Chapter 2.3.1 : Antibody-Based Technologies for Environmental Biodetection

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Antibody-Based Technologies for Environmental Biodetection, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch2.3.1-1.gif /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch2.3.1-2.gif


Immunoassay methods for environmental pathogen and toxin detection are well established with formats including lateral flow devices, standard ELISAs, microarray platforms, and biosensor devices. In general, immunoassays provide rapid assay times relative to other conventional methods such as colony counting and PCR approaches. The development of recombinant antibody technologies to produce antibodies with enhanced binding affinities will lead to immunoassays with better sensitivity, specificity and reproducibility. The development of alternative affinity reagents, such as aptamers, engineered proteins and peptides, will provide a greater repertoire of affinity reagents to develop novel immunoassays. Recently, multiplexed assays for the detection of foodborne and waterborne pathogens and toxins have been developed using planar and bead-based microarray approaches. Because environmental pathogens are mostly present in very low numbers, a highly sensitive detection method is necessary. In addition, real-time detection is requisite. Biosensors have the potential to address both of these requirements. Indeed, biosensors are the fastest growing technology for pathogen detection. Integration of biosensors into environmental and food safety monitoring systems is likely to increase in the coming years potentially leading to the development of novel methods that are capable of providing the necessary sensitivity and assay speed to replace the current standards.

Citation: Baird C, Varnum S. 2016. Antibody-Based Technologies for Environmental Biodetection, p 2.3.1-1-2.3.1-12. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch2.3.1
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Typical immunoassay formats. (a) competitive immunoassay, (b) noncompetitive or immunometric immunoassay. doi:10.1128/9781555818821.ch2.3.1.f1

Citation: Baird C, Varnum S. 2016. Antibody-Based Technologies for Environmental Biodetection, p 2.3.1-1-2.3.1-12. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch2.3.1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Antibody structures including antibody molecule, Fab, Fab, and ScFv molecules. doi:10.1128/9781555818821.ch2.3.1.f2

Citation: Baird C, Varnum S. 2016. Antibody-Based Technologies for Environmental Biodetection, p 2.3.1-1-2.3.1-12. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch2.3.1
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Davies C,. 2005. Introduction to immunoassay principles, p 337. In Wild D (ed.), The immunoassay handbook. Elsevier, Amsterdam.
2. Davies C,. 2005. Concepts, p 103135. In Wild D (ed.), The immunoassay handbook, 3rd ed. Elsevier, Amsterdam.
3. Armbruster DA, Pry T. 2008. Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev 29(Suppl 1):S49S52.
4. Braggio S, Barnaby RJ, Grossi P, Cugola M. 1996. A strategy for validation of bioanalytical methods. J Pharm Biomed Anal 14:375388.[CrossRef]
5. Holliger P, Hudson PJ. 2005. Engineered antibody fragments and the rise of single domains. Nat Biotechnol 23:11261136.[PubMed][CrossRef]
6. Taussig MJ, Stoevesandt O, Borrebaeck CA, Bradbury AR, Cahill D, Cambillau C, de Daruvar A, Dubel S, Eichler J, Frank R, Gibson TJ, Gloriam D, Gold L, Herberg FW, Hermjakob H, Hoheisel JD, Joos TO, Kallioniemi O, Koegl M, Konthur Z, Korn B, Kremmer E, Krobitsch S, Landegren U, van der Maarel S, McCafferty J, Muyldermans S, Nygren PA, Palcy S, Pluckthun A, Polic B, Przybylski M, Saviranta P, Sawyer A, Sherman DJ, Skerra A, Templin M, Ueffing M, Uhlen M. 2007. ProteomeBinders: planning a European resource of affinity reagents for analysis of the human proteome. Nat Meth 4:1317.[CrossRef]
7. Colwill K, Graslund S. 2011. A roadmap to generate renewable protein binders to the human proteome. Nat Meth 8:551558.[CrossRef]
8. Cottingham K. 2008. Antibodypedia seeks to answer the question: “how good is that antibody?” J Proteome Res 7:4213.[PubMed]
9. Bjorling E, Uhlen M. 2008. Antibodypedia, a portal for sharing antibody and antigen validation data. Mol Cell Proteomics 7:20282037.[PubMed][CrossRef]
10. Major SM, Nishizuka S, Morita D, Rowland R, Sunshine M, Shankavaram U, Washburn F, Asin D, Kouros-Mehr H, Kane D, Weinstein JN. 2006. AbMiner: a bioinformatic resource on available monoclonal antibodies and corresponding gene identifiers for genomic, proteomic, and immunologic studies. BMC Bioinformatics 7:192.[PubMed][CrossRef]
11. Stoevesandt O, Taussig MJ. 2007. Affinity reagent resources for human proteome detection: initiatives and perspectives. Proteomics 7:27382750.[PubMed][CrossRef]
12. Nollau P. 2011. Generating high-quality protein binders: a large screening effort pays off. Nat Meth 8:545546.[CrossRef]
13. Seurynck-Servoss SL, Baird CL, Miller KD, Pefaur NB, Gonzalez RM, Apiyo DO, Engelmann HE, Srivastava S, Kagan J, Rodland KD, Zangar RC. 2008. Immobilization strategies for single-chain antibody microarrays. Proteomics 8:21992210.[PubMed][CrossRef]
14. Mondon P, Dubreuil O, Bouayadi K, Kharrat H. 2008. Human antibody libraries: a race to engineer and explore a larger diversity. Front Biosci 13:11171129.[PubMed][CrossRef]
15. Zhou HY, Zhang YL, Lu GD, Ji H, Rodi CP. 2011. Recombinant antibody libraries and selection technologies. New Biotechnol 28:448452.[CrossRef]
16. Fellouse FA, Li B, Compaan DM, Peden AA, Hymowitz SG, Sidhu SS. 2005. Molecular recognition by a binary code. J Mol Biol 348:11531162.[CrossRef]
17. Barbas CF, 3rd, Bain JD, Hoekstra DM, Lerner RA. 1992. Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem. Proc Natl Acad Sci USA 89:44574461.[PubMed][CrossRef]
18. Hoet RM, Cohen EH, Kent RB, Rookey K, Schoonbroodt S, Hogan S, Rem L, Frans N, Daukandt M, Pieters H, van Hegelsom R, Neer NC, Nastri HG, Rondon IJ, Leeds JA, Hufton SE, Huang L, Kashin I, Devlin M, Kuang G, Steukers M, Viswanathan M, Nixon AE, Sexton DJ, Hoogenboom HR, Ladner RC. 2005. Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nat Biotechnol 23:344348.[PubMed][CrossRef]
19. Harel Inbar N, Benhar I. 2012. Selection of antibodies from synthetic antibody libraries. Arch Biochem Biophys 526:8798.[CrossRef]
20. Ferrara F, Naranjo LA, Kumar S, Gaiotto T, Mukundan H, Swanson B, Bradbury AR. 2012. Using phage and yeast display to select hundreds of monoclonal antibodies: application to antigen 85, a tuberculosis biomarker. PLoS One 7:e49535.[PubMed][CrossRef]
21. Boder ET, Midelfort KS, Wittrup KD. 2000. Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc Natl Acad Sci USA 97:1070110705.[PubMed][CrossRef]
22. Siegel RW, Baugher W, Rahn T, Drengler S, Tyner J. 2008. Affinity maturation of tacrolimus antibody for improved immunoassay performance. Clin Chem 54:10081017.[PubMed][CrossRef]
23. Traxlmayr MW, Obinger C. 2012. Directed evolution of proteins for increased stability and expression using yeast display. Arch Biochem Biophys 526:174180.[PubMed][CrossRef]
24. Gebauer M, Skerra A. 2009. Engineered protein scaffolds as next-generation antibody therapeutics. Curr Opin Chem Biol 13:245255.[PubMed][CrossRef]
25. Skerra A. 2007. Alternative non-antibody scaffolds for molecular recognition. Curr Opin Biotechnol 18:295304.[PubMed][CrossRef]
26. Nygren PA, Skerra A. 2004. Binding proteins from alternative scaffolds. J Immunol Methods 290:328.[PubMed][CrossRef]
27. Skerra A. 2000. Engineered protein scaffolds for molecular recognition. J Mol Recognit 13:167187.[PubMed][CrossRef]
28. Gronwall C, Stahl S. 2009. Engineered affinity proteins—generation and applications. J Biotechnol 140:254269.[PubMed][CrossRef]
29. Friedman M, Stahl S. 2009. Engineered affinity proteins for tumour-targeting applications. Biotechnol Appl Biochem 53:129.[PubMed][CrossRef]
30. Soares TA, Boschek CB, Apiyo D, Baird C, Straatsma TP. 2010. Molecular basis of the structural stability of a Top7-based scaffold at extreme pH and temperature conditions. J Mol Graph Model 28:755765.[PubMed][CrossRef]
31. Boschek CB, Apiyo DO, Soares TA, Engelmann HE, Pefaur NB, Straatsma TP, Baird CL. 2009. Engineering an ultra-stable affinity reagent based on Top7. Protein Eng Des Sel 22:325332.[PubMed][CrossRef]
32. Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D. 2003. Design of a novel globular protein fold with atomic-level accuracy. Science 302:13641368.[PubMed][CrossRef]
33. Stoltenburg R, Reinemann C, Strehlitz B. 2007. SELEX—a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24:381403.[PubMed][CrossRef]
34. Ellington AD, Szostak JW. 1990. In vitro selection of RNA molecules that bind specific ligands. Nature 346:818822.[PubMed][CrossRef]
35. Tuerk C, Gold L. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505510.[PubMed][CrossRef]
36. Baird GS. 2010. Where are all the aptamers? Am J Clin Pathol 134:529531.[PubMed][CrossRef]
37. Gold L, Ayers D, Bertino J, Bock C, Bock A, Brody EN, Carter J, Dalby AB, Eaton BE, Fitzwater T, Flather D, Forbes A, Foreman T, Fowler C, Gawande B, Goss M, Gunn M, Gupta S, Halladay D, Heil J, Heilig J, Hicke B, Husar G, Janjic N, Jarvis T, Jennings S, Katilius E, Keeney TR, Kim N, Koch TH, Kraemer S, Kroiss L, Le N, Levine D, Lindsey W, Lollo B, Mayfield W, Mehan M, Mehler R, Nelson SK, Nelson M, Nieuwlandt D, Nikrad M, Ochsner U, Ostroff RM, Otis M, Parker T, Pietrasiewicz S, Resnicow DI, Rohloff J, Sanders G, Sattin S, Schneider D, Singer B, Stanton M, Sterkel A, Stewart A, Stratford S, Vaught JD, Vrkljan M, Walker JJ, Watrobka M, Waugh S, Weiss A, Wilcox SK, Wolfson A, Wolk SK, Zhang C, Zichi D. 2010. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One 5:e15004.[PubMed][CrossRef]
38. Kryscio DR, Peppas NA. 2012. Critical review and perspective of macromolecularly imprinted polymers. Acta Biomaterialia 8:461473.[PubMed][CrossRef]
39. Vasapollo G, Del Sole R, Mergola L, Lazzoi MR, Scardino A, Scorrano S, Mele G. 2011. Molecularly imprinted polymers: present and future prospective. Int J Mol Sci 12:59085945.[PubMed][CrossRef]
40. Biagini RE, Smith JP, Sammons DL, MacKenzie BA, Striley CAF, Robertson SK, Snawder JE. 2008. Analytical performance criteria—the use of immunochemical and biosensor methods for occupational and environmental monitoring. Part I: Introduction to immunoassays. J Occup Environ Hyg 5:D25D32.[PubMed]
41. Knopp D. 2006. Immunoassay development for environmental analysis. Anal Bioanal Chem 385:425427.[PubMed][CrossRef]
42. Lazcka O, Del Campo FJ, Munoz FX. 2007. Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron 22:12051217.[PubMed][CrossRef]
43. van Apeldoorn ME, van Egmond HP, Speijers GJA, Bakker GJI. 2007. Toxins of cyanobacteria. Mol Nutr Food Res 51:760.[PubMed][CrossRef]
44. McElhiney J, Lawton LA. 2005. Detection of the cyanobacterial hepatotoxins microcystins. Toxicol Appl Pharm 203:219230.[CrossRef]
45. Meneely JP, Ricci F, van Egmond HP, Elliott CT. 2011. Current methods of analysis for the determination of trichothecene mycotoxins in food. Trends Anal Chem 30:192203.[CrossRef]
46. Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C. 2010. An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnol Adv 28:232254.[PubMed][CrossRef]
47. Krska R, Molinelli A. 2009. Rapid test strips for analysis of mycotoxins in food and feed. Anal Bioanal Chem 393:6771.[PubMed][CrossRef]
48. Posthuma-Trumpie GA, Korf J, van Amerongen A. 2009. Lateral flow (immuno) assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem 393:569582.[PubMed][CrossRef]
49. Zheng MZ, Richard JL, Binder J. 2006. A review of rapid methods for the analysis of mycotoxins. Mycopathologia 161:261273.[PubMed][CrossRef]
50. Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R. 2010. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39:11531182.[PubMed][CrossRef]
51. Jasson V, Jacxsens L, Luning P, Rajkovic A, Uyttendaele M. 2010. Alternative microbial methods: an overview and selection criteria. Food Microbiol 27:710730.[PubMed][CrossRef]
52. Kingsmore SF. 2006. Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nat Rev Drug Discov 5:310320.[PubMed][CrossRef]
53. Zhu H, Snyder M. 2003. Protein chip technology. Curr Opin Chem Biol 7:5563.[PubMed][CrossRef]
54. Ekins RP, Chu FW. 1991. Multianalyte microspot immunoassay—microanalytical “compact disk” of the future. Clin Chem 37:19551967.[PubMed]
55. Ekins RP. 1998. Ligand assays: from electrophoresis to miniaturized microarrays. Clin Chem 44:20152030.[PubMed]
56. Ellington AA, Kullo IJ, Bailey KR, Klee GG. 2010. Antibody-based protein multiplex platforms: technical and operational challenges. Clin Chem 56:186193.[PubMed][CrossRef]
57. Kusnezow W, Syagailo YV, Ruffer S, Baudenstiel N, Gauer C, Hoheisel JD, Wild D, Goychuk I. 2006. Optimal design of microarray immunoassays to compensate for kinetic limitations—theory and experiment. Mol Cell Proteomics 5:16811696.[PubMed][CrossRef]
58. Kusnezow W, Syagailo YV, Goychuk I, Hoheisel JD, Wild DG. 2006. Antibody microarrays: the crucial impact of mass transport on assay kinetics and sensitivity. Expert Rev Mol Diagn 6:111124.[PubMed][CrossRef]
59. Hartmann M, Toegl A, Kirchner R, Templin MF, Joos TO. 2006. Increasing robustness and sensitivity of protein microarrays through microagitation and automation. Anal Chim Acta 564:6673.[PubMed][CrossRef]
60. Gonzalez RM, Seurynck-Servoss SL, Crowley SA, Brown M, Omenn GS, Hayes DF, Zangar RC. 2008. Development and validation of sandwich ELISA microarrays with minimal assay interference. J Proteome Res 7:24062414.[PubMed][CrossRef]
61. Cass T, Ligler FS,. 1998. Immobilized biomolecules in analysis: a practical approach. In Hames BD (ed.), The practical approach series. Oxford University Press, New York.
62. Skottrup PD, Nicolaisen M, Justesen AF. 2008. Towards on-site pathogen detection using antibody-based sensors. Biosens Bioelectron 24:339348.[PubMed][CrossRef]
63. Henares TG, Mizutani F, Hisamoto H. 2008. Current development in microfluidic immunosensing chip. Anal Chim Acta 611:1730.[PubMed][CrossRef]
64. Ligler FS, Sapsford KE, Golden JP, Shriver-Lake LC, Taitt CR, Dyer MA, Barone S, Myatt CJ. 2007. The array biosensor: portable, automated systems. Anal Sci 23:510.[PubMed][CrossRef]
65. Seidel M, Niessner R. 2008. Automated analytical microarrays: a critical review. Anal Bioanal Chem 391:15211544.[PubMed][CrossRef]
66. Gehring AG, Albin DM, Reed SA, Tu SI, Brewster JD. 2008. An antibody microarray, in multiwell plate format, for multiplex screening of foodborne pathogenic bacteria and biomolecules. Anal Bioanal Chem 391:497506.[PubMed][CrossRef]
67. Fischer NO, Tarasow TM, Tok JB. 2007. Heightened sense for sensing: recent advances in pathogen immunoassay sensing platforms. Analyst 132:187191.[PubMed][CrossRef]
68. Parro V,. 2010. Biomonitoring by antibody microarrays. In Timmis KN (ed.), Handbook of hydrocarbon and lipid microbiology. Springer, Berlin.
69. Zhang Y, Lou J, Jenko KL, Marks JD, Varnum SM. 2012. Simultaneous and sensitive detection of six serotypes of botulinum neurotoxin using enzyme-linked immunosorbent assay-based protein antibody microarrays. Anal Biochem 430:185192.[PubMed][CrossRef]
70. Valiokas R. 2012. Nanobiochips. Cell Mol Life Sci 69:347356.[PubMed][CrossRef]
71. Hahm JI. 2011. Polymeric surface-mediated, high-density nano-assembly of functional protein arrays. J Biomed Nanotechnol 7:731742.[PubMed][CrossRef]
72. Houser B. 2012. Bio-Rad's Bio-Plex(R) suspension array system, xMAP technology overview. Arch Physiol Biochem 118:192196.[PubMed][CrossRef]
73. Clotilde LM, Bernard Ct, Salvador A, Lin A, Lauzon CR, Muldoon M, Xu Y, Lindpaintner K, Carter JM. 2013. A 7-plex microbead-based immunoassay for serotyping Shiga toxin-producing Escherichia coli. J Microbiol Meth 92:226230.[CrossRef]
74. Kim JS, Taitt CR, Ligler FS, Anderson GP. 2010. Multiplexed magnetic microsphere immunoassays for detection of pathogens in foods. Sens Instrum Food Qual Saf 4:7381.[PubMed][CrossRef]
75. Holford TR, Davis F, Higson SP. 2012. Recent trends in antibody based sensors. Biosens Bioelectron 34:1224.[PubMed][CrossRef]
76. Raz SR, Haasnoot W. 2011. Multiplex bioanalytical methods for food and environmental monitoring. Trends Anal Chem 30:15261537.[CrossRef]
77. Rodriguez-Mozaz S, de Alda MJL, Barcelo D. 2006. Biosensors as useful tools for environmental analysis and monitoring. Anal Bioanal Chem 386:10251041.[PubMed][CrossRef]
78. Rogers KR. 2006. Recent advances in biosensor techniques for environmental monitoring. Anal Chim Acta 568:222231.[PubMed][CrossRef]
79. Qavi AJ, Washburn AL, Byeon JY, Bailey RC. 2009. Label-free technologies for quantitative multiparameter biological analysis. Anal Bioanal Chem 394:121135.[PubMed][CrossRef]
80. Fan XD, White IM, Shopova SI, Zhu HY, Suter JD, Sun YZ. 2008. Sensitive optical biosensors for unlabeled targets: a review. Anal Chim Acta 620:826.[PubMed][CrossRef]
81. Hunt HK, Armani AM. 2010. Label-free biological and chemical sensors. Nanoscale 2:15441559.[PubMed][CrossRef]
82. Ray S, Mehta G, Srivastava S. 2010. Label-free detection techniques for protein microarrays: prospects, merits and challenges. Proteomics 10:731748.[PubMed][CrossRef]
83. Rusling JF. 2012. Nanomaterials-based electrochemical immunosensors for proteins. Chem Rec 12:164176.[PubMed][CrossRef]
84. Jans H, Huo Q. 2012. Gold nanoparticle-enabled biological and chemical detection and analysis. Chem Soc Rev 41:28492866.[PubMed][CrossRef]
85. Balasubramanian K, Burghard M. 2006. Biosensors based on carbon nanotubes. Anal Bioanal Chem 385:452468.[PubMed][CrossRef]
86. Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH. 2011. Recent advances in graphene-based biosensors. Biosens Bioelectron 26:46374648.[PubMed][CrossRef]
87. Koh I, Josephson L. 2009. Magnetic nanoparticle sensors. Sensors 9:81308145.[PubMed][CrossRef]
88. Frasco MF, Chaniotakis N. 2009. Semiconductor quantum dots in chemical sensors and biosensors. Sensors 9:72667286.[PubMed][CrossRef]
89. Vikesland PJ, Wigginton KR. 2010. Nanomaterial enabled biosensors for pathogen monitoring—a review. Environ Sci Technol 44:36563669.[PubMed][CrossRef]
90. Upadhyayula VKK. 2012. Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: a review. Anal Chim Acta 715:118.[PubMed][CrossRef]
91. Campas M, Garibo D, Prieto-Simon B. 2012. Novel nanobiotechnological concepts in electrochemical biosensors for the analysis of toxins. Analyst 137:105567.[PubMed][CrossRef]
92. Perez-Lopez B, Merkoci A. 2011. Nanomaterials based biosensors for food analysis applications. Trends Food Sci Tech 22:625639.[CrossRef]
93. Ligler FS. 2009. Perspective on optical biosensors and integrated sensor systems. Anal Chem 81:519526.[PubMed][CrossRef]
94. Homola J. 2008. Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462493.[PubMed][CrossRef]
95. Mayer KM, Hafner JH. 2011. Localized surface plasmon resonance sensors. Chem Rev 111:38283857.[PubMed][CrossRef]
96. Abbas A, Linman MJ, Cheng Q. 2011. New trends in instrumental design for surface plasmon resonance-based biosensors. Biosens Bioelectron 26:18151824.[PubMed][CrossRef]
97. Ligler FS, Taitt CR, Shriver-Lake LC, Sapsford KE, Shubin Y, Golden JP. 2003. Array biosensor for detection of toxins. Anal Bioanal Chem 377:469477.[PubMed][CrossRef]
98. Golden JP, Taitt CR, Shriver-Lake LC, Shubin YS, Ligler FS. 2005. A portable automated multianalyte biosensor. Talanta 65:10781085.[PubMed][CrossRef]
99. Taitt CR, Anderson GP, Ligler FS. 2005. Evanescent wave fluorescence biosensors. Biosens Bioelectron 20:24702487.[PubMed][CrossRef]
100. Vollmer F, Arnold S. 2008. Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat Meth 5:591596.[CrossRef]
101. Luchansky MS, Bailey RC. 2012. High-Q optical sensors for chemical and biological analysis. Anal Chem 84:793821.[PubMed][CrossRef]
102. Armani AM, Kulkarni RP, Fraser SE, Flagan RC, Vahala KJ. 2007. Label-free, single-molecule detection with optical microcavities. Science 317:783787.[PubMed][CrossRef]
103. Cunningham BT, Laing L. 2006. Microplate-based, label-free detection of biomolecular interactions: applications in proteomics. Exp Rev Proteomics 3:271281.[CrossRef]
104. Ronkainen NJ, Halsall HB, Heineman WR. 2010. Electrochemical biosensors. Chem Soc Rev 39:17471763.[PubMed][CrossRef]
105. Pingarron JM, Yanez-Sedeno P, Gonzalez-Cortes A. 2008. Gold nanoparticle-based electrochemical biosensors. Electrochim Acta 53:58485866.[CrossRef]
106. Wang J. 2005. Carbon-nanotube based electrochemical biosensors: a review. Electroanal 17:714.[CrossRef]
107. Tothill IE. 2009. Biosensors for cancer markers diagnosis. Semin Cell Dev Biol 20:5562.[PubMed][CrossRef]
108. Arlett JL, Myers EB, Roukes ML. 2011. Comparative advantages of mechanical biosensors. Nat Nanotechnol 6:203215.[PubMed][CrossRef]
109. Calleja M, Kosaka PM, San Paulo A, Tamayo J. 2012. Challenges for nanomechanical sensors in biological detection. Nanoscale 4:49254938.[PubMed][CrossRef]
110. Lavrik NV, Sepaniak MJ, Datskos PG. 2004. Cantilever transducers as a platform for chemical and biological sensors. Rev Sci Instrum 75:22292253.[CrossRef]
111. Cheng SB, Skinner CD, Taylor J, Attiya S, Lee WE, Picelli G, Harrison DJ. 2001. Development of a multichannel microfluidic analysis system employing affinity capillary electrophoresis for immunoassay. Anal Chem 73:14721479.[PubMed][CrossRef]
112. Ramsey JD, Collins GE. 2005. Integrated microfluidic device for solid-phase extraction coupled to micellar electrokinetic chromatography separation. Anal Chem 77:66646670.[PubMed][CrossRef]
113. Yoon JY, Kim B. 2012. Lab-on-a-chip pathogen sensors for food safety. Sensors 12:1071310741.[PubMed][CrossRef]
114. Situma C, Hashimoto M, Soper SA. 2006. Merging microfluidics with microarray-based bioassays. Biomol Eng 23:213231.[PubMed][CrossRef]
115. McGrath TF, Elliott CT, Fodey TL. 2012. Biosensors for the analysis of microbiological and chemical contaminants in food. Anal Bioanal Chem 403:7592.[PubMed][CrossRef]
116. Borisov SM, Wolfbeis OS. 2008. Optical biosensors. Chem Rev 108:423461.[PubMed][CrossRef]
117. Xu S. 2012. Electromechanical biosensors for pathogen detection. Microchim Acta 178:245260.[CrossRef]
118. Connelly JT, Baeumner AJ. 2012. Biosensors for the detection of waterborne pathogens. Anal Bioanal Chem 402:117127.[PubMed][CrossRef]
119. Vilarino N, Louzao MC, Vieytes MR, Botana LM. 2010. Biological methods for marine toxin detection. Anal Bioanal Chem 397:16731681.[PubMed][CrossRef]
120. Singh S, Srivastava A, Oh HM, Ahn CY, Choi GG, Asthana RK. 2012. Recent trends in development of biosensors for detection of microcystin. Toxicon 60:878894.[PubMed][CrossRef]
121. Westrick JA, Szlag DC, Southwell BJ, Sinclair J. 2010. A review of cyanobacteria and cyanotoxins removal/inactivation in drinking water treatment. Anal Bioanal Chem 397:17051014.[PubMed][CrossRef]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error