1887

Chapter 2.6.4 : Microbiological Sampling of Wastewater and Biosolids

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Microbiological Sampling of Wastewater and Biosolids, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch2.6.4-1.gif /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch2.6.4-2.gif

Abstract:

Detection of microorganisms and viruses in wastewater and biosolids provides important information about the functioning of the wastewater treatment process and can provide insight on disease circulation in the population serviced by the treatment. This chapter discusses the wastewater treatment process and provides a description of how sampling should be performed at the different stages. General sampling procedures and considerations are described, including the use of controls and appropriate sample handling conditions. The chapter provides an overview of the required regulatory sampling as well as provides insight on other rationales for sampling of wastewater and biosolids. Sampling for regulatory microorganisms, including indicator organisms (fecal coliforms) and pathogens (Salmonella spp., enteric viruses, and helminth ova) can inform us about the safety of wastewater discharged or biosolids used in land applications. Discussion of standardized methods for the sampling of bacteria, viruses, and eukaryotic microbes are summarized here. This chapter does not focus on the methods used for isolation and detection of microbiological targets, rather concentration and purification techniques are described for a variety of organisms, including bacteria, viruses, protozoan and helminths.

Citation: Zhou N, Thompson E, Scott Meschke J. 2016. Microbiological Sampling of Wastewater and Biosolids, p 2.6.4-1-2.6.4-14. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch2.6.4
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555818821.ch2.6.4
1. Bitton G. 1999. Wastewater Microbiology, 2nd ed. Wiley-Liss, New York, NY
2. Tchobanoglous G, Stensel HD, Tsuchihashi R, Burton F, Abu-Orf M, Bowden G, Pfrang W. 2014. Wastewater Engineering: Treatment and Resource Recovery, 5th ed. McGraw-Hill Education, New York, NY.
3. Morella E, Foster V, Banerjee S. 2008. Climbing the Ladder: The State of Sanitation in Sub-Saharan Africa. World Bank and the Water and Sanitation Program.
4. WHO. 2015. Guidelines on environmental surveillance for detection of polioviruses. http://www.polioeradication.org/Portals/0/Document/Resources/GPLN_publications/GPLN_GuidelinesES_April2015.pdf last accessed 4/4/2016.
5. Nakamura T, Hamasaki M, Yoshitomi H, Ishibashi T, Yoshiyama C, Maeda E, Sera N, Yoshida H. 2015. Environmental surveillance of poliovirus in sewage water around the introduction period for inactivated polio vaccine in Japan. Appl Environ Microbiol 81:1859–1864.[PubMed][CrossRef]
6. Lucena F, Duran AE, Morón A, Calderón E, Campos C, Gantzer C, Skraber S, Jofre J. 2004. Reduction of bacterial indicators and bacteriophages infecting faecal bacteria in primary and secondary wastewater treatments. J Appl Microbiol 97:1069–1076.[PubMed][CrossRef]
7. Zhang K, Farahbakhsh K. 2007. Removal of native coliphages and coliform bacteria from municipal wastewater by various wastewater treatment processes: implications to water reuse. Water Res 41:2816–2824.[PubMed][CrossRef]
8. Payment P, Plante R, Cejka P. 2001. Removal of indicator bacteria, human enteric viruses, Giardia cysts, and Cryptosporidium oocysts at a large wastewater primary treatment facility. Can J Microbiol 47:188–193.[PubMed][CrossRef]
9. Berg G. 1973. Removal of viruses from sewage, effluents, and waters. Bull World Health Organ 49:451–460.[PubMed]
10. Zhou P, Di Giovanni GD, Meschke JS, Dodd MC. 2014. Enhanced inactivation of Cryptosporidium parvum oocysts during solar photolysis of free available chlorine. Environ Sci Technol Lett 1:453–458.[CrossRef]
11. American Public Health Association. 2012. Standard Methods for the Examination of Water and Wastewater, 22nd ed. American Public Health Association, Washington, DC.
12. Florida Department of Environmental Protection. 2014. DEP-SOP-001/01 FS 2400 Wastewater Sampling.
13. U.S. EPA. 2003. Environmental Regulations and Technology Control of Pathogens and Vector Attraction in Sewage Sludge. EPA-625/R-92-013. EPA, Washington, DC.
14. National Research Council of the National Academies. 2002. Biosolids applied to land: advancing standards and practices. National Academies Press, Washington, DC [March 14, 2016]. Available from: http://www.nap.edu/catalog/10426.
15. U.S. EPA. 1994. A Plain English Guide to the EPA Part 503 Biosolids Rule EPA/832-R-93/003. EPA 832/R-93/003. Office of Wastewater Management. EPA, Washington, DC.
16. U.S. EPA. 2010. Method 1680: Fecal Coliforms in Sewage Sludge (Biosolids) by Multiple-Tube Fermentation using Lauryl Tryptose Broth (LTB) and EC Medium. EPA 821-R-04-026. EPA Office of Water. EPA, Washington, DC.
17. U.S. EPA. 2006. Method 1681: Fecal Coliforms in Sewage Sludge (Biosolids) by Multiple-Tube Fermentation using A-1 Medium. EPA-821-R-06-013. EPA Office of Water. EPA, Washington, DC.
18. U.S. EPA. 2006. Method 1682: Salmonella in Sewage Sludge (Biosolids) by Modified Semisolid Rappaport-Vassiliadis (MSRV) Medium. EPA-821-R-04-028. EPA Office of Water. EPA, Washington, DC.
19. Rodriguez E, Garcia-Encina PA, Stams AJM, Maphosa F, Sousa DZ. 2015. Meta-omics approaches to understand and improve wastewater treatment systems. Rev Environ Sci Bio-Technol 14:385406.[CrossRef]
20. Aoi Y, Miyoshi T, Okamoto T, Tsuneda S, Hirata A, Kitayama A, Nagamune T. 2000. Microbial ecology of nitrifying bacteria in wastewater treatment process examined by fluorescence in situ hybridization. J Biosci Bioeng 90:234–240.[PubMed][CrossRef]
21. Kokkinos P, Ziros P, Meri D, Filippidou S, Kolla S, Galanis A, Vantarakis A. 2011. Environmental surveillance: an additional/alternative approach for virological surveillance in Greece? Int J Environ Res Public Health 8:1914–1922.[PubMed][CrossRef]
22. Auerbach EA, Seyfried EE, McMahon KD. 2007. Tetracycline resistance genes in activated sludge wastewater treatment plants. Water Res 41:1143–1151.[PubMed][CrossRef]
23. Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy MC, Michael I, Fatta-Kassinos D. 2013. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci Total Environ 447:345–360.[PubMed][CrossRef]
24. Zhang C. 2007. Fundamentals of Environmental Sampling and Analysis. John Wiley & Sons, Hoboken, NJ.
25. U.S. EPA. 2005. Uniform Federal Policy for Quality Assurance Project Plans: Evaluating, Assessing, and Documenting Environmental Data Collection and Use Programs—Part 1: UFP-QAPP Manual. EPA-505-B-04-900A. EPA, Washington, DC.
26. U.S. EPA. 2006. Method 1600: Enterococci in water by membrane filtration using membrane-enterococcus indoxyl-beta-D-glucoside agar (mEI). EPA 821-R-02-022. EPA, Washington, DC.
27. U.S. EPA. 2014. Method 1693: Cryptosporidium and Giardia in disinfected wastewater by concentration/IMS/IFA EPA 821-R-14-013. EPA Office of Water. EPA, Washington, DC.
28. U.S. EPA. 1978. Microbiological methods for monitoring the environment. EPA-600/8-78-017. EPA, Washington, DC.
29. Roser D, Skinner J, LeMaitre C, Marshall L, Baldwin J, Billington K, Kotz S, Clarkson K, Ashbolt N. 2002. Automated event sampling for microbiological and related analytes in remote sites: a comprehensive system. Water Sci Technol Water Supply 2:123–130.
30. U.S. EPA. 1982. Handbook for sampling and sample preservation of water and wastewater. EPA-600/4-82-029. EPA, Washington, DC.
31. New England Interstate Water Pollution Control Commission. 2006. The Wastewater Treatment Plant Operators Guide to Biosolids Sampling Plans. http://www.neiwpcc.org/neiwpcc_docs/biosampleguide/biosampleguide_web.pdf last accessed 4/4/2016.
32. Duncan D, Harvey F, Walker M Australian Water Quality Centre. 2007. Regulatory monitoring and testing: water and wastewater sampling. EPA. http://http://www.epa.sa.gov.au/files/8494_guide_wws.pdf last accessed 4/4/2016.
33. American Public Health Association. 1998. Standard Methods for the Examination of Water and Wastewater, 20th ed. American Public Health Association, Washington, DC
34. U.S. EPA. 1993. Methods for microbiological analyses of sewage sludges. EPA, Washington, DC.
35. U.S. EPA Office of Water. 2016. NPDES State Program Information [Internet]. [March 15, 2016]. Available from https://www.epa.gov/npdes/npdes-state-program-information
36. U.S. EPA. 2016. e-CFR: Title 40: Protection of Environment PART 503—STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE [Internet]. Electronic Code of Federal Regulations. Available from: http://www.ecfr.gov/cgi-bin/text-idx?SID=7db152db3d2c1f1cb7951811881c83c8&mc=true&node=sp40.30.503.d&rgn=div6.
37. Yanko WA. 1988. Occurrence of Pathogens in Distribution and Marketing Municipal Sludges EPA/600/S1-87/014. EPA, Washington, DC.
38. Jimenez-Cisneros BE,. 2007. Helminth ova control in wastewater and sludge for agricultural reuse. In Grabow WOK Water and Health. UNESCO, Eolss, Oxford, UK, 429450.
39. Srinivasan S, Aslan A, Xagoraraki I, Alocilja E, Rose JB. 2011. Escherichia coli, enterococci, and Bacteroides thetaiotaomicron qPCR signals through wastewater and septage treatment. Water Res 45:2561–2572.[PubMed][CrossRef]
40. Mayer RE, Bofill-Mas S, Egle L, Reischer GH, Schade M, Fernandez-Cassi X, Fuchs W, Mach RL, Lindner G, Kirschner A, Gaisbauer M, Piringer H, Blaschke AP, Girones R, Zessner M, Sommer R, Farnleitner AH. 2016. Occurrence of human-associated Bacteroidetes genetic source tracking markers in raw and treated wastewater of municipal and domestic origin and comparison to standard and alternative indicators of faecal pollution. Water Res 190:265–276.[CrossRef]
41. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson M-A, Roy SL, Jones JL, Griffin PM. 2011. Foodborne illness acquired in the united states—major pathogens. Emerg Infect Dis 17:715.[PubMed][CrossRef]
42. CDC. 2015. Shigella—Shigellosis [Internet]. [March 15, 2016]. Available from: http://www.cdc.gov/shigella/general-information.html
43. CDC. 2015. E. coli [Internet]. [March 14, 2016]. Available from: http://www.cdc.gov/ecoli/general/index.html
44. Siripong S, Rittmann BE. 2007. Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plants. Water Res 41:1110–1120.[PubMed][CrossRef]
45. Wagner M, Rath G, Koops HP, Flood J, Amann R. 1996. In situ analysis of nitrifying bacteria in sewage treatment plants. Water Sci Technol 34:237–244.[CrossRef]
46. Zhou NA, Lutovsky AC, Andaker GL, Gough HL, Ferguson JF. 2013. Cultivation and characterization of bacterial isolates capable of degrading pharmaceutical and personal care products for improved removal in activated sludge wastewater treatment. Biodegradation 24:813–827.[PubMed][CrossRef]
47. Zhou NA, Kjeldal H, Gough HL, Nielsen JL. 2015. Identification of putative genes involved in bisphenol a degradation using differential protein abundance analysis of Sphingobium sp. BiD32. Environ Sci Technol 49:12232–12241.[CrossRef]
48. Kjeldal H, Zhou NA, Wissenbach DK, von Bergen M, Gough HL, Nielsen JL. 2016. Genomic, proteomic, and metabolite characterization of gemfibrozil-degrading organism Bacillus sp. GeD10. Environ Sci Technol 50:744–755.[CrossRef]
49. Forster S, Snape JR, Lappin-Scott HM, Porter J. 2002. Simultaneous fluorescent gram staining and activity assessment of activated sludge bacteria. Appl Environ Microbiol 68:4772–4779.[PubMed][CrossRef]
50. Rosenberg Goldstein RE, Micallef SA, Gibbs SG, George A, Claye E, Sapkota A, Joseph SW, Sapkota AR. 2014. Detection of vancomycin-resistant enterococci (VRE) at four U.S. wastewater treatment plants that provide effluent for reuse. Sci Total Environ 466–467:404–411.[CrossRef]
51. Zhao D, Huang R, Zeng J, Yu Z, Liu P, Cheng S, Wu QL. 2014. Pyrosequencing analysis of bacterial community and assembly in activated sludge samples from different geographic regions in China. Appl Microbiol Biotechnol 98:9119–9128.[PubMed][CrossRef]
52. Miller TR, Colquhoun DR, Halden RU. 2010. Identification of wastewater bacteria involved in the degradation of triclocarban and its non-chlorinated congener. J Hazard Mater 183:766–772.[PubMed][CrossRef]
53. Ajonina C, Buzie C, Rubiandini RH, Otterpohl R. 2015. Microbial pathogens in wastewater treatment plants (WWTP) in Hamburg. J Toxicol Environ Health-Part -Curr Issues 78:381–387.[CrossRef]
54. U.S. EPA. 1990. Methods for the investigation and prevention of waterborne disease outbreaks. EPA/600/1-90/005a. EPA, Washington, DC
55. Harms G, Layton AC, Dionisi HM, Gregory IR, Garrett VM, Hawkins SA, Robinson KG, Sayler GS. 2003. Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ Sci Technol 37:343–351.[PubMed][CrossRef]
56. van der Waarde JJ, Geurkink B, Henssen M, Heijnen G. 1998. Detection of filamentous and nitrifying bacteria in activated sludge with 16S rRNA probes. Water Sci Technol 37:475–479.[CrossRef]
57. Manz W, Amann R, Ludwig W, Wagner M, Schleifer K-H. 1992. Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. Syst Appl Microbiol 15:593600.[CrossRef]
58. Daims H, Brühl A, Amann R, Schleifer KH, Wagner M. 1999. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444.[PubMed][CrossRef]
59. Loge FJ, Emerick RW, Thompson DE, Nelson DC, Darby JL. 1999. Development of a fluorescent 16S rRNA oligonucleotide probe specific to the family Enterobacteriaceae. Water Environ Res 71:7583.[CrossRef]
60. Moreno Y, Botella S, Alonso JL, Ferrus MA, Hernandez M, Hernandez J. 2003. Specific detection of Arcobacter and Campylobacter strains in water and sewage by PCR and fluorescent in situ hybridization. Appl Environ Microbiol 69:1181–1186.[PubMed][CrossRef]
61. Konuma S, Satoh H, Mino T, Matsuo T. 2001. Comparison of enumeration methods for ammonia-oxidizing bacteria. Water Sci Technol 43:107–114.[PubMed]
62. Moreno Y, Ferrús MA, Alonso JL, Jiménez A, Hernández J. 2003. Use of fluorescent in situ hybridization to evidence the presence of Helicobacter pylori in water. Water Res 37:2251–2256.[PubMed][CrossRef]
63. Lin SD. 1978. Development and evaluation of a 2 step membrane filter method for fecal coliform recovery in chlorinated sewage effluents. Illinois State Water Survey Report of Investigation 87, pp. 114.
64. Levin MA, Fischer JR, Cabelli VJ. 1974. Quantitative large-volume sampling technique. Appl Microbiol 28:515–517.[PubMed]
65. U.S. EPA. 2009. Method 1603: Escherichia coli (E. coli) in water by membrane filtration using modified membrane-thermotolerant Escherichia coli agar (modified mTEC). EPA 821-R-06-011. EPA, Washington, DC.
66. Barrett TJ, Blake PA, Morris GK, Puhr ND, Bradford HB, Wells JG. 1980. Use of Moore swabs for isolating Vibrio cholerae from sewage. J Clin Microbiol 11:385–388.[PubMed]
67. Moore B. 1948. The detection of paratyphoid carriers in towns by means of sewage examination. Mon Bull Minist Health Public Health Lab Serv 7:241248.
68. Moyer NP,. 1996. Isolation and enumeration of aeromonads. In Austin B, Altwegg M, Gosling PJ, Joseph SW (eds.), The Genus Aeromonas John Wiley & Sons, Chichester, UK p. 39.
69. Goossens H, Butzler JP. 1992. Isolation and Identification of Campylobacter spp. Campylobacter jejuni: Current Status and Future Trends. American Society for Microbiology, Washington, DC
70. Jiang L, Yang J, Chen J. 2010. Isolation and characteristics of 17 beta-estradiol-degrading Bacillus spp. strains from activated sludge. Biodegradation 21:729–736.[PubMed][CrossRef]
71. Agidi S, Vedachalam S, Mancl K, Lee J. 2013. Effectiveness of onsite wastewater reuse system in reducing bacterial contaminants measured with human-specific IMS/ATP and qPCR. J Environ Manage 115:167–174.[PubMed][CrossRef]
72. Muller EE, Grabow WOK, Ehlers MM. 2003. Immunomagnetic separation of Escherichia coli O157: H7 from environmental and wastewater in South Africa. Water SA 29:427–432.[CrossRef]
73. Bushon RN, Likirdopulos CA, Brady AMG. 2009. Comparison of immunomagnedic separation/adenosine triphosphate rapid method to traditional culture-based method for E. coli and enterococci enumeration in wastewater. Water Res 43:4940–4946.[PubMed][CrossRef]
74. U.S. EPA. 2001. Method 1601: Male-specific (F+) and Somatic Coliphage in Water by Two-step Enrichment Procedure. EPA 821-R-01-030. EPA Office of Water. EPA, Washington, DC.
75. U.S. EPA. 2000. Method 1602: Male-specific (F+) and Somatic Coliphage in Water by Single Agar Layer (SAL) Procedure. EPA 821-R-01-029. EPA Office of Water. EPA, Washington, DC.
76. Rosario K, Symonds EM, Sinigalliano C, Stewart J, Breitbart M. 2009. Pepper mild mottle virus as an indicator of fecal pollution. Appl Environ Microbiol 75:7261–7267.[PubMed][CrossRef]
77. Kitajima M, Iker BC, Pepper IL, Gerba CP. 2014. Relative abundance and treatment reduction of viruses during wastewater treatment processes—identification of potential viral indicators. Sci Total Environ 1488–489:2906.[CrossRef]
78. Ikner LA, Gerba CP, Bright KR. 2012. Concentration and recovery of viruses from water: a comprehensive review. Food Environ Virol 4:4167.[PubMed][CrossRef]
79. Fagnant CS, Beck NK, Yang M-F, Barnes KS, Boyle DS, Meschke JS. 2014. Development of a novel bag-mediated filtration system for environmental recovery of poliovirus. J Water Health 12:747–754.[PubMed][CrossRef]
80. Liu P, Hill VR, Hahn D, Johnson TB, Pan Y, Jothikumar N, Moe CL. 2012. Hollow-fiber ultrafiltration for simultaneous recovery of viruses, bacteria and parasites from reclaimed water. J Microbiol Meth 88:155–161.[CrossRef]
81. Calgua B, Rodriguez-Manzano J, Hundesa A, Suñen E, Calvo M, Bofill-Mas S, Girones R. 2013. New methods for the concentration of viruses from urban sewage using quantitative PCR. J Virol Meth 187:215–221.[CrossRef]
82. Kiulia NM, Mans J, Mwenda JM, Taylor MB. 2014. Norovirus GII.17 predominates in selected surface water sources in Kenya. Food Environ Virol 6:221231.[PubMed]
83. Soto-Beltran M, Ikner LA, Bright KR. 2013. Effectiveness of poliovirus concentration and recovery from treated wastewater by two electropositive filter methods. Food Environ Virol 5:91–96.[PubMed][CrossRef]
84. Haramoto E, Katayama H. 2013. Application of acidic elution to virus concentration using electropositive filters. Food Environ Virol 5:7780.[PubMed][CrossRef]
85. Mokili JL, Rohwer F, Dutilh BE. 2012. Metagenomics and future perspectives in virus discovery. Curr Opin Virol 2:6377.[PubMed][CrossRef]
86. Aw TG, Howe A, Rose JB. 2014. Metagenomic approaches for direct and cell culture evaluation of the virological quality of wastewater. J Virol Meth 210:1521.[CrossRef]
87. Bibby K, Peccia J. 2013. Identification of viral pathogen diversity in sewage sludge by metagenome analysis. Environ Sci Technol 47:194551.[PubMed][CrossRef]
88. Tamaki H, Zhang R, Angly FE, Nakamura S, Hong P-Y, Yasunaga T, Kamagata Y, Liu W-T. 2012. Metagenomic analysis of DNA viruses in a wastewater treatment plant in tropical climate. Environ Microbiol 14:441–452.[PubMed][CrossRef]
89. Casas V, Rohwer F. 2007. Phage metagenomics. Methods Enzymol 421:259–268.[PubMed][CrossRef]
90. Marshall MM, Naumovitz D, Ortega Y, Sterling CR. 1997. Waterborne protozoan pathogens. Clin Microbiol Rev 10:6785.[PubMed]
91. Izquierdo F, Castro Hermida JA, Fenoy S, Mezo M, González-Warleta M, del Aguila C. 2011. Detection of microsporidia in drinking water, wastewater and recreational rivers. Water Res 45:4837–4843.[PubMed][CrossRef]
92. García A, Goñi P, Clavel A, Lobez S, Fernandez MT, Ormad MP. 2011. Potentially pathogenic free-living amoebae (FLA) isolated in Spanish wastewater treatment plants. Environ Microbiol Rep 3:622–626.[CrossRef]
93. U.S. EPA. 2015. Basic Information: Pathogen Equivalency Committee [Internet]. [March 16, 2016]. Available from: https://www.epa.gov/biosolids/basic-information-pathogen-equivalency-committee#fecal.
94. U.S. EPA. 2005. Method 1623: Cryptosporidium and Giardia in Water by Filtration/IMS/FA. EPA, Washington, DC.
95. Maya C, Jimenez B, Schwartzbrod J. 2006. Comparison of techniques for the detection of helminth ova in drinking water and wastewater. Water Environ Res Res Publ Water Environ Fed 78:118–124.[CrossRef]
96. Ayres RM, Mara DD. 1996. Analysis of Wastewater for Use in Agriculture—A Laboratory Manual of Parasitological and Bacteriological Techniques. World Health Organization, Geneva, Switzerland.
97. Nasser AM, Vaizel-Ohayon D, Aharoni A, Revhun M. 2012. Prevalence and fate of Giardia cysts in wastewater treatment plants. J Appl Microbiol 113:477–484.[PubMed][CrossRef]
98. Guy RA, Payment P, Krull UJ, Horgen PA. 2003. Real-time PCR for quantification of Giardia and Cryptosporidium in environmental water samples and sewage. Appl Environ Microbiol 69:5178–5185.[PubMed][CrossRef]
99. Gyawali P, Sidhu JPS, Ahmed W, Jagals P, Toze S. 2015. Rapid concentration and sensitive detection of hookworm ova from wastewater matrices using a real-time PCR method. Exp Parasitol 159:512.[PubMed][CrossRef]
100. Giangaspero A, Cirillo R, Lacasella V, Lonigro A, Marangi M, Cavallo P, Berrilli F, Di Cave D, Brandonisio O. 2009. Giardia and Cryptosporidium in inflowing water and harvested shellfish in a lagoon in Southern Italy. Parasitol Int 58:12–17.[PubMed][CrossRef]
101. Hsu B-M, Huang C. 2007. IMS method performance analyses for Giardia in water under differing conditions. Environ Monit Assess 131:12934.[PubMed][CrossRef]
102. Bukhari Z, McCuin RM, Fricker CR, Clancy JL. 1998. Immunomagnetic separation of Cryptosporidium parvum from source water samples of various turbidities. Appl Environ Microbiol 64:4495–4499.[PubMed]
103. Nieminski EC, Schaefer FW, Ongerth JE. 1995. Comparison of two methods for detection of Giardia cysts and Cryptosporidium oocysts in water. Appl Environ Microbiol 61:1714–1719.[PubMed]
104. Arrowood MJ, Sterling CR. 1987. Isolation of Cryptosporidium oocysts and sporozoites using discontinuous sucrose and isopycnic Percoll gradients. J Parasitol 73:314–319.[PubMed][CrossRef]
105. Rose JB, Landeen LK, Riley KR, Gerba CP. 1989. Evaluation of immunofluorescence techniques for detection of Cryptosporidium oocysts and Giardia cysts from environmental samples. Appl Environ Microbiol 55:3189–3196.[PubMed]

Tables

Generic image for table
TABLE 1

Standards for Class A and B biosolids (Part 503 Pathogen Density Limits, U.S. EPA, 2003)

Citation: Zhou N, Thompson E, Scott Meschke J. 2016. Microbiological Sampling of Wastewater and Biosolids, p 2.6.4-1-2.6.4-14. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch2.6.4

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error