1887

Chapter 3.1.2 : Best Practices for Cyanobacterial Harmful Algal Bloom Monitoring

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Best Practices for Cyanobacterial Harmful Algal Bloom Monitoring, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch3.1.2-1.gif /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch3.1.2-2.gif

Abstract:

Cyanobacterial harmful algal blooms (CyanoHABs) are an increasingly prevalent phenomenon in lakes, rivers, reservoirs, estuaries and coastal regions around the globe. These organisms produce a variety of bioactive secondary metabolites that are of public health concern. Because there is no broadly accepted protocol for monitoring and managing these organisms, the focus of this chapter is to outline all necessary information to develop a CyanoHAB monitoring strategy. Topics covered include: 1) sampling methodology and frequency; 2) sample processing and storage; 3) microscopy identification and enumeration; 4) toxin analysis by ELISA, HPLC and LC/MS; 5) DNA analysis by PCR/QPCR; 6) interpretation of the data and establishment of a monitoring plan.

Citation: Otten T, Paerl H. 2016. Best Practices for Cyanobacterial Harmful Algal Bloom Monitoring, p 3.1.2-1-3.1.2-12. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.1.2
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Photographs of cyanobacterial blooms from around the world: (a) bloom in Lake Taihu, China; (b) bloom in Lake Erie, USA; (c) bloom in Lake Atitlán, Guatamala; (d) , , and in the Baltic Sea–Gulf of Finland; (e) bloom in Lake Dianchi, China; (f and g) blooms in Lake Taihu, China; (h) unidentified cyanobacterial bloom in Taivallahti Bay (Baltic Sea), Finland; (i) bloom in the Neuse River, NC (USA); (j) unidentified cyanobacterial bloom in St. John's River, FL (USA); (k) bloom in Gulf of Finland (Baltic Sea); (l) bloom in Sanibel Inlet (Gulf of Mexico) FL (USA). Adapted from ( ). doi:10.1128/9781555818821.ch3.1.2.f1

Citation: Otten T, Paerl H. 2016. Best Practices for Cyanobacterial Harmful Algal Bloom Monitoring, p 3.1.2-1-3.1.2-12. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.1.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Recommended guidelines for estimating public health risks from recreational exposure to cyanobacteria-impacted waters. Once an advisory is issued, samples should be collected weekly until 2 weeks have passed and both the cell concentrations or qPCR gene equivalents toxin concentrations are below the action level. Potentially toxigenic cyanobacteria and their relevant toxins are listed in Table 1 . doi:10.1128/9781555818821.ch3.1.2.f2

Citation: Otten T, Paerl H. 2016. Best Practices for Cyanobacterial Harmful Algal Bloom Monitoring, p 3.1.2-1-3.1.2-12. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.1.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Microcystin concentrations observed in 2007 EPA National Lakes Assessment for sites containing the two most prolific microcystin producing genera; sp. and sp. and each lake's relative trophic status. The trend line represents maximum expected microcystin concentrations (0.2 pg/cell) relative to cyanobacterial cell concentration based on World Health Organization guidelines ( ), horizontal lines denote recreational and drinking water maximum contaminant levels (MCL) recommended by WHO. Note that as lake trophic status increases, cyanobacterial biomass, microcystins, and the percent likelihood of exceeding the MCL also increase. doi:10.1128/9781555818821.ch3.1.2.f3

Citation: Otten T, Paerl H. 2016. Best Practices for Cyanobacterial Harmful Algal Bloom Monitoring, p 3.1.2-1-3.1.2-12. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.1.2
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818821.ch3.1.2
1. Schirrmeister BE, de Vos JM, Antonelli A, Bagheri HC. 2013. Evolution of multicellularity coincided with increased diversification of cyanobacteria and the great oxidation event. Proc Natl Acad Sci 110:17911796.[PubMed][CrossRef]
2. Lyons TW, Reinhard CT. 2011. Earth science: sea change for the rise of oxygen. Nature 478:194195.[PubMed][CrossRef]
3. Paerl HW, Otten TG. 2013. Harmful cyanobacterial blooms: causes, consequences, and controls. Microbial Ecol 65:9951010.[CrossRef]
4. Shih PM, Wu D, Latifi A, Axen SD, Fewer DP, Talla E, Calteau A, Cai F, Tandeau de Marsac N, Rippka R, Herdman M, Sivonen K, Coursin T, Laurent T, Goodwin L, Nolan M, Davenport KW, Han CS, Rubin EM, Eisen JA, Woyke T, Gugger M, Kerfeld CA. 2013. Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc Natl Acad Sci 110:10531058.[PubMed][CrossRef]
5. Humbert J-F, Barbe V, Latifi A, Gugger M, Calteau A, Coursin T, Lajus A, Castelli V, Oztas S, Samson G, Longin C, Medigue C, Tandeau de Marsac N. 2013. A tribute to disorder in the genome of the bloom-forming freshwater cyanobacterium Microcystis aeruginosa. PLoS One 8(8):e70747.[PubMed][CrossRef]
6. Rankin KA, Alroy KA, Kudela RM, Oates SC, Murray MJ, Miller MA. 2013. Treatment of cyanobacterial (Microcystin) toxicosis using oral cholestyramine: case report of a dog from Montana. Toxins 5:10511063.[PubMed][CrossRef]
7. Chorus I, Bartram J,. 1999. Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management, In Chorus I,, Bartram J (eds), Toxic Cyanobacteria in Water. E & FN Spon on Behalf of the World Health Organisation, London.
8. Chiswell RK, Shaw GR, Eaglesham G, Smith MJ, Norris RL, Seawright AA, Moore MR. 1999. Stability of cylindrospermopsin, the toxin from the cyanobacterium, Cylindrospermopsis raciborskii: effect of pH, temperature, and sunlight on decomposition. Environ Toxicol 14:155161.[CrossRef]
9. Edwards C, Graham D, Fowler N, Lawton LA. 2008. Biodegradation of microcystins and nodularin in freshwaters. Chemosphere 73:13151321.[PubMed][CrossRef]
10. Kayal N, Newcombe G, Ho L. 2008. Investigating the fate of saxitoxins in biologically active water treatment plant filters. Environ Toxicol 23:751755.[PubMed][CrossRef]
11. Kaminski A, Bober B, Lechowski Z, Bialczyk J. 2013. Determination of anatoxin-a stability under certain abiotic factors. Harmful Algae 28:8387.[CrossRef]
12. Burch MD,. 2008. Effective doses, guidelines & regulations. Proceedings of the Interagency, International Symposium on Cyanobacterial Harmful Algal Blooms (ISOC_HAB), p. 831853. In Hudnell HK (ed), State of the science and research needs, Springer, New York.
13. Reynolds CS, Oliver RL, Walsby AE. 1987. Cyanobacterial dominance: the role of buoyancy regulation in dynamic lake environments. N Z J Mar Freshwater Res 21:379390.[CrossRef]
14. Kromkamp JC, Mur LR. 1984. Buoyant density changes in the cyanobacterium Microcystis aeruginosa due to changes in the cellular carbohydrate content. FEMS Microbiol Lett 25:105109.[CrossRef]
15. Visser PM, Passarge J, Mur LR. 1999. Modelling vertical migration of the cyanobacterium Microcystis. Hydrobiologia 349:99109.[CrossRef]
16. Walsby AE. 1994. Gas vesicles. Microbiol Rev 58:94144.[PubMed]
17. Utermöhl H. 1958. Zur Vervollkommnung der quantitative Phytoplankton-Methodik Mitt int Verein theor angew. Limnol 5:567596.
18. Box JD. 1981. Enumeration of cell concentrations in suspensions of colonial freshwater microalgae, with particular reference to Microcystis aeruginosa. Brit Phycol J 16:153164.[CrossRef]
19. Laslett GM, Clarke RM, Jones GJ. 1997. Estimating the precision of filamentous blue-green algae cell concentration from a single sample. Environmetrics 8:313339.[CrossRef]
20. Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T. 1999. Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403424.[CrossRef]
21. Loftin KA, Meyer MT, Rubio F, Kamp L, Humpries E, Whereat E. 2008. Comparison of Two Cell Lysis Procedures for Recovery of Microcystins in Water Samples from Silver Lake in Dover, Delaware, with Microcystin Producing Cyanobacterial Accumulations. U.S. Geological Survey, Reston, VA.
22. Kim IS, Nguyen GH, Kim S, Lee J, Yu H-W. 2009. Evaluation of methods for cyanobacterial cell lysis and toxin (microcystin-LR) extraction using chromatographic and mass spectrophotometric analyses. Environ Eng Res 14:250254.[CrossRef]
23. Purdie EL, Young FM, Menzel D, Codd GA. 2009. A method for acetonitrile-free microcystin analysis and purification by high-performance liquid chromatography, using methanol as mobile phase. Toxicon 54:887890.[PubMed][CrossRef]
24. Meriluoto J, Codd GA (eds). 2005. Toxic: Cyanobacterial Monitoring and Cyanotoxin Analysis. Abo Akademi University Press, Abo, Finland.
25. Yen HK, Lin TF, Liao PC. 2011. Simultaneous detection of nine cyanotoxins in drinking water using dual solid-phase extraction and liquid chromatography-mass spectrometery. Toxicon 58:209218.[PubMed][CrossRef]
26. Stüken A, Jakobsen KS. 2010. The cylindrospermopsin gene cluster of Aphanizomenon sp. strain 10E6: organization and recombination. Microbiology 156:24382451.[CrossRef]
27. Ho L, Sawade E, Newcombe G. 2012. Biological treatment options for cyanobacteria metabolite removal—a review. Water Res 45:15361548.[CrossRef]
28. Puddick J, Prinsep MR, Wood SA, Miles CO, Rise F, Cary SC, Hamilton DP, Wilkins L. 2013. Structural characterization of new microcystins containing tryptophan and oxidized tryptophan residues. Mar Drugs 11:30253045.[PubMed][CrossRef]
29. Zilliges Y, Kehr J-C, Meissner S, Ishida K, Mikkat S, Hagemann M, Kaplan A, Börner T, Dittmann E. 2011. The cyanobacterial hepatotoxin microcystin binds to proteins and increases the fitness of microcystis under oxidative stress conditions. PLoS One 6(3):e17615.[PubMed][CrossRef]
30. Meissner S, Fastner J, Dittmann E. 2013. Microcystin production revisited: conjugate formation makes a major contribution. Environ Microbiol 15:18101820.[PubMed][CrossRef]
31. Lyck S. 2004. Simultaneous changes in cell quotas of microcystin, chlorophyll a, protein and carbohydrate during different growth phases of a batch culture experiment with Microcystis aeruginosa. J Plankton Res 26:727736.[CrossRef]
32. Otten TG, Xu H, Qin B, Zhu G, Paerl HW. 2012. Spatiotemporal patterns and ecophysiology of toxigenic Microcystis blooms in Lake Taihu, China: implications for water quality management. Environ Sci Technol 46:34803488.[PubMed][CrossRef]
33. Tillett D, Neilan BA. 2000. Xanthogenate nucleic acid isolation from cultured and environmental cyanobacteria. J Phycol 36:251258.[CrossRef]
34. Janse I, Meima M, Kardinaal WEA, Zwart G. 2003. High-resolution differentiation of cyanobacteria by using rRNA-internal transcribed spacer denaturing gradient gel electrophoresis. Appl Environ Microbiol 69:66346643.[PubMed][CrossRef]
35. Otten TG, Paerl HW. 2011. Phylogenetic inference of colony isolates comprising seasonal Microcystis blooms in lake Taihu, China. Microbial Ecol 62:907918.[CrossRef]
36. Klappenbach JA, Saxman PR, Cole JR, Schmidt TM. 2001. rrndb: the ribosomal RNA operon copy number database. Nucleic Acids Res 29:181184.[PubMed][CrossRef]
37. Schirrmeister BE, Dalquen DA, Anisimova M, Bagheri HC. 2012. Gene copy number variation and its significance in cyanobacterial phylogeny. BMC Microbiol 12:177.[PubMed][CrossRef]
38. Neilan BA, Jacobs D, Goodman AE. 1995. Genetic diversity and phylogeny of toxic cyanobacteria determined by DNA polymorphisms within the phycocyanin locus. Appl Environ Microbiol 61:38753883.[PubMed]
39. Schrader C, Schielke A, Ellerbroek L, Johne R. 2012. PCR inhibitors—occurrence, properties and removal. J Appl Microbiol 113:10141026.[PubMed][CrossRef]
40. Haughland RA, Siefring SC, Wymer LJ, Brenner KP, Dufour AP. 2005. Comparison of Enterococcus measurements in freshwater at two recreational beaches by quantitative polymerase chain reaction and membrane filter culture analysis. Water Res 39:559568.[CrossRef]
41. Rueckert A, Cary SC. 2009. Use of an armored RNA standard to measure microcystin synthetase E gene expression in toxic Microcystis sp. by reverse-transcription QPCR. Limnol Oceanogr Meth 7:509520.[CrossRef]
42. Al-Tebrineh J, Pearson LA, Yasar SA, Neilan BA. 2011. A multiplex qPCR targeting hepato- and neurotoxigenic cyanobacteria of global significance. Harmful Algae 15:1925.[CrossRef]
43. Hackett JD, Wisecaver JH, Brosnahan ML, Kulis DM, Anderson DM, Bhattacharya D, Plumley FG, Erdner DL. 2013. Evolution of saxitoxin synthesis in cyanobacteria and dinoflagellates. Mol Biol Evol 30:7078.[PubMed][CrossRef]
44. Miller MA, Kudela RM, Mekebri A, Crane D, Oates SC, Tinker MT, Staedler M, Miller WA, Toy-Choutka S, Dominik C, Hardin D, Langlois G, Murray M, Ward K, Jessup DA. 2010. Evidence for a novel marine harmful algal bloom: cyanotoxin (microcystin) transfer from land to sea otters. PLoS One 5(9):e12576.[PubMed][CrossRef]
45. Vareli K, Jaeger W, Touka A, Frillingos S, Briasoulis E, Sainis I. 2013. Hepatotoxic seafood poisoning (HSP) due to microcystins: a threat from the ocean? Mar Drugs 11:27512768.[PubMed][CrossRef]
46. Iteman I, Rippka R, Tandeau de Marsac N, Herdman M. 2000. Comparison of conserved structural and regulatory domains within divergent 16S rRNA-23S rRNA spacer sequences of cyanobacteria. Microbiology 146:12751286.[PubMed][CrossRef]
47. Rantala-Ylinen A, Kana S, Wang H, Rouhiainen L, Wahlsten M, Rizzi E, Berg K, Gugger M, Sivonen K. 2011. Anatoxin-a Synthetase Gene Cluster of the Cyanobacterium Anabaena sp. Strain 37 and Molecular Methods to Detect Potential Producers. Appl Environ Microbiol 77:72717278.[PubMed][CrossRef]

Tables

Generic image for table
TABLE 1

Most commonly observed toxin-producing cyanobacterial genera in North American lakes and their physical and ecological characteristics

Citation: Otten T, Paerl H. 2016. Best Practices for Cyanobacterial Harmful Algal Bloom Monitoring, p 3.1.2-1-3.1.2-12. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.1.2
Generic image for table
TABLE 2

Commonly used PCR/qPCR primers for CyanoHAB detection and quantification and their optimal thermal cycler settings (any fluorophore/quencher that is compatible can be used with these assays)

Citation: Otten T, Paerl H. 2016. Best Practices for Cyanobacterial Harmful Algal Bloom Monitoring, p 3.1.2-1-3.1.2-12. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.1.2

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error