1887

Chapter 2.6.1 : Water Sampling and Processing Techniques for Public Health–Related Microbes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Water Sampling and Processing Techniques for Public Health–Related Microbes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch2.6.1-1.gif /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch2.6.1-2.gif

Abstract:

This chapter describes options and considerations for choosing water sampling and processing techniques to enable testing for microbes of public health relevance, including pathogens and microbial indicators of fecal contamination. The framework for the discussion draws relationships between investigation goals, conditions and the selection of sampling techniques. Considerations include identifying target microbes, downstream analytical methods, anticipated water quality, acceptable method detection limits, and application of discrete versus composite sampling. Small-volume and large-volume sampling techniques are discussed for application to a wide range of water types, including drinking water, ground water, surface water, recreational water, and marine water. The chapter describes and compares alternative techniques for sample collection and processing for viruses, bacteria, and parasites, as well as identifying techniques that to capture of multiple microbe types. Field sampling techniques are discussed, as well as laboratory-based sample processing techniques to concentrate water samples for analysis. Issues related to sample quality are addressed as they relate to processing inefficiencies and potential for inhibition of analytical procedures.

Citation: Hill V. 2016. Water Sampling and Processing Techniques for Public Health–Related Microbes, p 2.6.1-1-2.6.1-16. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch2.6.1
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Range of filtration processes for collecting microbes and other materials by physical size exclusion.doi: 10.1128/9781555818821.ch2.6.1.f1

Citation: Hill V. 2016. Water Sampling and Processing Techniques for Public Health–Related Microbes, p 2.6.1-1-2.6.1-16. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch2.6.1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Schematic of continuous flow centrifugation device (Courtesy of: Scientific Methods Inc). doi: 10.1128/9781555818821.ch2.6.1.f2

Citation: Hill V. 2016. Water Sampling and Processing Techniques for Public Health–Related Microbes, p 2.6.1-1-2.6.1-16. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch2.6.1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Schematic of tangential flow hollow fiber ultrafiltration (Reprinted from ref. 48, with permission).doi: 10.1128/9781555818821.ch2.6.1.f3

Citation: Hill V. 2016. Water Sampling and Processing Techniques for Public Health–Related Microbes, p 2.6.1-1-2.6.1-16. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch2.6.1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Schematic of dead-end ultrafiltration for filtering water from (a) nonpressurized water bodies and (b) pressurized water systems. doi: 10.1128/9781555818821.ch2.6.1.f4

Citation: Hill V. 2016. Water Sampling and Processing Techniques for Public Health–Related Microbes, p 2.6.1-1-2.6.1-16. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch2.6.1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Schematic of filtration set-up using an electropositive cartridge for recovery of viruses from water (Reprinted from ref 74). doi: 10.1128/9781555818821.ch2.6.1.f5

Citation: Hill V. 2016. Water Sampling and Processing Techniques for Public Health–Related Microbes, p 2.6.1-1-2.6.1-16. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch2.6.1
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818821.ch2.6.1
1. American Public Health Association AWWA, Water Environment Federation. 2005. Standard Methods for the Examination of Water and Wastewater, 21st ed. American Public Health Association, New York.
2. U.S. EPA. 2002. Guidance on Choosing a Sampling Design for Environmental Data Collection for Use in Developing a Quality Assurance Project Plan. EPA QA/G-5S, Office of Environmental Information, EPA/240/R-02/005.
3. Haas CN. 1993. Microbial sampling—is it better to sample many times or use large samples. Wat Sci Technol 27:1925.
4. Corapcioglu M, Haridas A. 1984. Transport and fate of microorganisms in porous media: a theoretical investigation. J Hydrol 72:149169.[CrossRef]
5. Marrie TJ, Haldane D, Bezanson G, Peppard R. 1992. Each water outlet is a unique ecological niche for Legionella pneumophila. Epi Infect 108:261270.[CrossRef]
6. Kemble SK, Lynfield R, DeVries AS, Drehner DM, Pomputius WF, Beach MJ, Visvesvara GS, da Silva AJ, Hill VR, Yoder JS, Xiao LH, Smith KE, Danila R. 2012. Fatal Naegleria fowleri infection acquired in Minnesota: possible expanded range of a deadly thermophilic organism. Clin Infect Dis 54:805809.[PubMed][CrossRef]
7. U.S. EPA. 2010. Sampling and Consideration of Variability (Temporal and Spatial) for Monitoring of Recreational Waters. EPA-823-R-10-005, Office of Water.
8. U.S. EPA. 1978. Microbiological Methods for Monitoring the Environment—Water and Wastes. EPA-600/8-78-017, Environmental Monitoring and Support Laboratory.
9. Hsu BM, Huang CC, Chen JS, Chen NH, Huang JT. 2011. Comparison of potentially pathogenic free-living amoeba hosts by Legionella spp. in substrate-associated biofilms and floating biofilms from spring environmentsWat Res 45:51715183.[CrossRef]
10. Nicholson A. 2007. Groundwatech Chemistry. In Groundwater and wells, 3rd ed. Johnson Screens, New Brighton, MN.
11. U.S. EPA. 1985. Practical Guide for Ground-Water Sampling. EPA/600/2-85/104, Office of Research and Development.
12. Hargy TM, Rosen J, LeChevallier M, Friedman M, Clancy JL. 2010. A high-volume sampling method for total coliform and E. coli. J Am Wat Works Assoc 102:7986.
13. Kemp R, Leatherbarrow AJH, Williams NJ, Hart CA, Clough HE, Turner J, Wright EJ, French NP. 2005. Prevalence and genetic diversity of Campylobacter spp. in environmental water samples from a 100-square-kilometer predominantly dairy farming area. Appl Environ Microbiol 71:18761882.[PubMed][CrossRef]
14. Higgins JA, Belt KT, Karns JS, Russell-Anelli J, Shelton DR. 2005. Tir- and stx-positive Escherichia coli in stream waters in a metropolitan area. Appl Environ Microbiol 71:25112519.[PubMed][CrossRef]
15. Sobsey MD, Schwab KJ, Handzel TR. 1990. A simple membrane filter method to concentrate and enumerate male-specific RNA coliphages. J Am Wat Works Assoc 82:5259.
16. Papageorgiou GT, Moce-Llivina L, Christodoulou CG, Lucena F, Akkelidou D, Ioannou E, Jofre J. 2000. A simple methodological approach for counting and identifying culturable viruses adsorbed to cellulose nitrate membrane filters. Appl Environ Microbiol 66:194198.[PubMed][CrossRef]
17. Falkinham JO, Iseman MD, de Haas P, van Soolingen D. 2008. Mycobacterium avium in a shower linked to pulmonary disease. J Wat Health 6:209213.
18. Leoni E, De Luca G, Legnani PP, Sacchetti R, Stampi S, Zanetti F. 2005. Legionella waterline colonization: Detection of Legionella species in domestic, hotel and hospital hot water systems. J Appl Microbiol 98:373379.[PubMed][CrossRef]
19. John DT, Howard MJ. 1995. Seasonal distribution of pathogenic free-living amebae in Oklahoma waters. Parasitol Res 81:193201.[PubMed]
20. Yoder JS, Straif-Bourgeois S, Roy SL, Moore TA, Visvesvara GS, Ratard RC, Hill VR, Wilson JD, Linscott AJ, Crager R, Kozak NA, Sriram R, Narayanan J, Mull B, Kahler AM, Schneeberger C, da Silva AJ, Poudel M, Baumgartner KL, Xiao LH, Beach MJ. 2012. Primary amebic meningoencephalitis deaths associated with sinus irrigation using contaminated tap water. Clin Infect Dis 55:E79E85.[CrossRef]
21. Shields JM, Gleim ER, Beach MJ. 2008. Prevalence of Cryptosporidium spp. and Giardia intestinalis in swimming pools, Atlanta, Georgia. Emerg Infect Dis 14:948950.[PubMed][CrossRef]
22. Hutcheson C, Cira R, Gaines SL, Jones KR, Howard W, Hornsby D, Rustin C, Hlavsa MC, Murphy JL, Jothikumar N, Miller CD, Cantrell B, Hill VR, Beach MJ. 2013. Microbes in pool filter backwash as evidence of the need for improved swimmer hygiene—metro-Atlanta, Georgia, 2012. Morbid Mortal Week Rep 62:385388.
23. U.S. EPA. April 2001. USEPA Manual of Methods for Virology: Chapter 14 (Concentration and Processing of Waterborne Viruses by Positive Charge 1MDS Cartridge Filters and Organic Flocculation). EPA/600/4-84/013.
24. Wommack KE, Hill RT, Colwell RR. 1995. A simple method for the concentration of viruses from natural-water samples. J Microbiol Meth 22:5767.[CrossRef]
25. Bertke EE. 2007. Composite analysis for Escherichia coli at coastal beaches. J Great Lakes Res 33:335341.[CrossRef]
26. Xagoraraki I, Kuo DHW, Wong K, Wong M, Rose JB. 2007. Occurrence of human adenoviruses at two recreational beaches of the great lakes. Appl Environ Microbiol 73:78747881.[PubMed][CrossRef]
27. U.S. EPA. 2005. Method 1622: Cryptosporidium in Water by Filtration/IMS/FA. EPA 815-R-05-001.
28. U.S. EPA. 2012. Method 1623.1: Cryptosporidium and Giardia in Water by Filtration/IMS/FA. EPA 816-R-12-001.
29. Shapiro K, Mazet JAK, Schriewer A, Wuertz S, Fritz H, Miller WA, Largier J, Conrad PA. 2010. Detection of Toxoplasma gondii oocysts and surrogate microspheres in water using ultrafiltration and capsule filtration. Water Res 44:893903.[PubMed][CrossRef]
30. Villena I, Aubert D, Gomis P, Ferte H, Inglard JC, Denis-Bisiaux H, Dondon J-M, Pisano E, Ortis N, Pinon J-M. 2004. Evaluation of a strategy for Toxoplasma gondii oocyst detection in water. Appl Environ Microbiol 70:40354039.[PubMed][CrossRef]
31. Sturbaum GD, Ortega YR, Gilman RH, Sterling CR, Cabrera L, Klein DA. 1998. Detection of Cyclospora cayetanensis in wastewater. Appl Environ Microbiol 64:22842286.[PubMed]
32. Marciano-Cabral F, Jamerson M, Kaneshiro ES. 2010. Free-living amoebae, Legionella and Mycobacterium in tap water supplied by a municipal drinking water utility in the USA. J Water Health 8:7182.[PubMed][CrossRef]
33. Huffman DE, Gennaccaro AL, Berg TL, Batzer G, Widmer G. 2006. Detection of infectious parasites in reclaimed water. Water Environ Res 78:22972302.[PubMed][CrossRef]
34. Quintero-Betancourt W, Gennaccaro AL, Scott TM, Rose JB. 2003. Assessment of methods for detection of infectious Cryptosporidium oocysts and Giardia cysts in reclaimed effluents. Appl Environ Microbiol 69:53805388.[PubMed][CrossRef]
35. Magana-Ordorica D, Mena K, Valdez-Torres JB, Soto-Beltran M, Leon-Felix J, Chaidez C. 2010. Relationships between the occurrence of Giardia and Cryptosporidium and physicochemical properties of marine waters of the Pacific Coast of Mexico. J Water Health 8:797802.[PubMed][CrossRef]
36. Higgins JA, Trout JM, Fayer R, Shelton D, Jenkins MC. 2003. Recovery and detection of Cryptosporidium parvum oocysts from water samples using continuous flow centrifugation. Water Res 37:35513560.[PubMed][CrossRef]
37. Swales C, Wright S. 2000. Evaluation of a continuous flow centrifuge for recovery of Cryptosporidium oocysts from large volume water samples. Water Res 34:19621966.[CrossRef]
38. Borchardt MA, Spencer SK. 2002. Concentration of Cryptosporidium, microsporidia and other water-borne pathogens by continuous separation channel centrifugation. J Appl Microbiol 92:649656.[PubMed][CrossRef]
39. Zuckerman U, Tzipori S. 2006. Portable continuous flow centrifugation and method 1623 for monitoring of waterborne protozoa from large volumes of various water matrices. J Appl Microbiol 100:12201227.[PubMed][CrossRef]
40. Zuckerman U, Armon R, Tzipori S, Gold D. 1999. Evaluation of a portable differential continuous flow centrifuge for concentration of Cryptosporidium oocysts and Giardia cysts from water. J Appl Microbiol 86:955961.[PubMed][CrossRef]
41. Hill VR, Mull B, Jothikumar N, Ferdinand K, Vinje J. 2010. Detection of GI and GII noroviruses in ground water using ultrafiltration and TaqMan Real-time RT-PCR. Food Environ Virol 2:218224.[CrossRef]
42. Mull B, Hill VR. 2009. Recovery and detection of Escherichia coli O157:H7 in surface water, using ultrafiltration and Real-Time PCR. Appl Environ Microbiol 75:35933597.[PubMed][CrossRef]
43. Kimble G, Amburgey J, Hill V. 2012. Comparison of hollow-fiber ultrafilters with pleated capsule filters for surface and tap water samples using U.S. EPA Method 1623. J Environ Eng 138:899901.[CrossRef]
44. Raphael BH, Lautenschlager M, Kahler A, Pai S, Parks BA, Kalb SR, Maslanka SE, Shah S, Magnuson M, Hill VR. 2012. Ultrafiltration improves ELISA and Endopep MS analysis of botulinum neurotoxin type A in drinking water. J Microbiol Meth 90:267272.[CrossRef]
45. Hill VR, Polaczyk AL, Hahn D, Narayanan J, Cromeans TL, Roberts JM, Amburgey JE. 2005. Development of a rapid method for simultaneous recovery of diverse microbes in drinking water by ultrafiltration with sodium polyphosphate and surfactants. Appl Environ Microbiol 71:68786884.[PubMed][CrossRef]
46. Morales-Morales HA, Vidal G, Olszewski J, Rock CM, Dasgupta D, Oshima KH, Smith GB. 2003. Optimization of a reusable hollow-fiber ultrafilter for simultaneous concentration of enteric bacteria, protozoa, and viruses from water. Appl Environ Microbiol 69:40984102.[PubMed][CrossRef]
47. Olszewski J, Winona L, Oshima KH. 2005. Comparison of 2 ultrafiltration systems for the concentration of seeded viruses from environmental waters. Can J Microbiol 51:295303.[PubMed][CrossRef]
48. Hill VR, Kahler AM, Jothikumar N, Johnson TB, Hahn D, Cromeans TL. 2007. Multistate evaluation of an ultrafiltration-based procedure for simultaneous recovery of enteric microbes in 100-liter tap water samples. Appl Environ Microbiol 73:42184225.[PubMed][CrossRef]
49. Gibson KE, Schwab KJ. 2011. Tangential-flow ultrafiltration with Integrated inhibition detection for recovery of surrogates and human pathogens from large-volume source water and finished drinking water. Appl Environ Microbiol 77:385391.[PubMed][CrossRef]
50. Winona LJ, Ommani AW, Olszewski J, Nuzzo JB, Oshima KH. 2001. Efficient and predictable recovery of viruses from water by small scale ultrafiltration systems. Can J Microbiol 47:10331041.[PubMed][CrossRef]
51. Dziewulski DM, Belfort G. 1983. Virus concentration from water using high-rate tangential-flow hollow fiber ultrafiltration. Water Sci Technol 15:7589.
52. Smith CM, Hill VR. 2009. Dead-end hollow-fiber ultrafiltration for recovery of diverse microbes from water. Appl Environ Microbiol 75:52845289.[PubMed][CrossRef]
53. Leskinen SD, Harwood VJ, Lim DV. 2009. Rapid dead-end ultrafiltration concentration and biosensor detection of enterococci from beach waters of Southern California. J Water Health 7:674684.[PubMed][CrossRef]
54. Mull B, Hill VR. 2012. Recovery of diverse microbes in high turbidity surface water samples using dead-end ultrafiltration. J Microbiol Meth 91:429433.[CrossRef]
55. Holowecky PM, James RR, Lorch DP, Straka SE, Lindquist HDA. 2009. Evaluation of ultrafiltration cartridges for a water sampling apparatus. J Appl Microbiol 106:738747.[PubMed][CrossRef]
56. Kfir R, Hilner C, Dupreez M, Bateman B. 1995. Studies evaluating the applicability of utilizing the same concentration techniques for the detection of protozoan parasites and viruses in water. Water Sci Technol 31:417423.[CrossRef]
57. Simmons OD, Sobsey MD, Heaney CD, Schaefer FW, Francy DS. 2001. Concentration and detection of Cryptosporidium oocysts in surface water samples by method 1622 using ultrafiltration and capsule filtration. Appl Environ Microbiol 67:11231127.[PubMed][CrossRef]
58. Liu PB, Hill VR, Hahn D, Johnson TB, Pan Y, Jothikumar N, Moe CL. 2012. Hollow-fiber ultrafiltration for simultaneous recovery of viruses, bacteria and parasites from reclaimed water. J Microbiol Meth 88:155161.[CrossRef]
59. Polaczyk AL, Narayanan J, Cromeans TL, Hahn D, Roberts JM, Amburgey JE, Hill VR. 2008. Ultrafiltration-based techniques for rapid and simultaneous concentration of multiple microbe classes from 100-L tap water samples. J Microbiol Meth 73:9299.[CrossRef]
60. Polaczyk AL, Roberts JM, Hill VR. 2007. Evaluation of 1MDS electropositive microfilters for simultaneous recovery of multiple microbe classes from tap water. J Microbiol Meth 68:260266.[CrossRef]
61. Lindquist HDA, Harris S, Lucas S, Hartzel M, Riner D, Rochele P, DeLeon R. 2007. Using ultrafiltration to concentrate and detect Bacillus anthracis, Bacillus atrophaeus subspecies globigii, and Cryptosporidium parvum in 100-liter water samples. J Microbiol Methods 70:484492.[PubMed][CrossRef]
62. Rhodes ER, Hamilton DW, See MJ, Wymer L. 2011. Evaluation of hollow-fiber ultrafiltration primary concentration of pathogens and secondary concentration of viruses from water. J Virol Meth 176:3845.[CrossRef]
63. CDC, U.S. EPA. 2011. Comparison of Ultrafiltration Techniques for Recovering Biothreat Agents in Water. EPA 600/R-11/103, Office of Research and Development.
64. Rajal VB, McSwain BS, Thompson DE, Leutenegger CM, Kildare BJ, Wuertz S. 2007. Validation of hollow fiber ultrafiltration and real-time PCR using bacteriophage PP7 as surrogate for the quantification of viruses from water samples. Water Res 41:14111422.[PubMed][CrossRef]
65. Hill VR, Jothikumar N, Vinje J, Cromeans TL. 2010. Sample Preparation Methods for Molecular Techniques for Drinking Water, Project 3108. Water Research Foundation. Denver, CO.
66. Karim MR, Rhodes ER, Brinkman N, Wymer L, Fout GS. 2009. New electropositive filter for concentrating enteroviruses and noroviruses from large volumes of water. Appl Environ Microbiol 75:23932399.[PubMed][CrossRef]
67. Michen B, Graule T. 2010. Isoelectric points of viruses. J Appl Microbiol 109:388397.[PubMed]
68. Gerba CP. 1984. Applied and theoretical aspects of virus adsorption to surfaces. Adv Appl Microbiol 30:133168.[PubMed][CrossRef]
69. Haramoto E, Katayama H, Asami M, Akiba M. 2012. Development of a novel method for simultaneous concentration of viruses and protozoa from a single water sample. J Virol Meth 182:6269.[CrossRef]
70. Brassard J, Guevremont E, Gagne MJ, Lamoureux L. 2011. Simultaneous recovery of bacteria and viruses from contaminated water and spinach by a filtration method. Int J Food Microbiol 144:565568.[PubMed][CrossRef]
71. Sobsey MD, Jones BL. 1979. Concentration of poliovirus from tap water using positively charged microporous filters. Appl Environ Microbiol 37:588595.[PubMed]
72. Sobsey MD, Glass JS. 1980. Poliovirus concentration from tap water with electropositive adsorbent filters. Appl Environ Microbiol 40:201210.[PubMed]
73. Lambertini E, Spencer SK, Bertz PD, Loge FJ, Kieke BA, Borchardt MA. 2008. Concentration of enteroviruses, adenoviruses, and noroviruses from drinking water by use of glass wool filters. Appl Environ Microbiol 74:29902996.[PubMed][CrossRef]
74. U.S. EPA. 2012. Method 1615: Measurement of Enterovirus and Norovirus Occurrence in Water by Culture and RT-qPCR. EPA 600/R-10/181, Version 1.1. Office of Research and Development.
75. Lukasik J, Scott TM, Andryshak D, Farrah SR. 2000. Influence of salts on virus adsorption to microporous filters. Appl Environ Microbiol 66:29142920.[PubMed][CrossRef]
76. Gibbons CD, Rodriguez RA, Tallon L, Sobsey MD. 2010. Evaluation of positively charged alumina nanofibre cartridge filters for the primary concentration of noroviruses, adenoviruses and male-specific coliphages from seawater. J Appl Microbiol 109:635641.[PubMed]
77. Bennett HB, O'Dell HD, Norton G, Shin G, Hsu FC, Meschke JS. 2010. Evaluation of a novel electropositive filter for the concentration of viruses from diverse water matrices. Water Sci Technol 61:317322.[PubMed][CrossRef]
78. Guttman-Bass N, Catalano-Sherman J. 1986. Humic acid interference with virus recovery by electropositive microporous filters. Appl Environ Microbiol 52:556561.[PubMed]
79. Sobsey MD, Glass JS. 1984. Influence of water quality on enteric virus concentration by microporous filter methods. Appl Environ Microbiol 47:956960.[PubMed]
80. U.S. EPA. 1996. ICR Microbial Laboratory Manual. EPA/600/R-95/178, Office of Research and Development.
81. Cashdollar JL, Brinkman NE, Griffin SM, McMinn BR, Rhodes ER, Varughese EA, Grimm AC, Parshionikar SU, Wymer L, Fout GS. 2013. Development and evaluation of EPA method 1615 for detection of enterovirus and norovirus in water. Appl Environ Microbiol 79:215223.[PubMed][CrossRef]
82. Vilagines P, Sarrette B, Husson G, Vilagines R. 1993. Glass wool for virus concentration at ambient water PH level. Water Sci Technol 27:299306.[CrossRef]
83. Wyn-Jones AP, Carducci A, Cook N, D'Agostino M, Divizia M, Fleischer J, Gantzer C, Gawler A, Girones R, Höller, de Roda Husman AM, Kay D, Kozyra I, López-Pila J, Muscillo M, Nascimento MSJ, Papageoriou G, Rutjes S, Sellwood J, Szewzyk R, Wyer M. 2011. Surveillance of adenoviruses and noroviruses in European recreational waters. Water Res 45:10251038.[PubMed][CrossRef]
84. Deboosere N, Horm SV, Pinon A, Gachet J, Coldefy C, Buchy P, Vialette M. 2011. Development and validation of a concentration method for the detection of influenza A viruses from large volumes of surface water. Appl Environ Microbiol 77:38023808.[PubMed][CrossRef]
85. Bradbury KR, Borchardt MA, Gotkowitz M, Spencer SK, Zhu J, Hunt RJ. 2013. Source and transport of human enteric viruses in deep municipal water supply wells. Environ Sci Technol 47:40964103.[PubMed][CrossRef]
86. Sobsey MD, Glass JS, Jacobs RR, Rutala WA. 1980. Modifications of the tentative standard method for improved virus recovery efficiency. J Am Water Works Assoc 72:350355.
87. Wallis C, Melnick JL. 1967. Concentration of enteroviruses on membrane filters. J Virol 1:472477.[PubMed]
88. Rose JB, Singh SN, Gerba CP, Kelley LM. 1984. Comparison of microporous filters for concentration of viruses from wastewater. Appl Environ Microbiol 47:989992.[PubMed]
89. Pallin R, WynJones AP, Place BM, Lightfoot NF. 1997. The detection of enteroviruses in large volume concentrates of recreational waters by the polymerase chain reaction. J Virol Meth 67:5767.[CrossRef]
90. Katayama H, Shimasaki A, Ohgaki S. 2002. Development of a virus concentration method and its application to detection of enterovirus and Norwalk virus from coastal seawater. Appl Environ Microbiol 68:10331039.[PubMed][CrossRef]
91. Watt PM, Johnson DC, Gerba CP. 2002. Improved method for concentration of Giardia, Cryptosporidium, and poliovirus from water. J Environ Sci Health A Tox Hazard Subst Environ Eng 37:321330.[PubMed][CrossRef]
92. Hurst CJ, Dahling DR, Safferman RS, Goyke T. 1984. Comparison of commercial beef extracts and similar materials for recovering viruses from environmental samples. Canadian J Microbiol 30:12531263.[CrossRef]
93. Wyn-Jones AP, Pallin R, Dedoussis C, Shore J, Sellwood J. 2000. The detection of small round-structured viruses in water and environmental materials. J Virol Meth 87:99107.[CrossRef]
94. Schwab KJ, Deleon R, Sobsey MD. 1995. Concentration and purification of beef extract mock eluates from water samples for the detection of enteroviruses, hepatitis A virus, and Norwalk virus by reverse transcription-PCR. Appl Environ Microbiol 61:531537.[PubMed]
95. Haramoto E, Katayama H, Ohgaki S. 2004. Detection of noroviruses in tap water in Japan by means of a new method for concentrating enteric viruses in large volumes of freshwater. Appl Environ Microbiol 70:21542160.[PubMed][CrossRef]
96. Kitajima M, Oka T, Haramoto E, Katayama H, Takeda N, Katayama K, Ohgaki S. 2010. Detection and genetic analysis of human sapoviruses in river water in Japan. Appl Environ Microbiol 76:24612467.[PubMed][CrossRef]
97. Victoria M, Rigotto C, Moresco V, Correa AD, Kolesnikovas C, Leite JPG, Miagostovich MP, Barardi CRM. 2010. Assessment of norovirus contamination in environmental samples from Florianopolis City, Southern Brazil. J Appl Microbiol 109:231238.[PubMed]
98. Haramoto E, Katayama H, Utagawa E, Ohgaki S. 2009. Recovery of human norovirus from water by virus concentration methods. J Virol Meth 160:206209.[CrossRef]
99. U.S. EPA. 2007. Validation and Peer Review of U.S. Environmental Protection Agency Sampling Methods for Chemical and Radiochemical Parameters. FEM Document Number 2007–02.
100. Stockman LJ, Wright CJ, Visvesvara GS, Fields BS, Beach MJ. 2011. Prevalence of Acanthamoeba spp. and other free-living amoebae in household water, Ohio, USA—1990–1992. Parasitol Res 108:621627.[PubMed][CrossRef]
101. Falkinham JO. 2011. Nontuberculous mycobacteria from household plumbing of patients with nontuberculous mycobacteria disease. Emerg Infect Dis 17:419424.[PubMed][CrossRef]
102. U.S. EPA. 2000. Improved Enumeration Methods for the Recreational Water Quality Indicators: Enterococci and Escherichia coli. EPA/821/R-97/004. Office of Science and Technology.
103. Wiedenmann A, Langhammer W, Botzenhart K. 2001. A case report of false negative Legionella test results in a chlorinated public hot water distribution system due to the lack of sodium thiosulfate in sampling bottles. Int J Hyg Environ Health 204:245249.[PubMed][CrossRef]
104. Sen K, Schable NA, Lye DJ. 2007. Development of an internal control for evaluation and standardization of a quantitative PCR assay for detection of Helicobacter pylori in drinking water. Appl Environ Microbiol 73:73807387.[PubMed][CrossRef]
105. U.S. EPA. 2002. Guidance for Quality Assurance Project Plans. EPA QA/G-5, EPA/240/R-02/009, Office of Environmental Information.
106. McCuin RM, Clancy JL. 2005. Methods for the recovery, isolation and detection of Cryptosporidium oocysts in wastewaters. J Microbiol Meth 63:7388.[CrossRef]
107. Bracken CL, Hendricks CW, Harding AK. 2006. Apparent bias in river water inoculum following centrifugation. J Microbiol Meth 67:304309.[CrossRef]
108. Stevens KA, Jaykus LA. 2004. Bacterial separation and concentration from complex sample matrices: a review. Crit Rev Microbiol 30:724.[PubMed][CrossRef]
109. Prata C, Ribeiro A, Cunha A, Gomes NCM, Almeida A. 2012. Ultracentrifugation as a direct method to concentrate viruses in environmental waters: virus-like particle enumeration as a new approach to determine the efficiency of recovery. J Environ Monit 14:6470.[PubMed][CrossRef]
110. Steyer A, Torkar KG, Gutierrez-Aguirre I, Poljsak-Prijatelj M. 2011. High prevalence of enteric viruses in untreated individual drinking water sources and surface water in Slovenia. Int J Hyg Environ Health 214:392398.[PubMed][CrossRef]
111. Cliver DO, Yeatman J. 1965. Ultracentrifugation in the concentration and detection of enteroviruses. Appl Microbiol 13:387392.[PubMed]
112. Skraber S, Gantzer C, Helmi K, Hoffmann L, Cauchie HM. 2009. Simultaneous concentration of enteric viruses and protozoan parasites: a protocol based on tangential flow filtration and adapted to large volumes of surface and drinking waters. Food and Environ Virol 1:6676.[CrossRef]
113. Girones R, Allard A, Wadell G, Jofre J. 1993. Application of PCR to the detection of adenoviruses in polluted waters. Water Sci Technol 27:235241.
114. Sylvain S, Gantzer C, Karim H, Lucien H, Henry-Michel C. 2009. Simultaneous concentration of enteric viruses and protozoan parasites: a protocol based on tangential flow filtration and adapted to large volumes of surface and drinking waters. Food and Environ Virol 1:6676.[CrossRef]
115. Philipson L, Albertsson PA, Frick G. 1960. The purification and concentration of viruses by aqueous polymer phase systems. Virology 11:553571.[PubMed][CrossRef]
116. Albertsson PA, Frick G. 1960. Partition of virus particles in a liquid two-phase system. Biochim Biophys Acta 37:230237.[PubMed][CrossRef]
117. Yamamoto KR, Alberts BM. 1970. Rapid bacteriophage sedimentation in the presence of polyethylene glycol and its application to large-scale virus purification. Virology 40:734744.[PubMed][CrossRef]
118. Enriquez CE, Gerba CP. 1995. Concentration of enteric adenovirus 40 from tap, sea, and waste water. Water Res 29:25542560.[CrossRef]
119. Schwab KJ, DeLeon R, Sobsey MD. 1996. Immunoaffinity concentration and purification of waterborne enteric viruses for detection by reverse transcriptase PCR. Appl Environ Microbiol 62:20862094.[PubMed]
120. Rodriguez RA, Thie L, Gibbons CD, Sobsey MD. 2012. Reducing the effects of environmental inhibition in quantitative real-time PCR detection of adenovirus and norovirus in recreational seawaters. J Virol Meth 181:4350.[CrossRef]
121. Lal SM, Lund E. 1975. Recovery of virus by chemical precipitation followed by elution. Prog Water Technol 7:687693.
122. Fernandez-Molina MC, Alvarez A, Espigares M. 2004. Presence of hepatitis A virus in water and its relationship with indicators of fecal contamination. Water Air Soil Pollut 159:197208.[CrossRef]
123. Payment P, Fortin S, Trudel M. 1984. Ferric chloride flocculation for nonflocculating beef extract preparations. Appl Environ Microbiol 47:591592.[PubMed]
124. U.S. EPA. 1995. Virus monitoring protocol for the Information Collection Requirements Rule. EPA/814-B-95-002, Office of Ground Water and Drinking Water.
125. Katzenelson E, Fattal BHT. 1976. Organic flocculation: an efficient second step concentration method for the detection of viruses in tap water. Appl Environ Microbiol 32:638639.[PubMed]
126. Safferman RS, Rohr ME, Goyke T. 1988. Assessment of recovery efficiency of beef extract reagents for concentrating viruses from municipal wastewater sludge solids by the organic flocculation procedure. Appl Environ Microbiol 54:309316.[PubMed]
127. Guttmanbass N, Armon R. 1983. Concentration of simian rotavirus SA-11 from tap water by membrane filtration and organic flocculation. Appl Environ Microbiol 45:850855.
128. Ikner LA, Gerba CP, Bright KR. 2012. Concentration and recovery of viruses from water: a comprehensive review. Food Environ Virol 4:4167.[PubMed][CrossRef]
129. Hill VR, Polaczyk AL, Kahler AM, Cromeans TL, Hahn D, Amburgey JE. 2009. Comparison of hollow-fiber ultrafiltration to the USEPA VIRADEL technique and USEPA method 1623. J Environ Qual 38:822825.[PubMed][CrossRef]
130. Dahling DR, Wright BA. 1986. Recovery of viruses from water by a modified flocculation procedure for second-step concentration. Appl Environ Microbiol 51:13261331.[PubMed]
131. McMinn BR, Cashdollar JL, Grimm AC, Fout GS. 2012. Evaluation of the celite secondary concentration procedure and an alternate elution buffer for the recovery of enteric adenoviruses 40 and 41. J Virol Meth 179:423428.[CrossRef]
132. Calgua B, Mengewein A, Grunert A, Bofill-Mas S, Clemente-Casares P, Hundesa A, Wyn-Jones AP, López-Pila J, Girones R. 2008. Development and application of a one-step low cost procedure to concentrate viruses from seawater samples. J Virol Meth 153:7983.[CrossRef]
133. Calgua B, Fumian T, Rusinol M, Rodriguez-Manzano J, Mbayed VA, Bofill-Mas S, Miagostovich M, Girones R. 2013. Detection and quantification of classic and emerging viruses by skimmed-milk flocculation and PCR in river water from two geographical areas. Water Res 47:27972810.[PubMed][CrossRef]
134. Bofill-Mas S, Hundesa A, Calgua B, Rusinol M, de Motes CM, Girones R. 2011. Cost-effective method for microbial source tracking using specific human and animal viruses. J Visual Exper 3(58):e2820.[CrossRef]
135. Gibson KE, Schwab KJ. 2011. Detection of bacterial indicators and human and bovine enteric viruses in surface water and groundwater sources potentially impacted by animal and human wastes in lower Yakima Valley, Washington. Appl Environ Microbiol 77:355362.[PubMed][CrossRef]
136. Gibson KE, Opryszko MC, Schissler JT, Guo YY, Schwab KJ. 2011. Evaluation of human enteric viruses in surface water and drinking water resources in southern Ghana. Am J Trop Med Hyg 84:2029.[PubMed][CrossRef]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error