1887

Chapter 3.1.6 : Detection of Protozoa in Surface and Finished Waters

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Detection of Protozoa in Surface and Finished Waters, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch3.1.6-1.gif /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch3.1.6-2.gif

Abstract:

Humans are known to be the host to approximately 1500 infectious agents, out of which 66 are protozoa and 287 are helminths. Therefore, from a global perspective helminths and protozoan parasites account for approximately one fourth of the total infectious diseases of humans. A similar trend has been observed in waterborne infectious diseases, among which a significant part is caused by enteric parasites.

Cryptosporidium and Giardia are the leading cause of waterborne outbreaks of gastroenteritis across the globe, and as such, will be discussed in length in this chapter. These parasites are particularly suited for waterborne transmission as the environmentally resistant cysts and oocysts, respectively are shed in large numbers in feces (108-109 oocysts/gram), have a low infectious dose, and are resistant to disinfection practices.

Naegleria fowleri is a pathogenic free-living amoeba found in the environment in both water and soil. There have been over 40 species of Naegleria described to date, but only N. fowleri is pathogenic to humans. N. fowleri was first identified as a human pathogen in 1965 in Australia. The first case in the United States was reported in 1966 and was described as primary meningoencephalitis. Prior to this documented case, free-living amoebae were not considered to be pathogenic. Pathogenic Naegleria fowleri is not easily differentiated from other Naegleria species due to similarities including common morphology when observed microscopically and indistinguishable behavior in cell culture.

Citation: Alum A, Villegas E, Keely S, Bright K, Sifuentes L, Abbaszadegan M. 2016. Detection of Protozoa in Surface and Finished Waters, p 3.1.6-1-3.1.6-25. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.1.6
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Distribution of major etiological agents causing infectious diseases in humans. Reprinted from ( ), with permission. doi:10.1128/9781555818821.ch3.1.6.f1

Citation: Alum A, Villegas E, Keely S, Bright K, Sifuentes L, Abbaszadegan M. 2016. Detection of Protozoa in Surface and Finished Waters, p 3.1.6-1-3.1.6-25. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.1.6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Life cycle of and : a comparative illustration. Courtesy of the U.S. Centers for Disease Control and Prevention. doi:10.1128/9781555818821.ch3.1.6.f2

Citation: Alum A, Villegas E, Keely S, Bright K, Sifuentes L, Abbaszadegan M. 2016. Detection of Protozoa in Surface and Finished Waters, p 3.1.6-1-3.1.6-25. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.1.6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Infection process of and Reprinted from ( ), with permission. doi:10.1128/9781555818821.ch3.1.6.f3

Citation: Alum A, Villegas E, Keely S, Bright K, Sifuentes L, Abbaszadegan M. 2016. Detection of Protozoa in Surface and Finished Waters, p 3.1.6-1-3.1.6-25. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.1.6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Distribution of waterborne outbreaks due to and in different continents. Reprinted from ( ), with permission. doi:10.1128/9781555818821.ch3.1.6.f4

Citation: Alum A, Villegas E, Keely S, Bright K, Sifuentes L, Abbaszadegan M. 2016. Detection of Protozoa in Surface and Finished Waters, p 3.1.6-1-3.1.6-25. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.1.6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Phylogenetic tree analyses of the valid species. Accession numbers of the reference sequences for each of the species analyzed are listed. doi:10.1128/9781555818821.ch3.1.6.f5

Citation: Alum A, Villegas E, Keely S, Bright K, Sifuentes L, Abbaszadegan M. 2016. Detection of Protozoa in Surface and Finished Waters, p 3.1.6-1-3.1.6-25. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.1.6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Global distribution of human associated species. Frequency of clinical isolates identified by DNA sequences found at http://cryptodb.org/cryptodb/. doi:10.1128/9781555818821.ch3.1.6.f6

Citation: Alum A, Villegas E, Keely S, Bright K, Sifuentes L, Abbaszadegan M. 2016. Detection of Protozoa in Surface and Finished Waters, p 3.1.6-1-3.1.6-25. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.1.6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Occurrences of the three most common human infectious species: , , and based on the number of filtered accession numbers found at http://cryptodb.org/cryptodb/. Black bars, ; open bars, ; gray bars, . doi:10.1128/9781555818821.ch3.1.6.f7

Citation: Alum A, Villegas E, Keely S, Bright K, Sifuentes L, Abbaszadegan M. 2016. Detection of Protozoa in Surface and Finished Waters, p 3.1.6-1-3.1.6-25. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.1.6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

The life cycle and route of infection of Courtesy of the U.S. Centers for Disease Control and Prevention.doi:10.1128/9781555818821.ch3.1.6.f8

Citation: Alum A, Villegas E, Keely S, Bright K, Sifuentes L, Abbaszadegan M. 2016. Detection of Protozoa in Surface and Finished Waters, p 3.1.6-1-3.1.6-25. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.1.6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9
FIGURE 9

Number of case reports of primary amoebic meningoencephalitis by state of exposure: United States, 1962–2012. Reprinted from ( ). doi:10.1128/9781555818821.ch3.1.6.f9

Citation: Alum A, Villegas E, Keely S, Bright K, Sifuentes L, Abbaszadegan M. 2016. Detection of Protozoa in Surface and Finished Waters, p 3.1.6-1-3.1.6-25. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.1.6
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818821.ch3.1.6
1. Chomel BB. 2008. Control and prevention of emerging parasitic zoonoses. Int J Parasitol 38:12111217.[PubMed][CrossRef]
2. Taylor LH, Latham SM, Mark E. 2001. Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci 356:983989.[PubMed][CrossRef]
3. Alum A, Rubino JR, Ijaz MK. 2010. The global war against intestinal parasites—should we use a holistic approach? Int J Infect Dis 14:e732e738.[PubMed][CrossRef]
4. Baldursson S, Karanis P. 2011. Waterborne transmission of protozoan parasites: review of worldwide outbreaks–an update 2004–2010. Water Res 45:66036614.[PubMed][CrossRef]
5. Mircean V, Györke A, Cozma V. 2012. Prevalence and risk factors of Giardia duodenalis in dogs from Romania. Vet Parasitol 184:325329.[PubMed][CrossRef]
6. Karanis P, Kourenti C, Smith H. 2007. Waterborne transmission of protozoan parasites: a worldwide review of outbreaks and lessons learnt. J Water Health 5:138.[PubMed][CrossRef]
7. Yoder JS, Beach MJ. 2010. Cryptosporidium surveillance and risk factors in the United States. Exp Parasitol 124:3139.[PubMed][CrossRef]
8. Tyzzer E. 1907. A sporozoan found in the peptic glands of the common mouse. Exp Biol Med 5:1213.[CrossRef]
9. Panciera R, Thomassen R, Garner F. 1971. Cryptosporidial infection in a calf. Vet Pathol Online 8:479484.
10. Meisel J, Perera D, Meligro C, Rubin C. 1976. Overwhelming watery diarrhea associated with a cryptosporidium in an immunosuppressed patient. Gastroenterology 70:11561160.[PubMed]
11. Plutzer J, Ongerth J, Karanis P. 2010. Giardia taxonomy, phylogeny and epidemiology: facts and open questions. Int J Hyg Environ Health 213:321333.[PubMed][CrossRef]
12. Xiao L, Fayer R. 2008. Molecular characterisation of species and genotypes of Cryptosporidium and Giardia and assessment of zoonotic transmission. Int J Parasitol 38:12391255.[PubMed][CrossRef]
13. Elwin K, Hadfield SJ, Robinson G, Crouch ND, Chalmers RM. 2012. Cryptosporidium viatorum n. sp.(Apicomplexa: Cryptosporidiidae) among travellers returning to Great Britain from the Indian subcontinent, 2007–2011. Int J Parasitol 42:675682.[PubMed][CrossRef]
14. Ren X, Zhao J, Zhang L, Ning C, Jian F, Wang R, Lv C, Wang Q, Arrowood MJ, Xiao L. 2012. Cryptosporidium tyzzeri n. sp.(Apicomplexa: Cryptosporidiidae) in domestic mice (Mus musculus). Exp Parasitol 130:274281.[PubMed][CrossRef]
15. Nichols GL,. 2008. Epidemiology, pp. 79118. In Xiao RFL (ed.), Cryptosporidium and Cryptosporidiosis, 2nd ed., CRC Press and IWA Publishing, Boca Raton, FL.
16. Chalmers RM. 2012. Waterborne outbreaks of cryptosporidiosis. Ann dell'Istit super sanità 48:429446.[CrossRef]
17. Meyer E, Jarroll EL. 1980. Giardiasis. Am J Epidemiol 111:112.[PubMed]
18. U.S. EPA. 1984. Criteria document on giardia. ICAIR, Life Systems, Washington, DC.
19. Filice FP. 1952. Studies on the Cytology and Life History of a Giardia from the Laboratory Rat. University of California Press, Berkeley, CA.
20. Arrowood M., 1997. Diagnosis. In Fayer R (ed.), Cryptosporidium and Cryptosporidiosis, . CRC Press, New York, NY.
21. Adam RD. 2001. Biology of Giardia lamblia. Clin Microbiol Rev 14:447475.[PubMed][CrossRef]
22. Cavalier-Smith T. 2003. Protist phylogeny and the high-level classification of Protozoa. Eur J Protistol 39:338348.[CrossRef]
23. Thompson R, Smith A. 2011. Zoonotic enteric protozoa. Vet Parasitol 182:7078.[PubMed][CrossRef]
24. Lasek-Nesselquist E, Welch DM, Sogin ML. 2010. The identification of a new Giardia duodenalis assemblage in marine vertebrates and a preliminary analysis of G. duodenalis population biology in marine systems. Int J Parasitol 40:10631074.[PubMed][CrossRef]
25. Yoshida N, Tyler KM, Llewellyn MS. 2011. Invasion mechanisms among emerging food-borne protozoan parasites. Trends Parasitol 27:459466.[PubMed][CrossRef]
26. Hunter PR, Hughes S, Woodhouse S, Nicholas R, Syed Q, Chalmers RM, Verlander NQ, Goodacre J. 2004. Health sequelae of human cryptosporidiosis in immunocompetent patients. Clin Infect Dis 39:504510.[PubMed][CrossRef]
27. Clifford C, Crook D, Conlon C, Fraise A, Day D, Peto T. 1990. Impact of waterborne outbreak of cryptosporidiosis on AIDS and renal transplant patients. Lancet 335:14551456.[PubMed][CrossRef]
28. U.S. EPA. 1997. Cryptosporidium and Giardia in water by filtration/IMS/FA. Draft method 1622. EPA-821-R-97-023. Office of Research and Development, U.S. Government Printing Office, Washington, DC.
29. Petry F, Jakobi V, Tessema TS. 2010. Host immune response to Cryptosporidium parvum infection. Exp Parasitol 126:304309.[PubMed][CrossRef]
30. Wobus CE, Karst SM, Thackray LB, Chang K-O, Sosnovtsev SV, Belliot G, Krug A, Mackenzie JM, Green KY, Virgin HW IV. 2004. Replication of norovirus in cell culture reveals a tropism for dendritic cells and macrophages. PLoS Biol 2:e432.[PubMed][CrossRef]
31. Ryu H, Abbaszadegan M. 2008. Long-term study of Cryptosporidium and Giardia occurrence and quantitative microbial risk assessment in surface waters of Arizona in the USA. J Water Health 6:263273.[PubMed][CrossRef]
32. Smith H, Rose J. 1990. Waterborne cryptosporidiosis. Parasitol Today 6:812.[PubMed][CrossRef]
33. Gold D, Smith HV,. 2002. Pathogenic Protozoa and Drinking Water, pp. 143162. In Palumbo F, Ziglio G, Beken AV (eds), Detection Methods for Algae, Protozoa and Helmints in Fresh and Drinking Water. Wiley & Sons, Chichester, West Sussex, England.
34. Wohlsen T, Katouli M. 2008. A review of the existing methods for detection, enumeration and inactivation of Cryptosporidium in surface waters. Journal of Water Supply: Research and Technology-AQUA 57:6577.[CrossRef]
35. Quintero-Betancourt W, Peele ER, Rose JB. 2002. Cryptosporidium parvum and Cyclospora cayetanensis: a review of laboratory methods for detection of these waterborne parasites. J Microbiol Meth 49:209224.[CrossRef]
36. Wohlsen T, Bates J, Gray B, Katouli M. 2004. Evaluation of five membrane filtration methods for recovery of Cryptosporidium and Giardia isolates from water samples. Appl Environ Microbiol 70:23182322.[PubMed][CrossRef]
37. Zarlenga DS, Trout JM. 2004. Concentrating, purifying and detecting waterborne parasites. Vet Parasitol 126:195217.[PubMed][CrossRef]
38. Wallis P, Erlandsen S, Isaac-Renton J, Olson M, Robertson W, Van Keulen H. 1996. Prevalence of Giardia cysts and Cryptosporidium oocysts and characterization of Giardia spp. isolated from drinking water in Canada. Appl Environ Microbiol 62:27892797.[PubMed]
39. Koompapong K, Sutthikornchai C, Sukthana Y. 2009. Cryptosporidium oocyst detection in water samples: floatation technique enhanced with immunofluorescence is as effective as immunomagnetic separation method. Korean J Parasitol 47:353357.[PubMed][CrossRef]
40. U.S. EPA. 2005. Method 1623: Cryptosporidium and Giardia in water by filtration/IMS/FA. EPA 815-R-05-002. Office of Research and Development, Government Printing Office, Washington, DC.
41. U.S. EPA. 2012. Method 1623.1: Cryptosporidium and Giardia in water by filtration/IMS/FA. EPA 816-R-12-001. Research and Development, Government Printing Office, Washington, DC.
42. ISO. 2006. Water quality—isolation and identification of Cryptosporidium oocysts and Giardia cysts from water. ISO 15553. ISO, Geneva, Switzerland.
43. Rose JB, Cifrino A, Madore M, Gerba CP, Sterling CR, Arrowood MJ. 1986. Detection of Cryptosporidium from wastewater and freshwater environments. Water Sci Technol 18:233239.
44. Hsu B-m, Huang C, Hsu Y-F, Jiang G-Y. 2001. Evaluation of two concentration methods for detecting Giardia and Cryptosporidium in water. Water Res 35:419424.[PubMed][CrossRef]
45. Shepherd K, Wyn-Jones A. 1995. Evaluation of different filtration techniques for the concentration of Cryptosporidium oocysts from water. Water Sci Technol 31:425429.[CrossRef]
46. Shepherd K, Wyn-Jones A. 1996. An evaluation of methods for the simultaneous detection of Cryptosporidium oocysts and Giardia cysts from water. Appl Environ Microbiol 62:13171322.[PubMed]
47. Hansen JS, Ongerth JE. 1991. Effects of time and watershed characteristics on the concentration of Cryptosporidium oocysts in river water. Appl Environ Microbiol 57:27902795.[PubMed]
48. Falk CC, Karanis P, Schoenen D, Seitz HM. 1998. Bench scale experiments for the evaluation of a membrane filtration method for the recovery efficiency of Giardia and Cryptosporidium from water. Water Res 32:565568.[CrossRef]
49. Dawson D, Maddocks M, Roberts J, Vidler J. 1993. Evaluation of recovery of Cryptosporidium parvum oocysts using membrane filtration. Lett Appl Microbiol 17:276279.[CrossRef]
50. Simmons OD, Sobsey MD, Heaney CD, Schaefer FW, Francy DS. 2001. Concentration and detection of Cryptosporidium oocysts in surface water samples by method 1622 using ultrafiltration and capsule filtration. Appl Environ Microbiol 67:11231127.[PubMed][CrossRef]
51. Digiorgio CL, Gonzalez DA, Huitt CC. 2002. Cryptosporidium and Giardia recoveries in natural waters by using Environmental Protection Agency method 1623. Appl Environ Microbiol 68:59525955.[PubMed][CrossRef]
52. Feng Y, Xiao L. 2011. Zoonotic potential and molecular epidemiology of Giardia species and giardiasis. Clin Microbiol Rev 24:110140.[PubMed][CrossRef]
53. Sartory D, Parton A, Parton A, Roberts J, Bergmann K. 1998. Recovery of Cryptosporidium oocysts from small and large volume water samples using a compressed foam filter system. Lett Appl Microbiol 27:318322.[PubMed][CrossRef]
54. Hill VR, Polaczyk AL, Kahler AM, Cromeans TL, Hahn D, Amburgey JE. 2009. Comparison of hollow-fiber ultrafiltration to the USEPA VIRADEL technique and USEPA method 1623. J Environ Qual 38:822825.[PubMed][CrossRef]
55. Francy DS, Stelzer EA, Brady AM, Huitger C, Bushon RN, Ip HS, Ware MW, Villegas EN, Gallardo V, Lindquist HD. 2013. Comparison of filters for concentrating microbial indicators and pathogens in lake water samples. Appl Environ Microbiol 79:13421352.[PubMed][CrossRef]
56. Liu P, Hill VR, Hahn D, Johnson TB, Pan Y, Jothikumar N, Moe CL. 2012. Hollow-fiber ultrafiltration for simultaneous recovery of viruses, bacteria and parasites from reclaimed water. J Microbiol Meth 88:155161.[CrossRef]
57. Rhodes ER, Hamilton DW, See MJ, Wymer L. 2011. Evaluation of hollow-fiber ultrafiltration primary concentration of pathogens and secondary concentration of viruses from water. J Virol Meth 176:3845.[CrossRef]
58. Rhodes ER, Hamilton DW, See MJ, Wymer L. 2011. Evaluation of hollow-fiber ultrafiltration primary concentration of pathogens and secondary concentration of viruses from water. J Virol Meth 176:3845.[CrossRef]
59. Hill VR, Polaczyk AL, Hahn D, Narayanan J, Cromeans TL, Roberts JM, Amburgey JE. 2005. Development of a rapid method for simultaneous recovery of diverse microbes in drinking water by ultrafiltration with sodium polyphosphate and surfactants. Appl Environ Microbiol 71:68786884.[PubMed][CrossRef]
60. Polaczyk AL, Narayanan J, Cromeans TL, Hahn D, Roberts JM, Amburgey JE, Hill VR. 2008. Ultrafiltration-based techniques for rapid and simultaneous concentration of multiple microbe classes from 100-L tap water samples. J Microbiol Meth73:9299.[CrossRef]
61. Ruecker N. 2013. Genotyping Cryptosporidium from water to source track fecal contamination in agricultural watersheds. Thesis in Agriculture Studies. University of Calgary, Alberta Canada. http://theses.ucalgary.ca/bitstream/11023/506/2/ucalgary_2013_ruecker_norma.pdf
62. Finch G, Daniels C, Black E, Schaefer F, Belosevic M. 1993. Dose response of Cryptosporidium parvum in outbred neonatal CD-1 mice. Appl Environ Microbiol 59:36613665.[PubMed]
63. Korich D, Mead J, Madore M, Sinclair N, Sterling CR. 1990. Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability. Appl Environ Microbiol 56:14231428.[PubMed]
64. Peeters JE, Mazas EA, Masschelein WJ, De Maturana IVM, Debacker E. 1989. Effect of disinfection of drinking water with ozone or chlorine dioxide on survival of Cryptosporidium parvum oocysts. Appl Environ Microbiol 55:15191522.[PubMed]
65. Blewett D,. 1988. Disinfection and oocysts, pp. 107115. In Angus KW, Blewett DA (eds), Cryptosporidiosis. Edinburgh, United Kingdom, Animal Disease Research Association.
66. Campbell A, Robertson L, Smith H. 1992. Viability of Cryptosporidium parvum oocysts: correlation of in vitro excystation with inclusion or exclusion of fluorogenic vital dyes. Appl Environ Microbiol 58:34883493.[PubMed]
67. Belosevic M, Guy R, Taghi-Kilani R, Neumann N, Gyürék L, Liyanage L, Millard P, Finch G. 1997. Nucleic acid stains as indicators of Cryptosporidium parvum oocyst viability. Int J Parasitol 27:787798.[PubMed][CrossRef]
68. Bukhari Z, Marshall M, Korich D, Fricker C, Smith H, Rosen J, Clancy J. 2000. Comparison of Cryptosporidium parvum viability and infectivity assays following ozone treatment of oocysts. Appl Environ Microbiol 66:29722980.[PubMed][CrossRef]
69. Chauret CP, Radziminski CZ, Lepuil M, Creason R, Andrews RC. 2001. Chlorine dioxide inactivation of Cryptosporidium parvum oocysts and bacterial spore indicators. Appl Environ Microbiol 67:29933001.[PubMed][CrossRef]
70. Kato S, Bowman DD. 2002. Using flow cytometry to determine the viability of Cryptosporidium parvum oocysts extracted from spiked environmental samples in chambers. Parasitol Res 88:326331.[PubMed][CrossRef]
71. Clancy JL, Bukhari Z, McCuin R, Clancy TP, Marshall MM, Korich DG, Fricker CR, Sykes N, Smith HV, O'Grady JE, Sobrinho J, Schaefer FW. 2000. Cryptosporidium viability and infectivity methods. American Water Works Association, Denver, CO.
72. O'Donoghue P. 1999. Isolation, propagation and characterisation of Cryptosporidium. Int J Parasitol 29:13791413.[PubMed][CrossRef]
73. Neumann NF, Gyürek LL, Gammie L, Finch GR, Belosevic M. 2000. Comparison of animal infectivity and nucleic acid staining for assessment of Cryptosporidium parvum viability in water. Appl Environ Microbiol 66:406412.[PubMed][CrossRef]
74. Brescia CC, Griffin SM, Ware MW, Varughese EA, Egorov AI, Villegas EN. 2009. Cryptosporidium propidium monoazide-PCR, a molecular biology-based technique for genotyping of viable Cryptosporidium oocysts. Appl Environ Microbiol 75:68566863.[PubMed][CrossRef]
75. Vesey G, Ashbolt N,, Wallner G,, Dorsch M,, Williams KL,, Veal DA. 1995. Assesssing Cryptosporidium parvum Oocyst Viability with Fluorescent In-Situe Hybridization Using RIbosomal RNA Probes and Flow Cytometry. Royal Society of Chemistry, Cambridge, UK.
76. Smith JJ, Gunasekera TS, Barardi CR, Veal D, Vesey G. 2004. Determination of Cryptosporidium parvum oocyst viability by fluorescence in situ hybridization using a ribosomal RNA-directed probe. J Appl Microbiol 96:409417.[PubMed][CrossRef]
77. Abbaszadegan M, Huber MS, Gerba CP, Pepper IL. 1997. Detection of viable Giardia cysts by amplification of heat shock-induced mRNA. Appl Environ Microbiol 63:324328.[PubMed]
78. Jenkins MC, Trout J, Abrahamsen MS, Lancto CA, Higgins J, Fayer R. 2000. Estimating viability of Cryptosporidium parvum oocysts using reverse transcriptase-polymerase chain reaction (RT-PCR) directed at mRNA encoding amyloglucosidase. J Microbiol Meth 43:97106.[CrossRef]
79. Stinear T, Matusan A, Hines K, Sandery M. 1996. Detection of a single viable Cryptosporidium parvum oocyst in environmental water concentrates by reverse transcription-PCR. Appl Environ Microbiol 62:33853390.[PubMed]
80. Alum A, Rubino JR, Khalid Ijaz M. 2011. Comparison of molecular markers for determining the viability and infectivity of Cryptosporidium oocysts and validation of molecular methods against animal infectivity assay. Int J Infect Dis 15:e197e200.[PubMed][CrossRef]
81. Alum A, Sbai B, Asaad H, Rubino JR, Khalid Ijaz M. 2012. ECC–RT-PCR: a new method to determine the viability and infectivity of Giardia cysts. Int J Infect Dis 16:e350e353.[PubMed][CrossRef]
82. Lee S-U, Joung M, Ahn M-H, Huh S, Song H, Park W-Y, Yu J-R. 2008. CP2 gene as a useful viability marker for Cryptosporidium parvum. Parasitol Res 102:381387.[PubMed][CrossRef]
83. Baeumner AJ, Humiston MC, Montagna RA, Durst RA. 2001. Detection of viable oocysts of Cryptosporidium parvum following nucleic acid sequence based amplification. Anal Chem 73:11761180.[PubMed][CrossRef]
84. Current WL, Long PL. 1983. Development of human and calf Cryptosporidium in chicken embryos. J Infect Dis 148:11081113.[PubMed][CrossRef]
85. Current WL, Garcia LS. 1991. Cryptosporidiosis. Clin Microbiol Rev 4:325.[PubMed]
86. Woodmansee DB, Pohlenz JFL. 1983. Development of Cryptosporidium sp. in a human rectal tumor cell line, pp. 306319. In Veterinary Infectious Disease Organization (ed), Proceedings of the Fourth International Symposium on Neonatal Diarrhea, October 3–5, 1983. Veterinary Infectious Disease Organization, Saskatoon, Canada.
87. Woodmansee DB. 1986. Isolation, in vitro excystation, and in vitro development of Cryptosporidium sp. from calves. PhD dissertation. Iowa State University.
88. Hijjawi NS,. 2003. In vitro cultivation and development of Cryptosporidium in cell culture, pp. 233253. In Thompson RCA, Armson A, Ryan UM (eds), Cryptosporidium from Molecules to Disease. Division of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, WA, Australia.
89. Buraud M, Forget E, Favennec L, Bizet J, Gobert J-G, Deluol A-M. 1991. Sexual stage development of cryptosporidia in the Caco-2 cell line. Infec Immu 59:46104613.
90. Rasmussen KR, Larsen NC, Healey MC. 1993. Complete development of Cryptosporidium parvum in a human endometrial carcinoma cell line. Infect Immun 61:14821485.[PubMed]
91. Eggleston MT, Tilley M, Upton SJ. 1994. Enhanced development of Cryptosporidium parvum in vitro by removal of oocyst toxins from infected cell monolayers. J Helminthol Soc Wash 61:122125.
92. Upton SJ,. 1997. In vitro cultivation, pp. 181207. In Fayer R (ed.), Cryptosporidiosis of Humans and Animals. CRC Press, Boca Raton, FL.
93. Hijjawi N, Meloni B, Morgan U, Thompson R. 2001. Complete development and long-term maintenance of Cryptosporidium parvum human and cattle genotypes in cell culture. Int J Parasitol 31:10481055.[PubMed][CrossRef]
94. Hijjawi N, Meloni B, Ryan U, Olson M, Thompson R. 2002. Successful in vitro cultivation of Cryptosporidium andersoni: evidence for the existence of novel extracellular stages in the life cycle and implications for the classification of Cryptosporidium. Int J Parasitol 32:17191726.[PubMed][CrossRef]
95. Lacharme L, Villar V, Rojo-Vazquez FA, Suárez S. 2004. Complete development of Cryptosporidium parvum in rabbit chondrocytes (VELI cells). Microbes Infect 6:566571.[PubMed][CrossRef]
96. Upton SJ, Tilley M, Brillhart DB. 1994. Comparative development of Cryptosporidium parvum (Apicomplexa) in 11 continuous host cell lines. FEMS Microbiol Lett 118:233236.[PubMed][CrossRef]
97. Rochelle PA, Ferguson DM, Handojo TJ, De Leon R, Stewart MH, Wolfe RL. 1997. An assay combining cell culture with reverse transcriptase PCR to detect and determine the infectivity of waterborne Cryptosporidium parvum. Appl Environ Microbiol 63:20292037.[PubMed]
98. Hijjawi N, Meloni B, Ng'anzo M, Ryan U, Olson M, Cox P, Monis P, Thompson R. 2004. Complete development of Cryptosporidium parvum in host cell-free culture. Int J Parasitol 34:769777.[PubMed][CrossRef]
99. Joachim A, Eckert E, Petry F, Bialek R, Daugschies A. 2003. Comparison of viability assays for Cryptosporidium parvum oocysts after disinfection. Vet Parasitol 111:4757.[PubMed][CrossRef]
100. Zhang H, Guo F, Zhu G. 2015. Cryptosporidium Lactate Dehydrogenase Is Associated with the Parasitophorous Vacuole Membrane and Is a Potential Target for Developing Therapeutics. PLoS Pathog 11(11):e1005250. doi:10.1371/journal.ppat.1005250 [PubMed][CrossRef]
101. Stroup SE, Roy S, Mchele J, Maro V, Ntabaguzi S, Siddique A, Kang G, Guerrant RL, Kirkpatrick BD, Fayer R. 2006. Real-time PCR detection and speciation of Cryptosporidium infection using Scorpion probes. J Med Microbiol 55:12171222.[PubMed][CrossRef]
102. Favennec L. 1997. Physiopathologic and therapeutic studies in in vitro and in vivo models of Cryptosporidium parvum infection. J Eukaryot Microbiol 44:69s70s.[PubMed][CrossRef]
103. Bonnin A, Salimbeni I, Dubremetz J, Harly G, Chavanet P, Camerlynck P. 1990. Mise au point d'un modèle expérimental de culture in vitro des stades asexués de Cryptosporidium sp. Annal parasitol hum comp 65:4143.
104. Lawton P, Naciri M, Mancassola R, Petavy AF. 1997. In vitro cultivation of Cryptosporidium parvum in the non-adherent human monocytic THP-1 cell line. J Eukaryot Microbiol 44:66s66s.[PubMed][CrossRef]
105. Wiest PM, Johnson JH, Flanigan TP. 1993. Microtubule inhibitors block Cryptosporidium parvum infection of a human enterocyte cell line. Infect Immu 61:48884890.
106. Sifuentes LY, Di Giovanni GD. 2007. Aged HCT-8 cell monolayers support Cryptosporidium parvum infection. Appl Environ Microbiol 73:75487551.[PubMed][CrossRef]
107. Di Giovanni GD, Lechevallier MW. 2005. Quantitative-PCR assessment of Cryptosporidium parvum cell culture infection. Appl Environ Microbiol 71:14951500.[PubMed][CrossRef]
108. Garvey M, Farrell H, Cormican M, Rowan N. 2010. Investigations of the relationship between use of in vitro cell culture-quantitative PCR and a mouse-based bioassay for evaluating critical factors affecting the disinfection performance of pulsed UV light for treating Cryptosporidium parvum oocysts in saline. J Microbiol Meth 80:267273.[CrossRef]
109. Johnson AM, Di Giovanni GD, Rochelle PA. 2012. Comparison of assays for sensitive and reproducible detection of cell culture-infectious Cryptosporidium parvum and Cryptosporidium hominis in drinking water. Appl Environ Microbiol 78:156162.[PubMed][CrossRef]
110. Belosevic M, Faubert G, Maclean J, Law C, Croll N. 1983. Giardia lamblia infections in Mongolian gerbils: an animal model. J Infect Dis 147:222226.[PubMed][CrossRef]
111. Hill DR, Guerrant RL, Pearson RD, Hewlett EL. 1983. Giardia lamblia infection of suckling mice. J Infect Dis 147:217221.[PubMed][CrossRef]
112. Meyer EA. 1976. Giardia lamblia: isolation and axenic cultivation. Exp Parasitol 39:101105.[PubMed][CrossRef]
113. Erlandsen SL, Bemrick WJ, Wells CL, Feely DE, Knudson L, Campbell SR, Van Keulen H, Jarroll EL. 1990. Axenic culture and characterization of Giardia ardeae from the great blue heron (Ardea herodias). J Parasitol:717724.[PubMed][CrossRef]
114. Schupp DG, Erlandsen SL. 1987. A new method to determine Giardia cyst viability: correlation of fluorescein diacetate and propidium iodide staining with animal infectivity. Appl Environ Microbiol 53:704707.[PubMed]
115. U.S. EPA. 2006. Long term 2 enhanced surface water treatment rule. 40 CFR Parts 9, 141, and 142. Fed Reg71. Regulations NPDW.
116. Yang W, Chen P, Villegas EN, Landy RB, Kanetsky C, Cama V, Dearen T, Schultz CL, Orndorff KG, Prelewicz GJ. 2008. Cryptosporidium source tracking in the Potomac River watershed. Appl Environ Microbiol 74:64956504.[PubMed][CrossRef]
117. Ruecker NJ, Matsune JC, Wilkes G, Lapen DR, Topp E, Edge TA, Sensen CW, Xiao L, Neumann NF. 2012. Molecular and phylogenetic approaches for assessing sources of Cryptosporidium contamination in water. Water Res 46:51355150.[PubMed][CrossRef]
118. Zheng G-X, Zhang X-M, Yang Y-S, Zeng S-R, Wei J-F, Wang Y-H, Li Y-J. 2014. An integrated microfludic device for culturing and screening of Giardia lamblia. Exp Parasitol 137:17.[PubMed][CrossRef]
119. Insulander M, Silverlås C, Lebbad M, Karlsson L, Mattsson J, Svenungsson B. 2013. Molecular epidemiology and clinical manifestations of human cryptosporidiosis in Sweden. Epidemiol Infect 141:10091020.[PubMed][CrossRef]
120. Li N, Xiao L, Alderisio K, Elwin K, Cebelinski E, Chalmers R, Santin M, Fayer R, Kvac M, Ryan U. 2014. Subtyping Cryptosporidium ubiquitum, a zoonotic pathogen emerging in humans. Emerg Infect Dis 20:217.[PubMed][CrossRef]
121. Fournet N, Deege MP, Urbanus AT, Nichols G, Rosner BM, Chalmers RM, Gorton R, Pollock KG, van der Giessen JW, Wever PC, Dorigo-Zetsma JW, Mulder B, Mank TG, Overdevest I, Kusters JG, van Pelt W, Kortbeek LM. 2013. Simultaneous increase of Cryptosporidium infections in the Netherlands, the United Kingdom and Germany in late summer season, 2012. Euro Surveill 18: http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20348.[PubMed]
122. Sulaiman IM, Morgan UM, Thompson RA, Lal AA, Xiao L. 2000. Phylogenetic relationships of Cryptosporidium parasites based on the 70-kilodalton heat shock protein (HSP70) gene. Appl Environ Microbiol 66:23852391.[PubMed][CrossRef]
123. Morgan UM, Monis PT, Xiao L, Limor J, Sulaiman I, Raidal S, O'donoghue P, Gasser R, Murray A, Fayer R. 2001. Molecular and phylogenetic characterisation of Cryptosporidium from birds. Int J Parasitol 31:289296.[PubMed][CrossRef]
124. Pedraza-Díaz S, Amar C, Nichols GL, Mclauchlin J. 2001. Nested polymerase chain reaction for amplification of the Cryptosporidium oocyst wall protein gene. Emerg Infect Dis 7:49.[PubMed][CrossRef]
125. Spano F, Putignani L, Mclauchlin J, Casemore DP, Crisanti A. 1997. PCR-RFLP analysis of the Cryptosporidium oocyst wall protein (COWP) gene discriminates between C. wrairi and C. parvum, and between C. parvum isolates of human and animal origin. FEMS Microbiol Lett 150:209217.[PubMed][CrossRef]
126. Homan W, Van Gorkom T, Kan YY, Hepener J. 1999. Characterization of Cryptosporidium parvum in human and animal feces by single-tube nested polymerase chain reaction and restriction analysis. Parasitol Res 85:707712.[PubMed][CrossRef]
127. Peng MM, Matos O, Gatei W, Das P, Stantic-Pavlinic M, Bern C, Sulaiman IM, Glaberman S, Lal AA, Xiao L. 2001. A comparison of Cryptosporidium subgenotypes from several geographic regions. J Eukaryot Microbiol 48:28s31s.[CrossRef]
128. Alves M, Xiao L, Sulaiman I, Lal AA, Matos O, Antunes F. 2003. Subgenotype analysis of Cryptosporidium isolates from humans, cattle, and zoo ruminants in Portugal. J Clin Microbiol 41:27442747.[PubMed][CrossRef]
129. Glaberman S, Sulaiman IM, Bern C, Levior J, Peng MM, Morgan U, Gilman R, Lal AA, Xiao L. 2001. A multilocus genotypic analysis of Cryptosporidium meleagridis. J Eukaryot Microbiol 48:19s22s.[CrossRef]
130. Cacciò SMDG, Marzia Pozio, Edoardo. 2002. Sequence analysis of the β-giardin gene and development of a polymerase chain reaction–restriction fragment length polymorphism assay to genotype Giardia duodenalis cysts from human faecal samples. Int J Parasitol 32:10231030.[PubMed][CrossRef]
131. Lalle M, Jimenez-Cardosa E, Cacciò SM, Pozio E. 2005. Genotyping of Giardia duodenalis from humans and dogs from Mexico using a β-giardin nested polymerase chain reaction assay. J Parasitol 91:203205.[PubMed][CrossRef]
132. Xiao L, Lal AA, Jiang J,. 2004. Detection and differentiation of Cryptosporidium oocysts in water by PCR-RFLP, pp. 163176. In Spencer JFT, Ragout AL (eds), Public Health Microbiology. Humana Press Inc., Totowa, NJ.[CrossRef]
133. Jiang J, Alderisio KA, Singh A, Xiao L. 2005. Development of procedures for direct extraction of Cryptosporidium DNA from water concentrates and for relief of PCR inhibitors. Appl Environ Microbiol 71:11351141.[PubMed][CrossRef]
134. Xiao L, Singh A, Limor J, Graczyk TK, Gradus S, Lal A. 2001. Molecular characterization of cryptosporidium oocysts in samples of raw surface water and wastewater. Appl Environ Microbiol 67:10971101.[PubMed][CrossRef]
135. Gobet P, Toze S. 2001. Sensitive genotyping of Cryptosporidium parvum by PCR-RFLP analysis of the 70-kilodalton heat shock protein (HSP70) gene. FEMS Microbiol Lett 200:3741.[PubMed][CrossRef]
136. Sturbaum GD, Klonicki PT, Marshall MM, Jost BH, Clay BL, Sterling CR. 2002. Immunomagnetic separation (IMS)-fluorescent antibody detection and IMS-PCR detection of seeded Cryptosporidium parvum oocysts in natural waters and their limitations. Appl Environ Microbiol 68:29912996.[PubMed][CrossRef]
137. Robinson G, Chalmers RM. 2012. Assessment of polymorphic genetic markers for multi-locus typing of Cryptosporidium parvum and Cryptosporidium hominis. Exp Parasitol 132:200215.[PubMed][CrossRef]
138. Le Blancq SM, Khramtsov NV, Zamani F, Upton SJ, Wu TW. 1997. Ribosomal RNA gene organization in Cryptosporidium parvum. Mol Biochem Parasitol 90:463478.[PubMed][CrossRef]
139. Khramtsov NV, Tilley M, Blunt DS, Montelone BA, Upton SJ. 1995. Cloning and analysis of a Cryptosporidium parvum gene encoding a protein with homology to cytoplasmic form Hsp70. J Eukaryot Microbiol 42:416422.[PubMed][CrossRef]
140. CDC. 2014. CryptoNet: molecular-based tracking to better understand U.S. cryptosporidiosis transmission. National Center for Emerging and Zoonotic Infectious Diseases, CDC, Atlanta, GA. http://www.cdc.gov/parasites/crypto/pdf/cryptonet_fact_sheet508c.pdf. Accessed 12/22/2015
141. Xiao L. 2010. Molecular epidemiology of cryptosporidiosis: an update. Exp Parasitol 124:8089.[PubMed][CrossRef]
142. O'Connor RM, Wanyiri JW, Cevallos AM, Priest JW, Ward HD. 2007. Cryptosporidium parvum glycoprotein gp40 localizes to the sporozoite surface by association with gp15. Mol Biochem Parasitol 156:8083.[PubMed][CrossRef]
143. Robertson L, Hermansen L, Gjerde B, Strand E, Alvsvåg J, Langeland N. 2006. Application of genotyping during an extensive outbreak of waterborne giardiasis in Bergen, Norway, during autumn and winter 2004. Appl Environ Microbiol 72:22122217.[PubMed][CrossRef]
144. Xiao L, Alderisio K, Singh A. 2006. Development and standardization of a Cryptosporidium genotyping tool for water samples, vol. 91101. American Water Works Association, Denver, CO.
145. Ware MW, Keely SP, Villegas EN. 2013. Development and evaluation of an off-the-slide genotyping technique for identifying Giardia cysts and Cryptosporidium oocysts directly from US EPA Method 1623 slides. J Appl Microbiol 115:298309.[PubMed][CrossRef]
146. Di Giovanni G, Hoffman R, Sturbaum G. 2010. Cryptosporidium genotyping method for regulatory microscope slides. Project 4099 Report. Water Research Foundation, Denver, CO, 56.
147. U.S. EPA. 1992. Standards for the disposal of sewage sludge, vol. R-93/003, pp. 93879404. EPA, Washington, DC.
148. Xiao L, Fayer R, Ryan U, Upton SJ. 2004. Cryptosporidium taxonomy: recent advances and implications for public health. Clin Microbiol Rev 17:7297.[PubMed][CrossRef]
149. Nichols RA, Campbell BM, Smith HV. 2006. Molecular fingerprinting of Cryptosporidium oocysts isolated during water monitoring. Appl Environ Microbiol 72:54285435.[PubMed][CrossRef]
150. Nichols R, Connelly L, Sullivan C, Smith H. 2010. Identification of Cryptosporidium species and genotypes in Scottish raw and drinking waters during a one-year monitoring period. Appl Environ Microbiol 76:59775986.[PubMed][CrossRef]
151. Chalmers RM, Katzer F. 2013. Looking for Cryptosporidium: the application of advances in detection and diagnosis. Trends Parasitol 29:237251.[PubMed][CrossRef]
152. Sopwith W, Osborn K, Chalmers R, Regan M. 2005. The changing epidemiology of cryptosporidiosis in North West England. Epidemiol Infect 133:785793.[PubMed][CrossRef]
153. Karon A, Hanni K, Mohle-Boetani J, Beretti R, Hill V, Arrowood M, Johnston S, Xiao L, Vugia D. 2011. Giardiasis outbreak at a camp after installation of a slow-sand filtration water-treatment system. Epidemiol Infect 139:713717.[PubMed][CrossRef]
154. Daly E, Roy S, Blaney D, Manning J, Hill V, Xiao L, Stull J. 2010. Outbreak of giardiasis associated with a community drinking-water source. Epidemiol Infect 138:491500.[PubMed][CrossRef]
155. Ma P VG, Martinez AJ, Theodore FH, Daggett PM, Sawyer TK. 1990. Naegleria and Acanthoamoeba infections. Rev Infect Dis 12: 490513.[PubMed][CrossRef]
156. De Jonckheere JF. 2004. Molecular definition and the ubiquity of species in the genus Naegleria. Protist 155:89103.[PubMed][CrossRef]
157. Stevens A, De Jonckheere J, Willaert E. 1980. Naegleria lovaniensis new species: isolation and identification of six thermophilic strains of a new species found in association with Naegleria fowleri. Int J Parasitol 10:5164.[PubMed][CrossRef]
158. Martinez AJ. 1985. Free-Living Amoebas; Natural History, Prevention, Diagnosis, Pathology and Treatment of Disease. CRC Press, Boca Raton, FL.
159. Fowler M, Carter R. 1965. Acute pyogenic meningitis probably due to Acanthamoeba sp.: a preliminary report. British Med J 2:734.732.[CrossRef]
160. Barnett ND, Kaplan AM, Hopkin RJ, Saubolle MA, Rudinsky MF. 1996. Primary amoebic meningoencephalitis with Naegleria fowleri: clinical review. Pediatr Neurol 15:230234.[PubMed][CrossRef]
161. Cervantes-Sandoval I, De Jesus Serrano-Luna J, Tapia-Malagón JL, Pacheco-Yepez J, Silva-Olivares A, Galindo-Gomez S, Tsutsumi V, Shibayama M. 2007. Characterization of Naegleria fowleri strains isolated from human cases of primary amoebic meningoencephalitis in Mexico. Rev Invest Clin 59:342.[PubMed]
162. Visvesvara GS, Moura H, Schuster FL. 2007. Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol Med Microbiol 50:126.[PubMed][CrossRef]
163. Parija S, Jayakeerthee S. 1999. Naegleria fowleri: a free living amoeba of emerging medical importance. J Commun Dis 31:153.[PubMed]
164. Martinez AJ, Visvesvara GS. 1997. Free-living, amphizoic and opportunistic amebas. Brain Pathol 7:583598.[PubMed][CrossRef]
165. Dorsch MM, Cameron AS, Robinson BS. 1983. The epidemiology and control of primary amoebic meningoencephalitis with particular reference to South Australia. Trans Royal Soc Trop Med Hyg 77:372377.[CrossRef]
166. Esterman A, Dorsch M, Cameron S, Roder D, Robinson B, Lake J, Christy P. 1984. The association of naegleria fowleri with the chemical, microbiological and physical characteristics of South Australian water supplies. Water Res 18:549553.[CrossRef]
167. Schuster FL, Visvesvara GS. 2004. Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. Int J Parasitol 34:10011027.[PubMed][CrossRef]
168. CDC. 2012. http://www.cdc.gov/parasites/naegleria/state-map.html. Accessed April 29.
169. Katranjidan, Olivia. 2011. Kansas resident dies from brain-eating amoeba after swimming in warm lake. http://abcnews.go.com/Health/kansas-resident-dies-brain-eating-amoeba-swimming-warm/story?id=14489468. Accessed 05/6/2014.
170. Marciano-Cabral F, Cabral GA. 2007. The immune response to Naegleria fowleri amebae and pathogenesis of infection. FEMS Immu Med Microbiol 51:243259.[CrossRef]
171. Marshall MM, Naumovitz D, Ortega Y, Sterling CR. 1997. Waterborne protozoan pathogens. Clin Microbiol Rev 10:6785.[PubMed]
172. Visvesvara G, Schuster F. 2008. Opportunistic free-living amebae, part I. Clin Microbiol Newsletter 30:151158.[CrossRef]
174. Seidel K. 1984. Bacteriological problems of bathing waters with special reference to whirlpool baths and “psycho-tanks.” Schriftenreihe des Vereins fur Wasser-, Boden-und Lufthygiene 65:303310.
175. Kim J-H, Jung S-Y, Lee Y-J, Song K-J, Kwon D, Kim K, Park S, Im K-I, Shin H-J. 2008. Effect of therapeutic chemical agents in vitro and on experimental meningoencephalitis due to Naegleria fowleri. Antimicrob Agents Chemother 52:40104016.[PubMed][CrossRef]
176. Visvesvara GS. 2010. Amebic meningoencephalitides and keratitis: challenges in diagnosis and treatment. Curr Opin Infect Dis 23:590594.[PubMed][CrossRef]
177. CDC. 2014a. Naegleria fowleri—primary amebic meningoencephalitis (PAM). Treatment. http://www.cdc.gov/parasites/naegleria/treatment.html. CDC.
178. Cabanes P-A, Wallet F, Pringuez E, Pernin P. 2001. Assessing the risk of primary amoebic meningoencephalitis from swimming in the presence of environmental Naegleria fowleri. Appl Environ Microbiol 67:29272931.[PubMed][CrossRef]
179. Červa L. 1971. Studies of limax amoebae in a swimming pool. Hydrobiologia 38:141161.[CrossRef]
180. Rivera F, Ramirez E, Bonilla P, Calderon A, Gallegos E, Rodriguez S, Ortiz R, Zaldivar B, Ramirez P, Durán A. 1993. Pathogenic and free-living amoebae isolated from swimming pools and physiotherapy tubs in Mexico. Environ Res 62:4352.[PubMed][CrossRef]
181. Marciano-Cabral F, Maclean R, Mensah A, Lapat-Polasko L. 2003. Identification of Naegleria fowleri in domestic water sources by nested PCR. Appl Environ Microbiol 69:58645869.[PubMed][CrossRef]
182. Stockman LJ, Wright CJ, Visvesvara GS, Fields BS, Beach MJ. 2011. Prevalence of Acanthamoeba spp. and other free-living amoebae in household water, Ohio, USA—1990–1992. Parasitol Res 108:621627.[PubMed][CrossRef]
183. Buse HY, Lu J, Struewing IT, Ashbolt NJ. 2013. Eukaryotic diversity in premise drinking water using 18S rDNA sequencing: implications for health risks. Environ Sci Pollut Res 20:63516366.[CrossRef]
184. Bright KR, Marciano-Cabral F, Gerba CP. 2009. Occurrence of Naegleria fowleri in Arizona drinking water supply wells (PDF). J-Am Water Works Assoc 101:4350.
185. Wellings F, Amuso P, Chang S, Lewis A. 1977. Isolation and identification of pathogenic Naegleria from Florida lakes. Appl Environ Microbiol 34:661667.[PubMed]
186. John DT, Howard MJ. 1995. Seasonal distribution of pathogenic free-living amebae in Oklahoma waters. Parasitol Res 81:193201.[PubMed]
187. Sheehan KB, Fagg JA, Ferris MJ, Henson JM. 2003. PCR detection and analysis of the free-living amoeba Naegleria in hot springs in Yellowstone and Grand Teton National Parks. Appl Environ Microbiol 69:59145918.[PubMed][CrossRef]
188. Sifuentes LY CB, Gerba CP, Bright KR. 2014. The occurrence of Naegleria fowleri in recreational waters in Arizona. Environ Sci Health A 49(11):4149.