Chapter 3.1.3 : Assessing the Efficiency of Wastewater Treatment

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in

Assessing the Efficiency of Wastewater Treatment, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch3.1.3-1.gif /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch3.1.3-2.gif


Wastewater treatment is one of the most important of societal commitments to the health of human populations. This summary provides an overview of analyzing how well the processes meet the goal of providing discharges that do not degrade the environment nor put the health of populations dwelling in or affected by that environment. Basic processes of waste treatment are illustrated and both aqueous and solid discharges are addressed with the most important treatment processes and the parameters that are sampled to assess their efficacy presented. In common with most biological systems studied, recent advances in molecular, whole genome or metagenome techniques and procedures have allowed great advances in our understanding of how these microbial systems function. Bioassays of enormously complex means of biological treatment are shown in context. New methods of understanding whole-system microbiomes are noted with seminal publications. Older bioassay techniques are explained and the empirical underpinnings of many processes that are only now understood more fully are reviewed.

Citation: Ramírez toro G, Minnigh H. 2016. Assessing the Efficiency of Wastewater Treatment, p 3.1.3-1-3.1.3-13. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.1.3
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Typical suspended growth (activated sludge) plant. doi:10.1128/9781555818821.ch3.1.3.f1

Citation: Ramírez toro G, Minnigh H. 2016. Assessing the Efficiency of Wastewater Treatment, p 3.1.3-1-3.1.3-13. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.1.3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Typical attached growth (trickling filter [biofilter]) plan. doi:10.1128/9781555818821.ch3.1.3.f2

Citation: Ramírez toro G, Minnigh H. 2016. Assessing the Efficiency of Wastewater Treatment, p 3.1.3-1-3.1.3-13. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.1.3
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Metcalf & Eddy. 2003. Wastewater Engineering: Treatment and Reuse, 4th ed. McGraw-Hill, New York.
2. Spellman F. 2013. Handbook of Water and Wastewater Treatment Plant Operations, 3rd ed. CRC Press, New York.
3. Hannah T,, Wilner PE, Hubbell S, Stephanie L,, Spalding PE, Lynne E. 2012. Wastewater Treatment Plant Design Handbook. WEF, Alexandria, VA.
4. ASCE and WPCF. 1977. Wastewater Treatment Plant Design. ASCE and WPCF, Washington, DC.
5. U.S. EPA. 2011. Principles of Design and Operations of Wastewater Treatment Pond Systems for Plant Operators, Engineers and Managers. Division LRaPC, Laboratory NRMR (eds). U.S. EPA, Cincinnati, OH.
6. Census. 2000. Summary File 1. US Census Bureau, Washington, DC [cited 2003]. Available from: http://factfinder.census.gov/home/en/datanotes/expsflu.htm.
7. Goldstein R, Smith W. 2002. U.S. Electricity Consumption for Water Supply & Treatment—The Next Half Century. Topical Report 1006787. Electric Power Research Institute, Palo Alto, CA.
8. U.S. EPA. 2013. Report on the Performance of Secondary Treatment Technology. EPA-821-R-13-001, Contract No.: EPA-821-R-13-001. U.S. EPA, Washington, DC.
9. Quadros S, Rosa MJ, Alegre H, Silva C. 2010. A performance indicators system for urban wastewater treatment plants. Water Sci Technol 62:23982407. 10.2166/wst.2010.526.[PubMed][CrossRef] http://dx.doi.org/10.2166/wst.2010.526
10. Silva C, Quadros S, Ramalho P, Alegre H, Rosa MJ. 2014. Translating removal efficiencies into operational performance indices of wastewater treatment plants. Water Res 57:202214. http://dx.doi.org/10.1016/j.watres.2014.03.025.[PubMed][CrossRef]
11. Arnone RD, Walling JP. 2007. Waterborne pathogens in urban watersheds. J Water Health 5:149162.[PubMed][CrossRef]
12. Pipes WO, Zmuda JT,. 2007. Assessing the efficiency of wastewater treatment, pp 334354. In Hurst CJ, Crawford RL, Garland JL, Lipson DA, Mills AL, Stetzenbach LD (eds), Manual of Environmental Microbiology, 3rd ed. ASM, Washington, DC.
13. Eisenberg JNS, Moore K, Soller JA, Eisenberg D JMCJr. 2008. Microbial risk assessment framework for exposure to amended sludge projects. Environl Health Perspect 116:727733. 10.1289/ehp.10994.[CrossRef] http://dx.doi.org/10.1289/ehp.10994
14. Bibby K, Viau E, Peccia J. 2011. Viral metagenome analysis to guide human pathogen monitoring in environmental samples. Lett Appl Microbiol 52:386392. 10.1111/j.1472-765X.2011.03014.x.[PubMed][CrossRef] http://dx.doi.org/10.1111/j.1472-765X.2011.03014.x
15. Basner A, Antranikian G. 2014. Isolation and biochemical characterization of a glucose dehydrogenase from a hay infusion metagenome. PLoS One 9:e85844. 10.1371/journal.pone.0085844.[PubMed][CrossRef] http://dx.doi.org/10.1371/journal.pone.0085844
16. Batista-Garcia RA, Sanchez-Reyes A, Millan-Pacheco C, Gonzalez-Zuniga VM, Juarez S, Folch-Mallol JL, Pastor N. 2014. A novel TctA citrate transporter from an activated sludge metagenome: structural and mechanistic predictions for the TTT family. Proteins 82:17561764. 10.1002/prot.24529.[PubMed][CrossRef] http://dx.doi.org/10.1002/prot.24529
17. Abe T, Kanaya S, Uehara H, Ikemura T. 2009. A novel bioinformatics strategy for function prediction of poorly-characterized protein genes obtained from metagenome analyses. DNA Res 16:287297. 10.1093/dnares/dsp018.[PubMed][CrossRef] http://dx.doi.org/10.1093/dnares/dsp018
18. Kumar KS, Kumar PS, Babu DMJR. 2010. Performance evaluation of waste water treatment plant. Int J Engineer Sci Technol 2:77857796.
19. Flores-Alsina X, Comas J, Rodriguez-Roda I, Gernaey KV, Rosen C. 2009. Including the effects of filamentous bulking sludge during the simulation of wastewater treatment plants using a risk assessment model. Water Res 43:45274538. http://dx.doi.org/10.1016/j.watres.2009.07.033.[PubMed][CrossRef]
20. Wang B-B, Peng D-C, Hou Y-P, Li H-J, Pei L-Y, Yu L-F. 2014. The important implications of particulate substrate in determining the physicochemical characteristics of extracellular polymeric substances (EPS) in activated sludge. Water Res 58:18. http://dx.doi.org/10.1016/j.watres.2014.03.060.[PubMed][CrossRef]
21. Blatchley ER, Gong WL, Alleman JE, Rose JB, Huffman DE, Otaki M, Lisle JT. 2007. Effects of wastewater disinfection on waterborne bacteria and viruses. Water Environ Res 79:8192.[PubMed][CrossRef]
22. Gaki E, Banou S, Ntigkakis D, Andreadakis A, Borboudaki K, Drakopoulou S, Manios T. 2007. Qualitative monitoring of tertiary treated wastewater reuse extensive distribution system: total coliforms number and residual chlorine concentration. J Environ Sci Health A Tox Hazard Subst Environ Eng 42:601611. 10.1080/10934520701244367.[PubMed][CrossRef] http://dx.doi.org/10.1080/10934520701244367
23. Hayes SL, Rodgers MR, Lye DJ, Stelma GN, McKinstry CA, Malard JM, Vesper SJ. 2007. Evaluating virulence of waterborne and clinical Aeromonas isolates using gene expression and mortality in neonatal mice followed by assessing cell culture's ability to predict virulence based on transcriptional response. J Appl Microbiol 103:811820. 10.1111/j.1365-2672.2007.03318.x.[PubMed][CrossRef] http://dx.doi.org/10.1111/j.1365-2672.2007.03318.x
24. Hewitt J, Bell D, Simmons GC, Rivera-Aban M, Wolf S, Greening GE. 2007. Gastroenteritis outbreak caused by waterborne norovirus at a New Zealand ski resort. Appl Environ Microbiol 73:78537857. 10.1128/AEM.00718-07.[PubMed][CrossRef] http://dx.doi.org/10.1128/AEM.00718-07
25. Hoffman RM, Wolk DM, Spencer SK, Borchardt MA. 2007. Development of a method for the detection of waterborne microsporidia. J Microbiol Meth 70:312318. 10.1016/j.mimet.2007.05.005.[CrossRef] http://dx.doi.org/10.1016/j.mimet.2007.05.005
26. Bichai F, Payment P, Barbeau B. 2008. Protection of waterborne pathogens by higher organisms in drinking water: a review. Can J Microbiol 54:509524. 10.1139/w08-039.[PubMed][CrossRef] http://dx.doi.org/10.1139/w08-039
27. Cupples AM, Xagoraraki I, Rose JB,. 2010. New molecular methods for detection of waterborne pathogens, pp 5794. In Mitchell R, Gu J-D (eds), Environmental Microbiology, 2nd ed. John Wiley & Sons, Hoboken, NJ.
28. Ripp S, DiClaudio ML, Sayler GS,. 2010. Biosensors as environmental monitors, pp 213233. In Mitchell R, Gu J-D (eds), Environmental Microbiology, 2nd ed. John Wiley & Sons, Hoboken, NJ.
29. Mitchell R, Gu JD. 2010. Environmental Microbiology, 2nd ed. John Wiley & Sons, Hoboken, NJ.
30. Bibby K, Viau E, Peccia J. 2010. Pyrosequencing of the 16S rRNA gene to reveal bacterial pathogen diversity in biosolids. Water Res 44:42524260.[PubMed][CrossRef]
31. Villamizar RA, Maroto A, Rius FX, Inza I, Figueras MJ. 2008. Fast detection of Salmonella infantis with carbon nanotube field effect transistors. Biosens Bioelectron 24:279283. 10.1016/j.bios.2008.03.046.[PubMed][CrossRef] http://dx.doi.org/10.1016/j.bios.2008.03.046
32. Donovan EP, Staskal DF, Unice KM, Roberts JD, Haws LC, Finley BL, Harris MA. 2008. Risk of gastrointestinal disease associated with exposure to pathogens in the sediments of the lower passaic river. Appl Environ Microbiol 74:10041018. 10.1128/aem.01203-07.[PubMed][CrossRef] http://dx.doi.org/10.1128/aem.01203-07
33. Droppo IG, Liss SN, Williams D, Nelson T, Jaskot C, Trapp B. 2009. Dynamic existence of waterborne pathogens within river sediment compartments. Implications for water quality regulatory affairs. Environ Sci Technol 43:17371743.[PubMed][CrossRef]
34. Gin KY-H, Goh SG. 2013. Modeling the effect of light and salinity on viable but non-culturable (VBNC) Enterococcus. Water Res 47:33153328. http://dx.doi.org/10.1016/j.watres.2013.03.021.[PubMed][CrossRef]
35. Hewitt J, Greening GE, Leonard M, Lewis GD. 2013. Evaluation of human adenovirus and human polyomavirus as indicators of human sewage contamination in the aquatic environment. Water Res 47:67506761. http://dx.doi.org/10.1016/j.watres.2013.09.001.[PubMed][CrossRef]
36. Alcalde L, Folch M, Tapias JC. 2012. Removal and relationships of microbial indicators in a water treatment and reclamation facility. J Water Health 10:549559. 10.2166/wh.2012.213.[PubMed][CrossRef] http://dx.doi.org/10.2166/wh.2012.213
37. Chern EC, Brenner K, Wymer L, Haugland RA. 2013. Influence of wastewater disinfection on densities of culturable fecal indicator bacteria and genetic markers. J Water Health 12:410417. 10.2166/wh.2013.179.[CrossRef] http://dx.doi.org/10.2166/wh.2013.179
38. Cheng H-WA, Lucy FE, Broaders MA, Mastitsky SE, Chen C-H, Murray A. 2012. Municipal wastewater treatment plants as pathogen removal systems and as a contamination source of noroviruses and Enterococcus faecalis. J Water Health 10:380389. 10.2166/wh.2012.138.[PubMed][CrossRef] http://dx.doi.org/10.2166/wh.2012.138
39. Simmons FJ, Xagoraraki I. 2011. Release of infectious human enteric viruses by full-scale wastewater utilities. Water Res 45:35903598. http://dx.doi.org/10.1016/j.watres.2011.04.001.[PubMed][CrossRef]
40. Gaafar MR. 2007. Effect of solar disinfection on viability of intestinal protozoa in drinking water. J Egypt Soc Parasitol 37:6586.[PubMed]
41. Bichai F, Polo-López MI, Fernández Ibañez P. 2012. Solar disinfection of wastewater to reduce contamination of lettuce crops by Escherichia coli in reclaimed water irrigation. Water Res 46:60406050. http://dx.doi.org/10.1016/j.watres.2012.08.024.[PubMed][CrossRef]
42. Blum P. 2005. Understanding Viability of Pathogens during Disinfection. IWA Publishing, Alexandria, VA.
43. Azimi Y, Allen DG, Farnood RR. 2012. Kinetics of UV inactivation of wastewater bioflocs. Water Res 46:38273836. http://dx.doi.org/10.1016/j.watres.2012.04.019.[PubMed][CrossRef]
44. Azimi Y, Allen DG, Farnood RR. 2014. Enhancing disinfection by advanced oxidation under UV irradiation in polyphosphate-containing wastewater flocs. Water Res 54:179187. http://dx.doi.org/10.1016/j.watres.2014.01.011.[PubMed][CrossRef]
45. Carvalho G, Lemos PC, Oehmen A, Reis MAM. 2007. Denitrifying phosphorus removal: linking the process performance with the microbial community structure. Water Res 41:43834396. http://dx.doi.org/10.1016/j.watres.2007.06.065.[PubMed][CrossRef]
46. Lanham AB, Oehmen A, Saunders AM, Carvalho G, Nielsen PH, Reis MAM. 2013. Metabolic versatility in full-scale wastewater treatment plants performing enhanced biological phosphorus removal. Water Res 47:70327041. http://dx.doi.org/10.1016/j.watres.2013.08.042.[PubMed][CrossRef]
47. Remy C, Miehe U, Lesjean B, Bartholomäus C. 2014. Comparing environmental impacts of tertiary wastewater treatment technologies for advanced phosphorus removal and disinfection with life cycle assessment. Water Sci Technol 69:17421750. 10.2166/wst.2014.087.[PubMed][CrossRef] http://dx.doi.org/10.2166/wst.2014.087
48. Azimi Y, Chen X, Allen DG, Pileggi V, Seto P, Droppo IG, Farnood RR. 2013. UV disinfection of wastewater flocs: the effect of secondary treatment conditions. Water Sci Technol 67:27192723. 10.2166/wst.2013.148.[PubMed][CrossRef] http://dx.doi.org/10.2166/wst.2013.148
49. Flannery J, Keaveney S, Rajko-Nenow P, O'Flaherty V, Doré W. 2013. Norovirus and FRNA bacteriophage determined by RT-qPCR and infectious FRNA bacteriophage in wastewater and oysters. Water Res 47:52225231. http://dx.doi.org/10.1016/j.watres.2013.06.008.[PubMed][CrossRef]
50. Childress H, Sullivan B, Kaur J, Karthikeyan R. 2013. Effects of ultraviolet light disinfection on tetracycline resistant bacteria in wastewater effluents. J Water Health 12:404409. 10.2166/wh.2013.257.[CrossRef] http://dx.doi.org/10.2166/wh.2013.257
51. Haaken D, Dittmar T, Schmalz V, Worch E. 2014. Disinfection of biologically treated wastewater and prevention of biofouling by UV/electrolysis hybrid technology: influence factors and limits for domestic wastewater reuse. Water Res 52:2028. http://dx.doi.org/10.1016/j.watres.2013.12.029.[PubMed][CrossRef]
52. Sakai H, Takamatsu T, Oguma K, Murakami M, Kosaka K, Asami M, Takizawa S. 2014. Effects of natural organic matter and nitrate on the behavior of nitrosodimethylamine during ultraviolet irradiation and chloramination. J Water Supply Res Technol 63:260267. 10.2166/aqua.2014.021.[CrossRef] http://dx.doi.org/10.2166/aqua.2014.021
53. Li D, Craik SA, Smith DW, Belosevic M. 2009. The assessment of particle association and UV disinfection of wastewater using indigenous spore-forming bacteria. Water Res 43:481489. http://dx.doi.org/10.1016/j.watres.2008.10.025.[PubMed][CrossRef]
54. Hedrick RP, Petri B, McDowell TS, Mukkatira K, Sealey LJ. 2007. Evaluation of a range of doses of ultraviolet irradiation to inactivate waterborne actinospore stages of Myxobolus cerebralis. Dis Aquat Organ 74:113118.[PubMed][CrossRef]
55. Gerrity D, Gamage S, Jones D, Korshin GV, Lee Y, Pisarenko A, Trenholm RA, von Gunten U, Wert EC, Snyder SA. 2012. Development of surrogate correlation models to predict trace organic contaminant oxidation and microbial inactivation during ozonation. Water Res 46:62576272. http://dx.doi.org/10.1016/j.watres.2012.08.037.[PubMed][CrossRef]
56. Dietrich JP, Loge FJ, Ginn TR, Başağaoğlu H. 2007. Inactivation of particle-associated microorganisms in wastewater disinfection: modeling of ozone and chlorine reactive diffusive transport in polydispersed suspensions. Water Res 41:21892201. http://dx.doi.org/10.1016/j.watres.2007.01.038.[PubMed][CrossRef]
57. Pradhan SK, Kauppinen A, Martikainen K, Pitkänen T, Kusnetsov J, Miettinen IT, Pessi M, Poutiainen H, Heinonen-Tanski H. 2013. Microbial reduction in wastewater treatment using Fe3+ and Al3+ coagulants and PAA disinfectant. J Water Health 11:581589. 10.2166/wh.2013.241.[PubMed][CrossRef] http://dx.doi.org/10.2166/wh.2013.241
58. U.S. EPA. 2013. Emerging Technologies for Wastewater Treatment and In-Plant Wet Weather Management. U.S. EPA Office of Wastewater Management, 832-R-12-011.
59. Rodríguez-Chueca J, Mediano A, Ormad MP, Mosteo R, Ovelleiro JL. 2014. Disinfection of wastewater effluents with the Fenton-like process induced by electromagnetic fields. Water Res 60:250258. http://dx.doi.org/10.1016/j.watres.2014.04.040.[PubMed][CrossRef]
60. Bandala ER, Miranda J, Beltran M, Vaca M, López R, Torres LG. 2009. Wastewater disinfection and organic matter removal using ferrate (VI) oxidation. J Water Health 7:507513. 10.2166/wh.2009.003.[PubMed][CrossRef] http://dx.doi.org/10.2166/wh.2009.003
61. Gao S, Hemar Y, Ashokkumar M, Paturel S, Lewis GD. 2014. Inactivation of bacteria and yeast using highfrequency ultrasound treatment. Water Res 60:93104.[PubMed][CrossRef]
62. de Lima Isaac R, Urbano dos Santos L, Tosetto MS, Franco RMB, Guimarães JR. 2014. Urban water reuse: microbial pathogens control by direct filtration and ultraviolet disinfection. Journal of Water and Health 12:465473. 10.2166/wh.2014.221.[PubMed][CrossRef] http://dx.doi.org/10.2166/wh.2014.221
63. Michael I, Rizzo L, McArdell CS, Manaia CM, Merlin C, Schwartz T, Dagot C, Fatta-Kassinos D. 2013. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Res 47:957995. http://dx.doi.org/10.1016/j.watres.2012.11.027.[PubMed][CrossRef]
64. U.S. EPA. 2002. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. EPA-821-R-02-012. U.S. EPA Office of Water, Washington, DC.
65. Drury B, Rosi-Marshall E, Kelly JJ. 2013. Wastewater treatment effluent reduces the abundance and diversity of benthic bacterial communities in urban and suburban rivers. Appl Environ Microbiol 79:18971905. 10.1128/aem.03527-12.[PubMed][CrossRef] http://dx.doi.org/10.1128/aem.03527-12
66. User's Guide for T.E.S.T. (version 4.1) (Toxicity Estimation Software Tool). 2012. U.S. EPA, Washington, DC.
67. Gedalanga P, Kotay SM, Sales CM, Butler CS, Goel R, Mahendra S. 2013. Novel applications of molecular biological and microscopic tools in environmental engineering. Water Environ Res 85:917950.[CrossRef]
68. Salveson A, Rauch-William T, Drury D, Dickenson E, Drewes JE, Snyder S. 2012. Trace Organic Compound Indicator Removal during Conventional Wastewater Treatment. WERF & IWA, Alexandria, VA.
69. Diamond J, Thornton K, Bartell S, Munkittrick K, Kidd K, Kapo K, Latimer H, Gilliam J, Gerritsen J. 2010. Development of Diagnostic Tools for Trace Organic Compounds and Multiple Stressors. WERF & IWA, Alexandria, VA, CEC5R08b.
70. McClellan K, Halden RU. 2010. Pharmaceuticals and personal care products in archived U.S. biosolids from the 2001 EPA national sewage sludge survey. Water Res 44:658668. http://dx.doi.org/10.1016/j.watres.2009.12.032.[PubMed][CrossRef]
71. Escher BI, Baumgartner R, Koller M, Treyer K, Lienert J, McArdell CS. 2011. Environmental toxicology and risk assessment of pharmaceuticals from hospital wastewater. Water Res 45:7592. http://dx.doi.org/10.1016/j.watres.2010.08.019.[PubMed][CrossRef]
72. Park H-D, Wells GF, Bae H, Criddle CS, Francis CA. 2006. Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Appl Environ Microbiol 72:56435647. 10.1128/aem.00402-06.[PubMed][CrossRef] http://dx.doi.org/10.1128/aem.00402-06
73. Viau E, Bibby K, Paez-Rubio T, Peccia J. 2011. Toward a consensus view on the infectious risks associated with land application of sewage sludge. Environ Sci Technol 45:54595469. 10.1021/es200566f.[PubMed][CrossRef] http://dx.doi.org/10.1021/es200566f
74. Simon C, Wiezer A, Strittmatter AW, Daniel R. 2009. Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl Environ Microbiol 75:75197526. 10.1128/AEM.00946-09.[PubMed][CrossRef] http://dx.doi.org/10.1128/AEM.00946-09
75. Graczyk TK, Kacprzak M, Neczaj E, Tamang L, Graczyk H, Lucy FE, Girouard AS. 2007. Occurrence of Cryptosporidium and Giardia in sewage sludge and solid waste landfill leachate and quantitative comparative analysis of sanitization treatments on pathogen inactivation. Environ Res 106:2733.[PubMed][CrossRef]
76. Graczyk TK, Kacprzak M, Neczaj E, Tamang L, Graczyk H, Lucy FE, Girouard AS. 2007. Human-virulent microsporidian spores in solid waste landfill leachate and sewage sludge, and effects of sanitization treatments on their inactivation. Parasitol Res 101:569575.[PubMed][CrossRef]
77. More RP, Mitra S, Raju SC, Kapley A, Purohit HJ. 2014. Mining and assessment of catabolic pathways in the metagenome of a common effluent treatment plant to induce the degradative capacity of biomass. Bioresour Technol 153:137146. 10.1016/j.biortech.2013.11.065.[PubMed][CrossRef] http://dx.doi.org/10.1016/j.biortech.2013.11.065
78. Munir M, Wong K, Xagoraraki I. 2011. Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Res 45:681693. http://dx.doi.org/10.1016/j.watres.2010.08.033.[PubMed][CrossRef]
79. Saha S, Hunter WB, Reese J, Morgan JK, Marutani-Hert M, Huang H, Lindeberg M. 2012. Survey of endosymbionts in the Diaphorina citri metagenome and assembly of a Wolbachia wDi draft genome. PLoS One 7:e50067. 10.1371/journal.pone.0050067.[PubMed][CrossRef] http://dx.doi.org/10.1371/journal.pone.0050067
80. Whiteley AS, Jenkins S, Waite I, Kresoje N, Payne H, Mullan B, Allcock R, O'Donnell A. 2012. Microbial 16S rRNA Ion Tag and community metagenome sequencing using the Ion Torrent (PGM) platform. J Microbiol Meth 91:8088. 10.1016/j.mimet.2012.07.008.[CrossRef] http://dx.doi.org/10.1016/j.mimet.2012.07.008
81. Wommack KE, Bhavsar J, Polson SW, Chen J, Dumas M, Srinivasiah S, Furman M, Jamindar S, Nasko DJ. 2012. VIROME: a standard operating procedure for analysis of viral metagenome sequences. Stand Genom Sci 6:427439. 10.4056/sigs.2945050.[CrossRef] http://dx.doi.org/10.4056/sigs.2945050
82. Youssef N, Steidley BL, Elshahed MS. 2012. Novel high-rank phylogenetic lineages within a sulfur spring (Zodletone Spring, Oklahoma), revealed using a combined pyrosequencing-sanger approach. Appl Environ Microbiol 78:26772688. 10.1128/aem.00002-12.[PubMed][CrossRef] http://dx.doi.org/10.1128/aem.00002-12
83. Brum JR, Culley AI, Steward GF. 2013. Assembly of a marine viral metagenome after physical fractionation. PLoS One 8:e60604. 10.1371/journal.pone.0060604.[PubMed][CrossRef] http://dx.doi.org/10.1371/journal.pone.0060604
84. Clark SC, Egan R, Frazier PI, Wang Z. 2013. ALE: a generic assembly likelihood evaluation framework for assessing the accuracy of genome and metagenome assemblies. Bioinformatics 29:435443. 10.1093/bioinformatics/bts723.[PubMed][CrossRef] http://dx.doi.org/10.1093/bioinformatics/bts723
85. Pinto AJ, Schroeder J, Lunn M, Sloan W, Raskin L. 2014. Spatial-temporal survey and occupancy-abundance modeling to predict bacterial community dynamics in the drinking water microbiome. mBio 5:e01135-14. 10.1128/mBio.01135-14.[PubMed][CrossRef] http://dx.doi.org/10.1128/mBio.01135-14
86. Corcoran E, Nellemann C, Baker E, Bos R, Osborn D, Savelli H (eds). 2010. Sick Water? The Central Role of Wastewater Management in Sustainable Development. A Rapid Response Assessment. United Nations Environment Programme. UNEP/UN-HABITAT, Arendal, Norway.
87. Dazzo FB, Schmid M, Hartmann A,. 2007. Immunofluorescence microscopy and fluorescence in situ hybridization combined with CMEIAS and other image analysis tools for soil- and plant-associated microbial autecology, pp 712733. In: Hurst CL (ed), Manual of Environmental Microbiology, 3rd ed. ASM, Washington, DC.
88. U.S. EPA NRMRL. 2006. Life Cycle Assessment: Principles and Practice. EPA/600/R-06/060. NRMRL, U.S. EPA, Cincinnati, OH
89. Elorri I, Benetto E, Venditti S, Köhler C, Cornelissen A. 2013. Comparative and integrative environmental assessment of advanced wastewater treatment processes based on an average removal of pharmaceuticals. Water Sci Technol 67:387394. 10.2166/wst.2012.581.[PubMed] http://dx.doi.org/10.2166/wst.2012.581
90. Magdeburg A, Stalter D, Schlüsener M, Ternes T, Oehlmann J. 2014. Evaluating the efficiency of advanced wastewater treatment: target analysis of organic contaminants and (geno-)toxicity assessment tell a different story. Water Res 50:3547.[PubMed][CrossRef]
91. Senta I, Terzic S, Ahel M. 2013. Occurrence and fate of dissolved and particulate antimicrobials in municipal wastewater treatment. Water Res 47:705714. http://dx.doi.org/10.1016/j.watres.2012.10.041.[PubMed][CrossRef]
92. Rattier M, Reungoat J, Keller J, Gernjak W. 2014. Removal of micropollutants during tertiary wastewater treatment by biofiltration: role of nitrifiers and removal mechanisms. Water Res 54:8999. http://dx.doi.org/10.1016/j.watres.2014.01.030.[PubMed][CrossRef]
93. Liu RX, Wilding A, Hibberd A, Zhou JL. 2005. Partition of endocrine-disrupting chemicals between colloids and dissolved phase as determined by cross-flow ultrafiltration. Environ Sci Technol 39:27532761.[PubMed][CrossRef]
94. Gori R, Lubello C, Ferrini F, Nicese F. 2004. Reclaimed municipal wastewater as source of water and nutrients for plant nurseries. Water Sci Technol 50:6975.[PubMed]
95. Li J, Werth CJ. 2001. Evaluating Competitive Sorption Mechanisms of Volatile Organic Compounds in Soils and Sediments Using Polymers and Zeolites. Environmental Science and Technology 35:56874. 10.1021/es0.[CrossRef] http://dx.doi.org/10.1021/es0
96. Liu JC, Carr SA. 2013. Removal of estrogenic compounds from aqueous solutions using zeolites. Water Environ Res 85:21572163. http://dx.doi.org/10.2175/106143013X13736496909356.[CrossRef] http://dx.doi.org/http://dx.doi.org/10.2175/106143013X13736496909356
97. Limpiyakorn T, Furhacker M, Haberl R, Chodanon T, Srithep P, Sonthiphand P. 2013. amoA-encoding archaea in wastewater treatment plants: a review. Appl Microbiol Biotechnol 97:14251439.[PubMed][CrossRef]


Generic image for table

Report on secondary treatment performance

Citation: Ramírez toro G, Minnigh H. 2016. Assessing the Efficiency of Wastewater Treatment, p 3.1.3-1-3.1.3-13. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.1.3
Generic image for table

Pollutants and measurements of efficiency of WWT

Citation: Ramírez toro G, Minnigh H. 2016. Assessing the Efficiency of Wastewater Treatment, p 3.1.3-1-3.1.3-13. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.1.3

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error