1887

Chapter 3.1.1 : Current and Developing Methods for the Detection of Microbial Indicators in Environmental Freshwaters and Drinking Waters

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Current and Developing Methods for the Detection of Microbial Indicators in Environmental Freshwaters and Drinking Waters, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch3.1.1-1.gif /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch3.1.1-2.gif

Abstract:

Fecal contamination of freshwaters and drinking waters may result in serious risks to public health that include gastrointestinal and respiratory illnesses, eye and skin infections, many caused by enteric pathogens. The microbiological quality of freshwaters and drinking waters is usually monitored by the detection of traditional indicators that include total and thermotolerant coliforms, Escherichia coli, and Enterococcus spp. Culture methods are usually employed to detect bacterial indicators, but emerging techniques that include the detection of bacteriophages, as well as PCR-based methods amplifying bacterial 16S or 23S rRNA genes also have been developed. Molecular methods targeting indicator bacteria may reduce the time needed to take action to reduce the impact that fecal contamination of freshwaters and drinking waters represent to public health. In freshwaters used for recreation and consumption, identifying the source of the fecal contamination is important in order to reduce or eliminate its impact to pubic health. Microbial Source Tracking (MST) methods have been developed to identify the possible source (e.g. animal vs human) of the fecal contamination and include amplification of nucleic acids of traditional indicator bacteria. While bacterial indicators have successfully been used to protect public health for the last 100 years, and variations on the theme will be in use for decades to come, the target microorganisms would probably need to be revisited, because of the little information we have about their ecology.

Citation: Santiago-Rodriguez T, Kinzelman J, Toranzos G. 2016. Current and Developing Methods for the Detection of Microbial Indicators in Environmental Freshwaters and Drinking Waters, p 3.1.1-1-3.1.1-10. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.1.1
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555818821.ch3.1.1
1. Dufour AP. 1984. Bacterial indicators of recreational water quality. Can J Public Health 75:4956.
2. Harwood VJ, Levine AD, Scott TM, Chivukula V, Lukasik J, Farrah SR, Rose JB. 2005. Validity of the indicator organism paradigm for pathogen reduction in reclaimed water and public health protection. Appl Environ Microbiol 71:31633170.[CrossRef]
3. Savichtcheva O, Okabe S. 2006. Alternative indicators of fecal pollution: relations with pathogens and conventional indicators, current methodologies for direct pathogen monitoring and future application perspectives. Water Res 40:24632476.[CrossRef]
4. Scott TM, Rose JB, Jenkins TM, Farrah SR, Lukasik J. 2002. Microbial source tracking: current methodology and future directions. Appl Environ Microbiol 68:57965803.[CrossRef]
5. Lechevallier MW. 2014. Conducting self-assessments under the revised Total Coliform Rule. J Am Water Works Assoc 106:90102.[CrossRef]
6. de Brauwere A, Ouattara NK, Servais P. 2014. Modeling fecal indicator bacteria concentrations in natural surface waters: a review. Crit Rev Environ Sci Technol 44:23802453.[CrossRef]
7. Golomidova A, Kulikov E, Isaeva A, Manykin A, Letarov A. 2007. The diversity of coliphages and coliforms in horse feces reveals a complex pattern of ecological interactions. Appl Environ Microbiol 73:59755981.[PubMed][CrossRef]
8. Toranzos G, McFeters G, Borrego J, Savill M. 2007. Detection of microorganisms in environmental freshwaters and drinking waters. In Manual of Environmental Microbiology, 3rd ed., ASM Press, Washington, DC, pp. 249264.
9. Beauchamp CJ, Simao-Beaunoir AM, Beaulieu C, Chalifour FP. 2006. Confirmation of E. coli among other thermotolerant coliform bacteria in paper mill effluents, wood chips screening rejects and paper sludges. Water Res 40:24522462.[PubMed][CrossRef]
10. Rivera SC, Hazen TC, Toranzos GA. 1988. Isolation of fecal coliforms from pristine sites in a tropical rain forest. Appl Environ Microbiol 54:513517.[PubMed]
11. Whitman RL, Shively DA, Pawlik H, Nevers MB, Byappanahalli MN. 2003. Occurrence of Escherichia coli and enterococci in Cladophora (Chlorophyta) in nearshore water and beach sand of Lake Michigan. Appl Environ Microbiol 69:47144719.[PubMed][CrossRef]
12. Fong TT, Lipp EK. 2005. Enteric viruses of humans and animals in aquatic environments: health risks, detection, and potential water quality assessment tools. Microbiol Mol Biol Rev 69:357371.[PubMed][CrossRef]
13. Edberg SC, Rice EW, Karlin RJ, Allen MJ. 2000. Escherichia coli: the best biological drinking water indicator for public health protection. Symp Ser Soc Appl Microbiol:106S116S.[PubMed][CrossRef]
14. Olstadt J, Schauer JJ, Standridge J, Kluender S. 2007. A comparison of ten USEPA approved total coliform/E. coli tests. J Water Health 5:267282.[PubMed]
15. Dufour AP, Strickland ER, Cabelli VJ. 1981. Membrane filter method for enumerating Escherichia coli. Appl Environ Microbiol 41:11521158.[PubMed]
16. U.S. EPA. 2002. Method 1603: Escherichia coli (E. coli) in water by membrane filtration using modified membrane-thermotolerant Escherichia coli agar (modified mTEC). U.S. Environmental Protection Agency, Office of Water, Washington, DC.
17. Olson BH. 1978. Enchanced accuracy of coliform testing in seawater by a modification of the most-probable-number method. Appl Environ Microbiol 36:438444.[PubMed]
18. Noble RT, Blackwood AD, Griffith JF, McGee CD, Weisberg SB. 2010. Comparison of rapid quantitative PCR-based and conventional culture-based methods for enumeration of Enterococcus spp. and Escherichia coli in recreational waters. Appl Environ Microbiol 76:74377443.[PubMed][CrossRef]
19. Chern EC, Siefring S, Paar J, Doolittle M, Haugland RA. 2011. Comparison of quantitative PCR assays for Escherichia coli targeting ribosomal RNA and single copy genes. Lett Appl Microbiol 52:298306.[PubMed][CrossRef]
20. Wheeler AL, Hartel PG, Godfrey DG, Hill JL, Segars WI. 2002. Potential of Enterococcus faecalis as a human fecal indicator for microbial source tracking. J Environ Qual 31:12861293.[PubMed][CrossRef]
21. Bonilla N, Santiago T, Marcos P, Urdaneta M, Domingo JS, Toranzos GA. 2010. Enterophages, a group of phages infecting Enterococcus faecalis, and their potential as alternate indicators of human faecal contamination. Water Sci Technol 61:293300.[PubMed][CrossRef]
22. U.S. EPA. 2002. Method 1600: Enterococci in water by membrane filtration using membrane-Enterococcus indoxyl-B-d-glucoside agar (mEI). U.S. Environmental Protection Agency, Washington, DC.
23. Chen C, Doherty K, Gu H, Dichter G, Naqui A. 1995. Enterolert—A Rapid method for the detection of Enterococcus spp. Idexx Laboratories, Westbrook, ME.
24. U.S. EPA. 2012. Recreational water quality criteria. U.S. Environmental Protection Agency, Washinton, DC.
25. U.S. EPA. 2012. Method 1611: Enterococci in water by Taqman quantitative polymerase chain reaction (qPCR) assay. U.S. Environmental Protection AgencyOffice of Water, Washington, DC.
26. U.S. EPA. 2013. Acceptability of the EPA qPCR test at your beach. U.S. Environmental Protection Agency, Office of Water, Washington, DC.
27. Ogilvie LA, Caplin J, Dedi C, Diston D, Cheek E, Bowler L, Taylor H, Ebdon J, Jones BV. 2012. Comparative (meta)genomic analysis and ecological profiling of human gut-specific bacteriophage phiB124–14. PLoS One 7:e35053.[PubMed][CrossRef]
28. Yahya M, Hmaied F, Jebri S, Jofre J, Hamdi M. 2015. Bacteriophages as indicators of human and animal faecal contamination in raw and treated wastewaters from Tunisia. J App Microbiol 118:12171225.[CrossRef]
29. Havelaar AH, Nieuwstad TJ. 1985. Bacteriophages and fecal bacteria as indicators of chlorination efficiency of biologically treated waste-water. J Water Poll Cont Fed 57:10841088.
30. Armon R, Kott Y. 1996. Bacteriophages as indicators of pollution. Crit R EnvironSci Techn 26:299335.[CrossRef]
31. Tartera C, Lucena F, Jofre J. 1989. Human origin of Bacteroides fragilis bacteriophages present in the environment. Appl Environ Microbiol 55:26962701.[PubMed]
32. Tartera C, Jofre J. 1987. Bacteriophages active against Bacteroides fragilis in sewage-polluted waters. Appl Environ Microbiol 53:16321637.[PubMed]
33. Lucena F, Muniesa M, Puig A, Araujo R, Jofre J. 1995. Simple concentration method for bacteriophages of Bacteroides fragilis in drinking water. J Virol Meth 54:121130.[CrossRef]
34. Jofre J, Olle E, Ribas F, Vidal A, Lucena F. 1995. Potential usefulness of bacteriophages that infect Bacteroides fragilis as model organisms for monitoring virus removal in drinking water treatment plants. Appl Environ Microbiol 61:32273231.[PubMed]
35. Gantzer C, Henny J, Schwartzbrod L. 2002. Bacteroides fragilis and Escherichia coli bacteriophages in human faeces. Int J Hyg Environ Health 205:325328.[PubMed][CrossRef]
36. Ebdon JE, Sellwood J, Shore J, Taylor HD. 2012. Phages of Bacteroides (GB-124): a novel tool for viral waterborne disease control? Environ Sci Technol 46:11631169.[PubMed][CrossRef]
37. Payan A, Ebdon J, Taylor H, Gantzer C, Ottoson J, Papageorgiou GT, Blanch AR, Lucena F, Jofre J, Muniesa M. 2005. Method for isolation of Bacteroides bacteriophage host strains suitable for tracking sources of fecal pollution in water. Appl Environ Microbiol 71:56595662.[PubMed][CrossRef]
38. Salter RS, Durbin GW. 2012. Modified USEPA Method 1601 to Indicate Viral Contamination of Groundwater (PDF). J Am Water Works Assoc 104:E480E488.[CrossRef]
39. Havelaar AH, Hogeboom WM. 1984. A method for the enumeration of male-specific bacteriophages in sewage. J Appl Bacteriol 56:439447.[PubMed][CrossRef]
40. Hernández-Delgado E, Sierra M, Toranzos G. 1991. Coliphages as alternate indicators of fecal contamination in tropical waters. Environ ToxicolWater Qual 6:131143.[CrossRef]
41. Gantzer C, Maul A, Audic JM, Schwartzbrod L. 1998. Detection of infectious enteroviruses, enterovirus genomes, somatic coliphages, and Bacteroides fragilis phages in treated wastewater. Appl Environ Microbiol 64:43074312.[PubMed]
42. Long SC, El-Khoury SS, Oudejans SJ, Sobsey MD, Vinjé J. 2005. Assessment of sources and diversity of male-specific coliphages for source tracking. Environ Engineer Sci 22:367377.[CrossRef]
43. Havelaar AH, Furuse K, Hogeboom WM. 1986. Bacteriophages and indicator bacteria in human and animal faeces. J Appl Bacteriol 60:255262.[PubMed][CrossRef]
44. Cole D, Long SC, Sobsey MD. 2003. Evaluation of F + RNA and DNA coliphages as source-specific indicators of fecal contamination in surface waters. Appl Environ Microbiol 69:65076514.[PubMed][CrossRef]
45. Allwood PB, Malik YS, Maherchandani S, Vought K, Johnson LA, Braymen C, Hedberg CW, Goyal SM. 2004. Occurrence of Escherichia coli, noroviruses, and F-specific coliphages in fresh market-ready produce. J Food Prot 67:23872390.[PubMed]
46. Santiago-Rodriguez TM, Davila C, Gonzalez J, Bonilla N, Marcos P, Urdaneta M, Cadete M, Monteiro S, Santos R, Domingo JS, Toranzos GA. 2010. Characterization of Enterococcus faecalis-infecting phages (enterophages) as markers of human fecal pollution in recreational waters. Water Res 44:47164725.[PubMed][CrossRef]
47. Santiago-Rodriguez TM, Tremblay RL, Toledo-Hernandez C, Gonzalez-Nieves JE, Ryu H, Santo Domingo JW, Toranzos GA. 2012. Microbial quality of tropical inland waters and effects of rainfall events. Appl Environ Microbiol 78:51605169.[PubMed][CrossRef]
48. Santiago-Rodriguez TM, Marcos P, Monteiro S, Urdaneta M, Santos R, Toranzos GA. 2013. Evaluation of Enterococcus-infecting phages as indices of fecal pollution. J Water Health 11:5163.[PubMed][CrossRef]
49. LeChevallier MW, McFeters GA. 1985. Interactions between heterotrophic plate count bacteria and coliform organisms. Appl Environ Microbiol 49:13381341.[PubMed]
50. Bartram J, Cotruvo J, Exner M, Fricker C, Glasmacher A. 2004. Heterotrophic plate count measurement in drinking water safety management: report of an Expert Meeting Geneva, 24–25 April 2002. Int J Food Microbiol 92:241247.[PubMed][CrossRef]
51. Bisson JW, Cabelli VJ. 1980. Clostridium perfringens as a water pollution indicator. J Water Pollut Control Fed 52:241248.[PubMed]
52. Sorensen DL, Eberl SG, Dicksa RA. 1989. Clostridium perfringens as a point source indicator in non-point polluted streams. Water Res 23:191197.[CrossRef]
53. Manja KS, Maurya MS, Rao KM. 1982. A simple field test for the detection of faecal pollution in drinking water. Bull World Health Organ 60:797801.[PubMed]
54. McMahan L, Grunden AM, Devine AA, Sobsey MD. 2012. Evaluation of a quantitative H2S MPN test for fecal microbes analysis of water using biochemical and molecular identification. Water Res 46:16931704.[PubMed][CrossRef]
55. van der Mee-Marquet N, Domelier AS, Arnault L, Bloc D, Laudat P, Hartemann P, Quentin R. 2006. Legionella anisa, a possible indicator of water contamination by Legionella pneumophila. J Clin Microbiol 44:5659.[PubMed][CrossRef]
56. Pruss A. 1998. Review of epidemiological studies on health effects from exposure to recreational water. Int J Epidemiol 27:19.[PubMed][CrossRef]
57. Bucklin KE, Mcfeters GA, Amirtharajah A. 1991. Penetration of coliforms through municipal drinking-water filters. Water Res 25:10131017.[CrossRef]
58. Canada HaW. 1992. Guidelines for Canadian drinking water quality. Canadian Goverment Publishing Centre, Ottawa, Canada.
59. Canada HaW. 1993. Guidelines for Canadian drinking water quality. Canadian Government Publishing Centre, Ottawa, Canada.
60. Rheinheimer G, Walker N. 1992. Aquatic Microbiology. Wiley, New York.
61. Mujeriego R, Bravo J, Feliu M. 1982. Recreation in coastal waters: public health implications. Vièmes J Etud Poll:585594.
62. Fleisher JM, Fleming LE, Solo-Gabriele HM, Kish JK, Sinigalliano CD, Plano L, Elmir SM, Wang JD, Withum K, Shibata T. 2010. The BEACHES Study: health effects and exposures from non-point source microbial contaminants in subtropical recreational marine waters. Int J Epidemiol 39:12911298.[PubMed][CrossRef]
63. Morinigo MA, Córnax R, Muñoz MA, Romero P, Borrego JJ. 1990. Relationships between Salmonella spp and indicator microorganisms in polluted natural waters. Water Res 24:117120.[CrossRef]
64. Polo F, Figueras MJ, Inza I, Sala J, Fleisher JM, Guarro J. 1999. Prevalence of Salmonella serotypes in environmental waters and their relationships with indicator organisms. Antonie Van Leeuwenhoek 75:285292.[PubMed][CrossRef]
65. Ottoson J, Stenstrom TA. 2003. Faecal contamination of greywater and associated microbial risks. Water Res 37:645655.[PubMed][CrossRef]
66. Hellein KN, Battie C, Tauchman E, Lund D, Oyarzabal OA, Lepo JE. 2011. Culture-based indicators of fecal contamination and molecular microbial indicators rarely correlate with Campylobacter spp. in recreational waters. J Water Health 9:695707.[PubMed][CrossRef]
67. Wu J, Long SC, Das D, Dorner SM. 2011. Are microbial indicators and pathogens correlated? A statistical analysis of 40 years of research. J Water Health 9:265278.[PubMed][CrossRef]
68. Payment P, Locas A. 2011. Pathogens in water: value and limits of correlation with microbial indicators. Ground Water 49:411.[PubMed][CrossRef]
69. Lipp EK, Kurz R, Vincent R, Rodriguez-Palacios C, Farrah SR, Rose JB. 2001. The effects of seasonal variability and weather on microbial fecal pollution and enteric pathogens in a subtropical estuary. Estuaries 24:266276.[CrossRef]
70. Sinton L, Hall C, Braithwaite R. 2007. Sunlight inactivation of Campylobacter jejuni and Salmonella enterica, compared with Escherichia coli, in seawater and river water. J Water Health 5:357365.[PubMed][CrossRef]
71. Bonilla TD, Nowosielski K, Cuvelier M, Hartz A, Green M, Esiobu N, McCorquodale DS, Fleisher JM, Rogerson A. 2007. Prevalence and distribution of fecal indicator organisms in South Florida beach sand and preliminary assessment of health effects associated with beach sand exposure. Mar Pollut Bull 54:14721482.[PubMed][CrossRef]
72. Goyal SM, Gerba CP, Melnick JL. 1977. Occurrence and distribution of bacterial indicators and pathogens in canal communities along the Texas coast. Appl Environ Microbiol 34:139149.[PubMed]
73. Shehane SD, Harwood VJ, Whitlock JE, Rose JB. 2005. The influence of rainfall on the incidence of microbial faecal indicators and the dominant sources of faecal pollution in a Florida river. J Appl Microbiol 98:11271136.[PubMed][CrossRef]
74. Gourmelon M, Caprais MP, Mieszkin S, Marti R, Wery N, Jarde E, Derrien M, Jadas-Hecart A, Communal PY, Jaffrezic A, Pourcher AM. 2010. Development of microbial and chemical MST tools to identify the origin of the faecal pollution in bathing and shellfish harvesting waters in France. Water Res 44:48124824.[PubMed][CrossRef]
75. Edge TA, Hill S. 2005. Occurrence of antibiotic resistance in Escherichia coli from surface waters and fecal pollution sources near Hamilton, Ontario. Can J Microbiol 51:501505.[PubMed][CrossRef]
76. Wade TJ, Sams E, Brenner KP, Haugland R, Chern E, Beach M, Wymer L, Rankin CC, Love D, Li Q, Noble R, Dufour AP. 2010. Rapidly measured indicators of recreational water quality and swimming-associated illness at marine beaches: a prospective cohort study. Environ Health 9:66.[PubMed][CrossRef]
77. Boehm AB, Fuhrman JA, Mrse RD, Grant SB. 2003. Tiered approach for identification of a human fecal pollution source at a recreational beach: case study at Avalon Bay, Catalina Island, California. Environ Sci Technol 37:673680.[PubMed][CrossRef]
78. Shibata T, Solo-Gabriele HM, Sinigalliano CD, Gidley ML, Plano LR, Fleisher JM, Wang JD, Elmir SM, He G, Wright ME, Abdelzaher AM, Ortega C, Wanless D, Garza AC, Kish J, Scott T, Hollenbeck J, Backer LC, Fleming LE. 2010. Evaluation of conventional and alternative monitoring methods for a recreational marine beach with nonpoint source of fecal contamination. Environ Sci Technol 44:81758181.[PubMed][CrossRef]
79. Oliver DM, Hanley ND, van Niekerk M, Kay D, Heathwaite AL, Rabinovici SJM, Kinzelman JL, Fleming LE, Porter J, Shaikh S, Fish R, Chilton S, Hewitt J, Connolly E, Cummins A, Glenk K, McPhail C, McRory E, McVittie A, Giles A, Roberts S, Simpson K, Tinch D, Thairs T, Avery LM, Vinten AJA, Watts BD, Quilliam RS. 2015. Molecular tools for bathing water assessment in Europe: Balancing social science research with a rapidly developing environmental science evidence-base. Ambio: 111.
80. Giebel R, Worden C, Rust SM, Kleinheinz GT, Robbins M, Sandrin TR. 2010. Microbial fingerprinting using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) applications and challenges. Adv Appl Microbiol 71:149184.[PubMed][CrossRef]
81. Kinzelman J, McLellan SL, Daniels AD, Cashin S, Singh A, Gradus S, Bagley R. 2004. Non-point source pollution: determination of replication versus persistence of Escherichia coli in surface water and sediments with correlation of levels to readily measurable environmental parameters. J Water Health 2:103114.[PubMed]
82. Olivas Y, Faulkner BR. 2008. Fecal source tracking by antibiotic resistance analysis on a watershed exhibiting low resistance. Environ Monit Assess 139:1525.[PubMed][CrossRef]
83. Lu Z, Lapen D, Scott A, Dang A, Topp E. 2005. Identifying host sources of fecal pollution: diversity of Escherichia coli in confined dairy and swine production systems. Appl Environ Microbiol 71:59925998.[PubMed][CrossRef]
84. Stewart-Pullaro J, Daugomah JW, Chestnut DE, Graves DA, Sobsey MD, Scott GI. 2006. F + RNA coliphage typing for microbial source tracking in surface waters. J Appl Microbiol 101:10151026.[PubMed][CrossRef]
85. Okabe S, Okayama N, Savichtcheva O, Ito T. 2007. Quantification of host-specific Bacteroides-Prevotella 16S rRNA genetic markers for assessment of fecal pollution in freshwater. Appl Microbiol Biotechnol 74:890901.[PubMed][CrossRef]
86. Oberste MS, Maher K, Williams AJ, Dybdahl-Sissoko N, Brown BA, Gookin MS, Penaranda S, Mishrik N, Uddin M, Pallansch MA. 2006. Species-specific RT-PCR amplification of human enteroviruses: a tool for rapid species identification of uncharacterized enteroviruses. J Gen Virol 87:119128.[PubMed][CrossRef]
87. Jiang S, Noble R, Chu W. 2001. Human adenoviruses and coliphages in urban runoff-impacted coastal waters of Southern California. Appl Environ Microbiol 67:179184.[PubMed][CrossRef]
88. Zoetendal EG, Akkermans AD, De Vos WM. 1998. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64:38543859.[PubMed]
89. Love DC, Sobsey MD. 2007. Simple and rapid F+ coliphage culture, latex agglutination, and typing assay to detect and source track fecal contamination. Appl Environ Microbiol 73:41104118.[PubMed][CrossRef]
90. Lee JE, Lee H, Cho YH, Hur HG, Ko G. 2011. F+ RNA coliphage-based microbial source tracking in water resources of South Korea. Sci Total Environ 412–413:127131.[CrossRef]
91. Payment P, Franco E. 1993. Clostridium perfringens and somatic coliphages as indicators of the efficiency of drinking water treatment for viruses and protozoan cysts. Appl Environ Microbiol 59:24182424.[PubMed]
92. Gomez-Donate M, Payan A, Cortes I, Blanch AR, Lucena F, Jofre J, Muniesa M. 2011. Isolation of bacteriophage host strains of Bacteroides species suitable for tracking sources of animal faecal pollution in water. Environ Microbiol 13:16221631.[PubMed][CrossRef]
93. Kirs M, Smith DC. 2007. Multiplex quantitative real-time reverse transcriptase PCR for F+-specific RNA coliphages: a method for use in microbial source tracking. Appl Environ Microbiol 73:808814.[PubMed][CrossRef]
94. Smith DC. 2006. Microbial source tracking using F-specific coliphages and quantitative PCR. Doctoral dissertation, University of Rhode Island.
95. Griffin DW, Gibson CJIII, Lipp EK, Riley K, Paul JHIII, Rose JB. 1999. Detection of viral pathogens by reverse transcriptase PCR and of microbial indicators by standard methods in the canals of the Florida Keys. Appl Environ Microbiol 65:41184125.[PubMed]
96. Bernhard AE, Field KG. 2000. A PCR assay to discriminate human and ruminant feces on the basis of host differences in Bacteroides-Prevotella genes encoding 16S rRNA. Appl Environ Microbiol 66:45714574.[PubMed][CrossRef]
97. Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, Wagendorp AA, Klijn N, Bindels JG, Welling GW. 2000. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 30:6167.[PubMed][CrossRef]
98. Gawler AH, Beecher JE, Brandao J, Carroll NM, Falcao L, Gourmelon M, Masterson B, Nunes B, Porter J, Rince A, Rodrigues R, Thorp M, Walters JM, Meijer WG. 2007. Validation of host-specific Bacteriodales 16S rRNA genes as markers to determine the origin of faecal pollution in Atlantic Rim countries of the European Union. Water Res 41:37803784.[PubMed][CrossRef]
99. Lee DY, Weir SC, Lee H, Trevors JT. 2010. Quantitative identification of fecal water pollution sources by TaqMan real-time PCR assays using Bacteroidales 16S rRNA genetic markers. Appl Microbiol Biotechnol 88:13731383.[PubMed][CrossRef]
100. Ahmed W, Sidhu JP, Toze S. 2012. Evaluation of the nifH gene marker of Methanobrevibacter smithii for the detection of sewage pollution in environmental waters in Southeast Queensland, Australia. Environ Sci Technol 46:543550.[PubMed][CrossRef]
101. Bauer L, Alm E. 2012. Escherichia coli toxin and attachment genes in sand at Great Lakes recreational beaches. J Great Lakes Res 38:129133.[CrossRef]
102. Dick LK, Field KG. 2004. Rapid estimation of numbers of fecal Bacteroidetes by use of a quantitative PCR assay for 16S rRNA genes. Appl Environ Microbiol 70:56955697.[PubMed][CrossRef]
103. Green HC, Dick LK, Gilpin B, Samadpour M, Field KG. 2012. Genetic markers for rapid PCR-based identification of gull, Canada goose, duck, and chicken fecal contamination in water. Appl Environ Microbiol 78:503510.[PubMed][CrossRef]
104. Bae S, Wuertz S. 2009. Rapid decay of host-specific fecal Bacteroidales cells in seawater as measured by quantitative PCR with propidium monoazide. Water Res 43:48504859.[PubMed][CrossRef]
105. Opel KL, Chung D, McCord BR. 2010. A study of PCR inhibition mechanisms using real time PCR. J Forensic Sci 55:2533.[PubMed][CrossRef]
106. Shanks OC, Sivaganesan M, Peed L, Kelty CA, Blackwood AD, Greene MR, Noble RT, Bushon RN, Stelzer EA, Kinzelman J, Anan'eva T, Sinigalliano C, Wanless D, Griffith J, Cao Y, Weisberg S, Harwood VJ, Staley C, Oshima KH, Varma M, Haugland RA. 2012. Interlaboratory comparison of real-time PCR protocols for quantification of general fecal indicator bacteria. Environ Sci Technol 46:945953.[PubMed][CrossRef]
107. Hata A, Katayama H, Kitajima M, Visvanathan C, Nol C, Furumai H. 2011. Validation of internal controls for extraction and amplification of nucleic acids from enteric viruses in water samples. Appl Environ Microbiol 77:43364343.[PubMed][CrossRef]
108. Kinzelman JL, Bushon RN, Dorevitch S, Noble RT. 2011. Comparative evaluation of molecular and culture methods for fecal indicator bacteria for use in inland recreational waters. International Water Association. WERF Report PATH7R09.
109. Srinivasan S, Aslan A, Xagoraraki I, Alocilja E, Rose JB. 2011. Escherichia coli, enterococci, and Bacteroides thetaiotaomicron qPCR signals through wastewater and septage treatment. Water Res 45:25612572.[PubMed][CrossRef]

Tables

Generic image for table
Table 1.

Host specificity of different groups of F + RNA coliphages (modified from ( ))

Citation: Santiago-Rodriguez T, Kinzelman J, Toranzos G. 2016. Current and Developing Methods for the Detection of Microbial Indicators in Environmental Freshwaters and Drinking Waters, p 3.1.1-1-3.1.1-10. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.1.1
Generic image for table
Table 2.

Bacteriological drinking water and recreational freshwater standards or guidelines

Citation: Santiago-Rodriguez T, Kinzelman J, Toranzos G. 2016. Current and Developing Methods for the Detection of Microbial Indicators in Environmental Freshwaters and Drinking Waters, p 3.1.1-1-3.1.1-10. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.1.1

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error