active methylotroph populations in an acidic forest soil by stable-isotope probing. Microbiology 148:23312342.[PubMed][CrossRef]
24. Boillot A, Demmer RT, Mallat Z, Sacco RL, Jacobs DR, Benessiano J, Tedgui A, Rundek T, Papapanou PN, Desvarieux M. 2015. Periodontal microbiota and phospholipases: the Oral Infections and Vascular Disease Epidemiology Study (INVEST). Atherosclerosis 242:418423.[PubMed][CrossRef]
25. Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF. 2001. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484487.[PubMed][CrossRef]
26. Kantor RS, Wrighton KC, Handley KM, Sharon I, Hug LA, Castelle CJ, Thomas BC, Banfield JF. 2013. Small genomes and sparse metabolisms of sediment-associated bacteria from four candidate phyla. Mbio 4. e00708–13[PubMed][CrossRef]
27. Teira E, Reinthaler T, Pernthaler A, Pernthaler J, Herndl GJ. 2004. Combining catalyzed reporter deposition-fluorescence in situ hybridization and microautoradiography to detect substrate utilization by bacteria and Archaea in the deep ocean. Appl Environ Microbiol 70:44114414.[PubMed][CrossRef]
28. Poulsen LK, Ballard G, Stahl DA. 1993. Use of rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms. Appl Environ Microbiol 59:13541360.[PubMed]
29. Gieseke A, Purkhold U, Wagner M, Amann R, Schramm A. 2001. Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm. Appl Environ Microbiol 67:13511362.[PubMed][CrossRef]
30. Kindaichi T, Ito T, Okabe S. 2004. Ecophysiological interaction between nitrifying bacteria and heterotrophic bacteria in autotrophic nitrifying biofilms as determined by microautoradiography-fluorescence in situ hybridization. Appl Environ Microbiol 70:16411650.[PubMed][CrossRef]
31. DeLong EF, Franks DG, Alldredge AL. 1993. Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnology and Oceanography 38:924934.[CrossRef]
32. Daims H, Nielsen JL, Nielsen PH, Schleifer KH, Wagner M. 2001. In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Appl Environ Microbiol 67:52735284.[PubMed][CrossRef]
33. Rogers SW, Moorman TB, Ong SK. 2007. Fluorescent in situ hybridization and micro-autoradiography applied to ecophysiology in soil. Soil Sci Soc Am J 71:620631.[CrossRef]
34. Gray ND, Howarth R, Pickup RW, Jones JG, Head IM. 2000. Use of combined microautoradiography and fluorescence in situ hybridization to determine carbon metabolism in mixed natural communities of uncultured bacteria from the genus Achromatium. Appl Environ Microbiol 66:45184522.[PubMed][CrossRef]
35. Amann R, Snaidr J, Wagner M, Ludwig W, Schleifer K-H. 1996. In situ visualization of high genetic diversity in a natural microbial community. J Bacteriol 178:34963500.[PubMed]
36. Zarda B, han D, Chatzinotas A, Schönhuber W, Neef A, Amann RI, Zeyer J. 1997. Analysis of bacterial community structure in bulk soil by in situ hybridization. Arch Microbiol 168:185192.[CrossRef]
37. Blumes E, Bischoff M, Reichert J, Moorman T, Turco R. 2002. Surface and subsurface microbial biomass, community structure and metabolic activity as a function of soil depth and season. Appl Soil Ecol 20:171181.[CrossRef]
38. Ouverney CC, Fuhrman JA,. 2004. Correlating single-cell count with function in mixed natural microbial communities through STARFISH, p 16891710. In Kowalchuk GA, de Bruijn FJ, Head IM, Akkermans AD, van Elsas JD (eds.), Molecular Microbial Ecology Manual, 2nd ed. Kluwer Academic Publishers, The Netherlands.
39. Teira E, van Aken H, Veth C, Herndl GJ. 2006. Archaeal uptake of enantiomeric amino acids in the meso- and bathypelagic waters of the North Atlantic. Limnol Oceanog 51:6069.[CrossRef]
40. Brinig MM, Lepp PW, Ouverney CC, Armitage GC, Relman DA. 2003. Prevalence of bacteria of division TM7 in human subgingival plaque and their association with disease. Appl Environ Microbiol 69:16871694.[PubMed][CrossRef]
41. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. 2005. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43:57215732.[PubMed][CrossRef]
42. Dinis JM, Barton DE, Ghadiri J, Surendar D, Reddy K, Velasquez F, Chaffee CL, Lee MC, Gavrilova H, Ozuna H, Smits SA, Ouverney CC. 2011. In search of an uncultured human-associated TM7 bacterium in the environment. PLoS One 6:e21280.[PubMed][CrossRef]
43. Franks AH, Harmsen HJM, Raangs GC, Jansen GJ, Schut F, Welling GW. 1998. Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-target oligonucleotide probes. Appl Environ Microbiol 64:33363345.[PubMed]
44. Zoetendal EG, von Wright A, Vilpponen-Salmela T, Ben-Amor K, Akkermans AD, de Vos WM. 2002. Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Environ Microbiol 68:34013407.[PubMed][CrossRef]
45. Rodina AG. 1972. Methods in Aquatic Microbiology. University Park Press, Baltimore, MD.
46. Sherr B, Sherr E, Giorgio PD. 2001. Enumeration of Total and Highly Active bBacteria, vol 30. Academic Press, San Diego, CA.
47. Bloem J. 1995. Fluorescent Staining of Microbes for Total Direct Counts. Kluwer Academic Publisher, Boston, MA.
48. Nielsen JL, Juretschko S, Wagner M, Nielsen PH. 2002. Abundance and phylogenetic affiliation of iron reducers in activated sludge as assessed by fluorescence in situ hybridization and microautoradiography. Appl Environ Microbiol 68:46294636.[PubMed][CrossRef]
49. Rogers AW. 1979. Techniques of Autoradiography. Elsevier/North-Holland Biomedical Press, New York, NY.
50. Hudson AL,. 1993. Autoradiography techniques, p 5777. In Wharton J, Polak JM (eds.), Receptor Autoradiography: Principles and Practice. Oxford University Press, New York, NY.
51. Vila-Costa M, Simo R, Harada H, Gasol JM, Slezak D, Kiene RP. 2006. Dimethylsulfoniopropionate uptake by marine phytoplankton. Science 314:652654.[PubMed][CrossRef]
52. Ouverney CC, Fuhrman JA. 1997. Increase in fluorescence intensity of 16S rRNA in situ hybridization in natural samples treated with chloramphenicol. Appl Environ Microbiol 63:27352740.[PubMed]
53. Braun-Howland EB, Danielsen SA, Nierzwicki-Bauer SA. 1992. Development of a rapid method for detecting bacterial cells in situ using 16S rRNA-targeted probes. BioTechniques 13:928933.[PubMed]
54. Bouvier T, Del Giorgio PA. 2003. Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH): a quantitative review of published reports. FEMS Microbiol Ecol 44:315.[PubMed][CrossRef]
55. Bond PL, Erhart R, Wagner M, Keller J, Blackall LL. 1999. Identification of some of the major groups of bacteria in efficient and nonefficient biological phosphorus removal activated sludge systems. Appl Environ Microbiol 65:40774084.[PubMed]
56. Hugenholtz P, Tyson GW, Blackall LL. 2002. Design and evaluation of 16S rRNA-targeted oligonucleotide probes for fluorescence in situ hybridization. Methods Mol Biol 179:2942.[PubMed]
57. Wagner M, Schmid M, Juretschko S, Trebesius K-H, Bubert A, Goebel W, Schleifer K-H. 1998. In situ detection of a virulence factor mRNA and 16S rRNA in Listeria monocytogenes. FEMS Microbiol Lett 160:159168.[PubMed][CrossRef]
58. Thurnheer T, Gmur R, Giertsen E, Guggenheim B. 2001. Automated fluorescent in situ hybridization for the specific detection and quantification of oral streptococci in dental plaque. J Microbiol Meth 44:3947.[CrossRef]
59. Macnaughton SJ, O’Donnell AG, Embley TM. 1994. Permeabilization of mycolic-acid-containing actinomycetes for in situ hybridization with fluorescently labelled oligonucleotide probes. Microbiology 140:28592865.[PubMed][CrossRef]
60. Lee S-H, Malone C, Kemp PF. 1993. Use of multiple 16S rRNA-targeted fluorescent probes to increase signal strength and measure cellular RNA from natural planktonic bacteria. Mar Ecoly Prog Ser 101:193201.[CrossRef]
61. Manz W, Amann R, Ludwig W, Wagner M, Schleifer K-H. 1992. Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. System Appl Microbiol 15:593600.[CrossRef]
62. Loy A, Maixner F, Wagner M, Horn M. 2007. probeBase—an online resource for rRNA-targeted oligonucleotide probes: new features 2007. Nucleic Acids Res 35:D800804.[PubMed][CrossRef]
63. Schramm A, Fuchs BM, Nielsen JL, Tonolla M, Stahl DA. 2002. Fluorescence in situ hybridization of 16S rRNA gene clones (Clone-FISH) for probe validation and screening of clone libraries. Environ Microbiol 4:713720.[PubMed][CrossRef]
64. Ouverney CC, Armitage GC, Relman DA,. 2004. User of cloned artificial targets for FISH (catFISH) for the optimization of oligonucleotide probe hybridization conditions with 16S rRNA clones for in situ quantification of uncultivated prokaryotic cells, p 727742. In Kowalchuk GA, Bruijn IM, Head IM, Akkermans AD, van Elsas JD (eds.), Molecular Microbial Ecology Manual, 2nd ed. Kluwer Academic Publishers, Te Netherlands.
65. Ouverney CC, Armitage GC, Relman DA. 2003. Single-cell enumeration of an uncultivated TM7 subgroup in the human subgingival crevice. Appl Environ Microbiol 69:62946298.[PubMed][CrossRef]
66. Ouverney CC, Fuhrman JA. 2000. Marine planktonic archaea take up amino acids. Appl Environ Microbiol 66:48294833.[PubMed][CrossRef]
67. Cottrell MT, Kirchman DL. 2003. Contribution of major bacterial groups to bacterial biomass production (thymidine and leucine incorportation) in the Delaware estuary. Limnol Oceanogr 48:168178.[CrossRef]
68. Ouverney CC. 1999. Dissecting the marine bacterioplankton “black box” by type and function through FISH and STARFISH. Ph.D. thesis University of Southern California, Los Angeles.
69. Nielsen JL, Christensen D, Kloppenborg M, Nielsen PH. 2003. Quantification of cell-specific substrate uptake by probe-defined bacteria under in situ conditions by microautoradiography and fluorescence in situ hybridization. Environ Microbiol 5:202211.[PubMed][CrossRef]
70. Okabe S, Kindaichi T, Ito T. 2005. Fate of 14C-labeled microbial products derived from nitrifying bacteria in autotrophic nitrifying biofilms. Appl Environ Microbiol 71:39873994.[PubMed][CrossRef]
71. Hornak K, Jezbera J, Simek K. 2010. Bacterial single-cell activities along the nutrient availability gradient in a canyon-shaped reservoir: a seasonal study. Aquat Microb Ecol 60:215225.[CrossRef]
72. Malmstrom RR, Kiene RP, Cottrell MT, Kirchman DL. 2004. Contribution of SAR11 bacteria to dissolved dimethylsulfoniopropionate and amino acid uptake in the North Atlantic ocean. Appl Environ Microbiol 70:41294135.[PubMed][CrossRef]
73. Olsen GJ. 1994. Archaea, Archaea, everywhere. Nature 371:657658.[PubMed][CrossRef]
74. Stein JL, Simon MI. 1996. Archaeal ubiquity. Proc Natl Acad Sci USA 93:62286230.[PubMed][CrossRef]
75. Furhman JA. 2002. Community structure and function in prokaryotic marine plankton. Ant Van Leeuwen Int J Gen Mol Microbiol 81:521527.[CrossRef]
76. Nielsen JL, Nielsen PH. 2002. Quantification of functional groups in activated sludge by microautoradiography. Water Sci Technol 46:389395.[PubMed]
77. Nielsen PH, Roslev P, Dueholm TE, Nielsen JL. 2002. Microthrix parvicella, a specialized lipid consumer in anaerobic-aerobic activated sludge plants. Water Sci Technol 46:7380.[PubMed]
78. Monfort P, Baleux B. 1992. Comparison of flow cytometry and epifluorescence microscopy for counting bacteria in aquatic ecosystems. Cytometry 13:188192.[PubMed][CrossRef]
79. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA. 1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:19191925.[PubMed]
80. Winson MK, Davey HM. 2000. Flow cytometric analysis of microorganisms. Methods 21:231240.[PubMed][CrossRef]
81. Andreatta S, Wallinger MM, Posch T, Psenner R. 2001. Detection of subgroups from flow cytometry measurements of heterotrophic bacterioplankton by image analysis. Cytometry 44:218225.[PubMed][CrossRef]
82. Marcy Y, Ouverney C, Bik EM, Losekann T, Ivanova N, Martin HG, Szeto E, Platt D, Hugenholtz P, Relman DA, Quake SR. 2007. Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc Natl Acad Sci USA 104:1188911894.[PubMed][CrossRef]
83. Gomez-Sjoberg R, Leyrat AA, Pirone DM, Chen CS, Quake SR. 2007. Versatile, fully automated, microfluidic cell culture system. Anal Chem 79:85578563.[PubMed][CrossRef]
84. Pratt ED, Huang C, Hawkins BG, Gleghorn JP, Kirby BJ. 2011. Rare cell capture in microfluidic devices. Chem Eng Sci 66:15081522.[PubMed][CrossRef]
85. Ma L, Kim J, Hatzenpichler R, Karymov MA, Hubert N, Hanan IM, Chang EB, Ismagilov RF. 2014. Gene-targeted microfluidic cultivation validated by isolation of a gut bacterium listed in Human Microbiome Projects most wanted taxa. Proc Natl Acad Sci USA 111:97689773.
86. Stender H, Broomer AJ, Oliveira K, Perry-O’Keefe H, Hyldig-Nielsen JJ, Sage A, Coull J. 2001. Rapid detection, identification, and enumeration of Escherichia coli cells in municipal water by chemiluminescent in situ hybridization. Appl Environ Microbiol 67:142147.[PubMed][CrossRef]
87. Loy A, Lehner A, Lee N, Adamczyk J, Meier H, Ernst J, Schleifer KH, Wagner M. 2002. Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl Environ Microbiol 68:50645081.[PubMed][CrossRef]
88. Singleton S, Cahill JG, Watson GK, Allison C, Cummins D, Thurnheer T, Guggenheim B, Gmur R. 2001. A fully automated microscope bacterial enumeration system for studies of oral microbial ecology. J Immunoassay Immunochem 22:253274.[PubMed][CrossRef]
89. Young JW, Locke JCW, Altinok A, Rosenfeld N, Bacarian T, Swain PS, Mjolsness E, Elowitz MB. 2012. Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy. Nat Protoc 7:8088.[CrossRef]
90. Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat Meth 9:671675.[CrossRef]
91. Conrad C, Wunsche A, Tan TH, Bulkescher J, Sieckmann F, Verissimo F, Edelstein A, Walter T, Liebel U, Pepperkok R, Ellenberg J. 2011. Micropilot: automation of fluorescence microscopy-based imaging for systems biology. Nat Meth 8:246U289.[CrossRef]
92. Wrighton KC, Thomas BC, Sharon I, Miller CS, Castelle CJ, VerBerkmoes NC, Wilkins MJ, Hettich RL, Lipton MS, Williams KH, Long PE, Banfield JF. 2012. Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla. Science 337:16611665.[PubMed][CrossRef]
93. Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen PH. 2013. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol 31:533–538.[PubMed][CrossRef]
94. Hatzenpichler R, Scheller S, Tavormina PL, Babin BM, Tirrell DA, Orphan VJ. 2014. In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry. Environ Microbiol 16:25682590.[PubMed][CrossRef]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error