Chapter 3.2.3 : Analysis of Bioaerosol Samples

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Analysis of Bioaerosol Samples, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch3.2.3-1.gif /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch3.2.3-2.gif


Respiratory exposure to certain pathogenic or toxigenic microorganisms and/or elevated concentrations of environmental organisms could result in health effects, such as allergic reactions, irritant responses, toxicosis, and respiratory illness. Determination of the concentration and composition of bioaerosols in indoor environments is necessary for assessment of contamination levels and to estimate potential exposure of occupants. The need for accurate measurement of bioaerosols has received increased attention in recent years owing to concerns with mold contamination in indoor environments and the threat of bioterrorism. Sample analysis methods include culture, microscopic, biochemical, immunological, or molecular biological assays. Traditionally, airborne microorganisms have been analyzed by culturable and microscopic total count determinations. However, limitations to both of these methods have led to the development of techniques that can increase the sensitivity and accuracy of bioaerosol monitoring. The selection of an analysis method is a critical component of a bioaerosol sampling plan, and it should be designated before air sampling is conducted. Factors which influence the choice of an analytical method include the cost and length of time required for analysis, the sensitivity and specificity of the analysis method, the sampling methods to be utilized, and the expected characteristics of the bioaerosol of interest. The purpose of this chapter is to present an overview of available methods for the analysis of bioaerosols. In addition, the potential use of enhanced monitoring of bioaerosols with polymerase chain reaction, biochemical, and immunological assays is discussed.

Citation: Cruz P, Buttner M. 2016. Analysis of Bioaerosol Samples, p 3.2.3-1-3.2.3-9. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.2.3
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Diagrams illustrating competitive polymerase chain reaction (cPCR) and quantitative PCR (qPCR). (a) In cPCR, the target template and the internal control DNA compete for the oligonucleotide primers during the PCR assay. Post-PCR manipulations are required to separate the target and competitor products and determine the ratio between them (i.e., final product concentrations). (b) In qPCR, a fluorescent probe anneals to the target DNA between the specific primer binding sites. As new DNA is synthesized, the probe is cleaved by the polymerase, causing it to fluoresce, and the amount of fluorescence is used to measure the initial target DNA concentration. doi:10.1128/9781555818821.ch3.2.3.f1

Citation: Cruz P, Buttner M. 2016. Analysis of Bioaerosol Samples, p 3.2.3-1-3.2.3-9. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.2.3
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Eduard W, Heederik D. 1998. Methods for quantitative assessment of airborne levels of noninfectious microorganisms in highly contaminated work environments. Am Indust Hyg Assoc J 59:113127.[CrossRef]
2. Levetin E,. 1995. Fungi, p. 87120. In Burge H (ed), Bioaerosols. Lewis Publishers, Boca Raton, FL.
3. D'Arcy N, Canales M, Spratt DA, Lai K. 2012. Healthy schools: standardisation of culturing methods for seeking airborne pathogens in bioaerosols emitted from human sources. Aerobiologia 28:413422.[CrossRef]
4. Burge HA,. 1995. Bioaerosol investigations, p. 123. In Burge HA (ed.), Bioaerosols. CRC Press, Boca Raton, FL.
5. Alvarez AJ, Buttner MP, Toranzos GA, Dvorsky EA, Toro A, Heikes TB, Mertikas LE, Stetzenbach LD. 1994. The use of solid-phase polymerase chain reaction for the enhanced detection of airborne microorganisms. Appl Environ Microbiol 60:374376.[PubMed]
6. Buttner MP, Stetzenbach LD. 1991. Evaluation of four aerobiological sampling methods for the retrieval of aerosolized Pseudomonas syringae. Appl Environ Microbiol 57:12681270.[PubMed]
7. Walter MV, Marthi B, Fieland VP, Ganio LM. 1990. Effect of aerosolization on subsequent bacterial survival. Appl Environ Microbiol 56:34683472.[PubMed]
8. Jensen PA, Lighthart B, Mohr AJ, Shaffer BT,. 1994. Instrumentation used with microbial bioaerosol. In Lighthart B,, Mohr AJ (eds), Atmospheric microbial aerosols, theory and applications. Chapman and Hall, New York.
9. Burge HP, Solomon WR, Boise JR. 1977. Comparative merits of eight popular media in aerometric studies of fungi. J Allergy Clin Immunol 60:199203.[PubMed][CrossRef]
10. Morring KL, Sorenson WG, Attfield MD. 1983. Sampling for airborne fungi: a statistical comparison of media. Am Ind Hyg Assoc J 44:662664.[PubMed][CrossRef]
11. Smid T, Schokkin E, Boleij JSM, Heederik D. 1989. Enumeration of viable fungi in occupational environments: a comparison of samplers and media. Am Ind Hyg Assoc J 50:235239.[PubMed][CrossRef]
12. Verhoeff AP, van Wijnen JH, Boleij JSM, Brunekreef B, van Reenen-Hoekstra ES, Samson RA. 1990. Enumeration and identification of airborne viable mould propagules in houses. Allergy 45:275284.[PubMed][CrossRef]
13. Hunter CA, Grant C, Flannigan B, Bravery AF. 1988. Mould in buildings: the air spora of domestic buildings. Intl Biodet 24:81101.[CrossRef]
14. Strachan DP, Flannigan B, McCabe EM, McGarry F. 1990. Quantification of airborne moulds in the homes of children with and without wheeze. Thorax 45:382387.[PubMed][CrossRef]
15. Banks JG, Board RG, Carger J, Dodge AD. 1985. The cytotoxic and photodynamic inactivation of microorganisms by rose bengal. J Appl Bacteriol 58:392400.[CrossRef]
16. Hocking AD, Pitt JI. 1980. Dichloran-glycerol medium for enumeration of xerophilic fungi from low-moisture foods. Appl Environ Microbiol 39:488492.[PubMed]
17. Hirsch SR, Sosman JA. 1976. A one-year survey of mold growth inside twelve homes. Ann Allergy 36:3038.[PubMed]
18. Solomon WR. 1975. Assessing fungus prevalence in domestic interiors. J Allergy Clin Immunol 56:235242.[PubMed][CrossRef]
19. Beuchat LR. 1992. Media for detecting and enumerating yeasts and moulds. Intl J Food Microbiol 17:145158.[CrossRef]
20. Madelin TM, Madelin MF,. 1995. Biological analysis of fungi and associated molds, p. 361386. In Cox CS,, Wathes CM (eds), Bioaerosols Handbook. CRC Press, Boca Raton, FL.
21. Andersen AA. 1958. New sampler for the collection, sizing, and enumeration of viable airborne particles. J Bacteriol 76:471484.[PubMed]
22. Buttner MP, Stetzenbach LD. 1993. Monitoring airborne fungal spores in an experimental indoor environment to evaluate sampling methods and the effects of human activity on air sampling. Appl Environ Microbiol 59:219226.[PubMed]
23. Macher JM. 1989. Positive-hole correction of multiple-jet impactors for collecting viable microorganisms. Am Ind Hyg Assoc J 50:561568.[PubMed][CrossRef]
24. Chang CW, Hwang YH, Grinshpun SA, Macher JM, Willeke K. 1994. Evaluation of counting error due to colony masking in bioaerosol sampling. Appl Environ Microbiol 60:37323738.[PubMed]
25. Palmgren U, Strom G, Blomquist G, Malmberg P. 1986. Collection of airborne micro-organisms on Nucleopore filters, estimation and analysis—CAMNEA method. J Appl Bacteriol 61:401406.[PubMed][CrossRef]
26. Hobbie JE, Daley RJ, Jasper S. 1977. Use of nucleopore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 33:12251228.[PubMed]
27. Walters M, Milton D, Larsson L, Ford T. 1994. Airborne environmental endotoxin: a cross validation of sampling and analysis techniques. Appl Environ Microbiol 60:9961005.[PubMed]
28. Fabian MP, Miller SL, Reponen T, Hernandez MT. 2005. Ambient bioaerosol indices for indoor air quality assessments of flood reclamation. J Aerosol Sci 36:763783.[CrossRef]
29. Patentalakis N, Pantidou A, Kalogerakis N. 2008. Determination of enterobacteria in air and wastewater samples from a wastewater treatment plant by epi-fluorescence microscopy. Water Air Soil Poll Focus 8:107115.[CrossRef]
30. Andreotti PE, Ludwig GV, Peruski AH, Tuite JJ, Morse SS, Peruski LFJr, 2003. Immunoassay of infectious agents. Bio Techn 35:850859.
31. Lange JL, Thorne PS, Lynch N. 1997. Application of flow cytometry and fluorescent in situ hybridization for assessment of exposures to airborne bacteria. Appl Environ Microbiol 63:15571563.[PubMed]
32. Prigione V, Lingua G, Filipello Marchisio V. 2004. Development and use of flow cytometry for detection of airborne fungi. Appl Environ Microbiol 70:13601365.[PubMed][CrossRef]
33. Rule AM, Kesavan J, Schwab KJ, Buckley TJ. 2007. Application of flow cytometry for the assessment of preservation and recovery efficiency of bioaerosol samplers spiked with Pantoea agglomerans. Environ Sci Technol 41:24672472.[PubMed][CrossRef]
34. McBride MT, Masquelier D, Hindson BJ, Makarewicz AJ, Brown S, Burris K, Metz T, Langlois RG, Tsang KW, Bryan R, Anderson DA, Venkateswaran KS, Milanovich FP, Colston BWJr. 2003. Autonomous detection of aerosolized Bacillus anthracis and Yersinia pestis. Anal Chem 75:52935299.[PubMed][CrossRef]
35. Chen PS, Li CS. 2005. Bioaerosol characterization by flow cytometry with fluorochrome. J Environ Monit 7:950959.[PubMed][CrossRef]
36. Burge HA, Solomon WR. 1987. Sampling and analysis of biological aerosols. Atmos Environ 21:451456.[CrossRef]
37. Weimer BC, Walsh MK, Beer C, Koka R, Wang X. 2001. Solid-phase capture of proteins, spores, and bacteria. Appl Environ Microbiol 67:13001307.[PubMed][CrossRef]
38. Chung Y-J, Jarvis BB, Tak H, Pestka JJ. 2003. Immunochemical assay for satratoxin G and other macrocyclic trichothecenes associated with indoor air contamination by Stachybotrys chartarum. Tox Mech Meth 13:247252.[CrossRef]
39. Buttner MP, Cruz P, Stetzenbach LD, Klima-Comba AK, Stevens VL, Cronin TD. 2004. Determination of the efficacy of two building decontamination strategies by surface sampling with culture and quantitative PCR analysis. Appl Environ Microbiol 70:47404747.[PubMed][CrossRef]
40. Buttner MP, Cruz P, Stetzenbach LD, Klima-Comba AK, Stevens VL, Emanuel PA. 2004. Evaluation of the biological sampling kit (BiSKit) for large-area surface sampling. Appl Environ Microbiol 70:70407045.[PubMed][CrossRef]
41. Emanuel PA, Chue C, Kerr L, Cullin D. 2003. Validating the performance of biological detection equipment: the role of the federal government. Biosecur Bioterror 1:131137.[PubMed][CrossRef]
42. Centers for Disease Control and Prevention (CDC). 2012. Emergency preparedness and response Anthrax Q & A: laboratory testing http://www.bt.cdc.gov/agent/anthrax/faq/labtesting.asp.
43. DeBlay F, Chapman MD, Platts-Mills TA. 1991. Airborne cat allergen Feld I: environmental control with the cat in situ. Am Rev Respir Dis 143:13341339.[CrossRef]
44. Douwes J, Doekes G, Montijn R, Heederik D, Brunekreef B. 1996. Measurement of β(1-3)-glucans in occupational and home environments with an inhibition enzyme immunoassay. Appl Environ Microbiol 62:31763182.[PubMed]
45. Luczynska CM, Li Y, Chapman MD, Platts-Mills TAE. 1990. Airborne concentration and particle size distribution of allergen derived from domestic cats (Felis domesticus): measurements using cascade impactor, liquid impinger and a two site monoclonal antibody assay for Fel d I. Am Rev Respir Dis 141:361367.[PubMed][CrossRef]
46. Platts-Mills TAE, Thomas WR, Aalbersee RC, Vervloet D, Chapman MD. 1992. Dust mite allergens and asthma: report of a second international workshop. J Allergy Clin Immunol 89:10461060.[PubMed][CrossRef]
47. Sander I, Fleischer C, Borowitzki G, Brüning T, Raulf-Heimsoth M. 2008. Development of a two-site enzyme immunoassay based on monoclonal antibodies to measure airborne exposure to (1-3)-beta-D-glucan. J Immunol Meth 337:5562.[CrossRef]
48. Chapman MD,. 1995. Analytical methods: immunoassays. In Burge HA (ed), Bioaerosols. CRC Press, Boca Raton, FL.
49. Xu Z, Wu Y, Shen F, Chen Q, Tan M, Yao M. 2011. Bioaerosol science technology and engineering: past, present, and future. Aerosol Sci Technol 45:13371349.[CrossRef]
50. Castellan RM, Olenchock SA, Kinsley KB, Hankinson JL. 1987. Inhaled endotoxin and decreased spirometric values: an exposure-response relation for cotton dust. N Eng J Med 317:605610.[CrossRef]
51. Crook B, Higgins S, Lacey J., 1987. Methods for sampling microorganisms at solid waste disposal sites, p. 791797. In Houghton DR,, Smith RN,, Eggins HOW (eds), 7th Intl Biodeterioration Symposium, vol. 7. Elsevier, London.
52. Duquenne P, Marchand G, Duchaine C. 2012. Measurement of endotoxins in bioaerosols at workplace: a critical review of literature and a standardization issue. Ann Occup Hyg 57:137172.[PubMed][CrossRef]
53. Jacobs RR. 1989. Airborne endotoxins: an association with occupational lung disease. Appl Ind Hyg 4:5056.[CrossRef]
54. Liu J, Pankhurst LJ, Deacon LJ, Abate W, Hayes ET, Drew GH, Longhurst PJ, Pollard S, Longhurst J, Tyrrel SF, Jackson SK. 2011. Evaluation of inflammatory effects of airborne endotoxin emitted from composting sources. Environ Toxicol Chem 30:602606.[PubMed][CrossRef]
55. Milton DK,. 1995. Endotoxin, p. 7786. In Burge HA (ed), Bioaerosols CRC Press, Boca Raton, FL.
56. Milton DK, Gere RJ, Feldman HA, Greaves IA. 1990. Endotoxin measurement: aerosol sampling and application of a new Limulus method. Am Ind Hyg Assoc J 51:331337.[PubMed][CrossRef]
57. Sebastian A, Larsson L. 2003. Characterization of the microbial community in indoor environments: a chemical-analytical approach. Appl Environ Microbiol 69:31033109.[PubMed][CrossRef]
58. Flannigan B. 1987. Mycotoxins in the air. Intl Biodet 23:7378.[CrossRef]
59. Croft WS, Jarvis BB, Yatawara CS. 1986. Airborne outbreak of trichothecene toxicosis. Atmos Environ 20:549552.[CrossRef]
60. Jarvis BB, Sorenson WG, Hintikka E, Nikulin M, Zhou Y, Jiang J, Wang S, Hinkley S, Etzel RA, Dearborn D. 1998. Study of toxin production by isolates of Stachybotrys chartarum and Memnoniella echinata isolated during a study of pulmonary hemosiderosis in infants. Appl Environ Microbiol 64:36203625.[PubMed]
61. Johanning E, Biagini R, Hull D, Morey P, Jarvis B, Landsbergis P. 1996. Health and immunology study following exposure to toxigenic fungi (Stachybotrys chartarum) in a water-damaged office environment. Int Arch Occup Environ Health 68:207218.[PubMed]
62. Pasanen A, Nikulin M, Tuomainen M, Berg S, Parikka P, Hintikka E. 1993. Laboratory experiments on membrane filter sampling of airborne mycotoxins produced by Stachybotrys atra corda. Atmos Environ 27A:913.[CrossRef]
63. Sorenson WG, Frazer DG, Jarvis BB, Simpson J, Robinson VA. 1987. Trichothecene mycotoxins in aerosolized conidia of Stachybotrys atra. Appl Environ Microbiol 53:13701375.[PubMed]
64. Yike I, Allan T, Sorenson WG, Dearborn DG. 1999. Highly sensitive protein translation assay for trichothecene toxicity in airborne particulates: comparison with cytotoxicity assays. Appl Environ Microbiol 65:8894.[PubMed]
65. Tuomi T, Reijula K, Johnsson T, Hemminki K, Hintikka E-L, Lindroos O, Kalso S, Koukila-Kähkölä P, Mussalo-Rauhamaa H, Haahtela T. 2000. Mycotoxins in crude building materials from water-damaged buildings. Appl Environ Microbiol 66:18991904.[PubMed][CrossRef]
66. Panaccione DG, Coyle CM. 2005. Abundant respirable ergot alkaloids from the common airborne fungus Aspergillus fumigatus. Appl Environ Microbiol 71:31063111.[PubMed][CrossRef]
67. Garon D, Kaddoumi AE, Carayon A, Amiel C. 2010. FT-IR spectroscopy for rapid differentiation of Aspergillus flavus, Aspergillus fumigatus, Aspergillus parasiticus and characterization of aflatoxigenic isolates collected from agricultural environments. Mycopathologia 170:131142.[PubMed][CrossRef]
68. Miller JD, Laflamme AM, Sobol Y, Lafontaine P, Greenhalgh R. 1988. Fungi and fungal products in some Canadian houses. Intl Biodet 24:103120.[CrossRef]
69. Miller JD, Young YC. 1997. The use of ergosterol to measure exposure to fungal propagules in indoor air. Am Ind Hyg Assoc J 58:3943.[PubMed][CrossRef]
70. Chen Q, Hildemann LM. 2009. Size-resolved concentrations of particulate matter and bioaerosols inside versus outside of homes. Aerosol Sci Technol 43:699713.[CrossRef]
71. Douwes J, Thorne P, Pearce N, Heederik D. 2003. Bioaerosol health effects and exposure assessment: progress and prospects. Ann Occup Hyg 47:187200.[PubMed][CrossRef]
72. Fogelmark B, Goto H, Yuasa K, Marchat B, Rylander R. 1992. Acute pulmonary toxicity of inhaled ß-1,3-glucan and endotoxin. Agent Actions 35:5056.[CrossRef]
73. Goto H, Yuasa K, Rylander R. 1994. (1-3)-ß-d-glucan in indoor air, its measurement and in vitro activity. Am J Ind Med 25:8183.[PubMed][CrossRef]
74. Rylander R. 1999. Indoor air-related effects and airborne (1-3)-ß-d-glucan. Environ Health Perspect 107:501503.[PubMed][CrossRef]
75. Reesley M, Miller M, Nielsen KF. 2003. Quantifying mold biomass on gypsum board: comparison of ergosterol and beta-N-acetylhexosaminidase as mold biomass parameters. Appl Environ Microbiol 69:39963998.[CrossRef]
76. Bauer H, Claeys M, Vermeylen R, Schueller E, Weinke G, Berger A, Puxbaum H. 2008. Arabitol and mannitol as tracers for the quantification of airborne fungal spores. Atmos Environ 42:588593.[CrossRef]
77. Korpi A, Pasanen A-L, Pasanen P. 1998. Volatile compounds originating from mixed microbial cultures on building materials under various humidity conditions. Appl Environ Microbiol 64:29142919.[PubMed]
78. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich H, Arnheim N. 1985. Enzymatic amplification of B-globin genomic sequence and restriction site analysis for diagnosis of sickle cell anemia. Science 230:13501354.[PubMed][CrossRef]
79. Dungan RS, Leytem AB. 2009. Qualitative and quantitative methodologies for determination of airborne microorganisms at concentrated animal-feeding operations. World J Microbiol Biotechnol 25:15051518.[CrossRef]
80. Myatt TA, Johnston SL, Zuo Z, Wand M, Kebadze T, Rudnick S, Milton DK. 2004. Detection of airborne rhinovirus and its relation to outdoor air supply in office environments. Am J Respir Crit Care Med 169:11871190.[PubMed][CrossRef]
81. Olsson M., Lidman C, Latouche S, Bjorkman A, Roux P, Linder E, Wahlgren M. 1998. Identification of Pneumocystis carinii f. sp. hominis gene sequences in filtered air in hospital environments. J Clin Microbiol 36:17371740.[PubMed]
82. Sawyer MH, Chamberlain CJ, Wu YN, Aintablian N, Wallace MR. 1994. Detection of varicella-zoster virus DNA in air samples from hospital rooms. J Infect Dis 169:9194.[PubMed][CrossRef]
83. Stärk KDC, Nicolet J, Frey J. 1998. Detection of Mycoplasma hypopneumoniae by air sampling with a nested PCR assay. Appl Environ Microbiol 64:543548.[PubMed]
84. Zeng Q-Y, Westermark S-O, Rasmuson-Lestander Å, Wang X-R. 2004. Detection and quantification of Wallemia sebi in aerosols by real-time PCR, conventional PCR, and cultivation. Appl Environ Microbiol 70:72957302.[PubMed][CrossRef]
85. Buttner MP, Cruz-Perez P, Stetzenbach LD. 2001. Enhanced detection of surface-associated bacteria in indoor environments by quantitative PCR. Appl Environ Microbiol 67:25642570.[PubMed][CrossRef]
86. Josephson KL, Gerba CP, Pepper IL. 1993. Polymerase chain reaction detection of nonviable bacterial pathogens. Appl Environ Microbiol 59:35133515.[PubMed]
87. Rinsoz T, Duquenne P, Greff-Mirguet G, Oppliger A. 2008. Application of real-time PCR for total airborne bacterial assessment: comparison with epifluorescence microscopy and culture-dependent methods. Atmos Environ 42:67676774.[CrossRef]
88. White TJ, Bruns T, Lee S, Taylor J,. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. p. 315322. In Innis MA,, Gelfand DH,, Sninsky JJ,, White TJ (eds), PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA.
89. Cruz P, Stetzenbach LD,. 2004. Specific detection of fungi associated with sick building syndrome when using quantitative polymerase chain reaction. In Straus DC (ed), Advances in Applied Microbiology, vol. 55: Sick Building Syndrome. Elsevier Academic Press, San Diego, CA.
90. Wu Z, Wang XR, Blomquist G. 2002. Evaluation of PCR primers and PCR conditions for specific detection of common airborne fungi. J Environ Monit 4:377382.[PubMed][CrossRef]
91. Loy A, Horn M, Wagner M. 2003. probeBase: an online resource for rRNA-targeted oligonucleotide probes. Nuc Acids Res 31:514516.[CrossRef]
92. Chamberlain JS, Gibbs RA, Ranier JE, Nguyen PN, Cashey CT. 1988. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucl Acids Res 16:1114111156.[PubMed][CrossRef]
93. Dean TR, Roop B, Betancourt D, Menetrez MY. 2005. A simple multiplex polymerase chain reaction assay for the identification of four environmentally relevant fungal contaminants. J Microbiol Meth 61:916.[CrossRef]
94. Luo G, Mitchell TG. 2002. Rapid identification of pathogenic fungi directly from cultures by using multiplex PCR. J Clin Microbiol 40:28602865.[PubMed][CrossRef]
95. Desjardin LE, Chen Y, Perkins MD, Teixeira L, Cave MD, Eisenach KD. 1998. Comparison of the ABI 7700 System (TaqMan) and competitive PCR for quantification of IS6110 DNA in sputum during treatment of tuberculosis. J Clin Microbiol 36:19641968.[PubMed]
96. Leser TD, Boye M, Hendriksen NB. 1995. Survival and activity of Pseudomonas sp. strain B13(FR1) in a marine microcosm determined by quantitative PCR and a rRNA-targeting probe and its effect on the indigenous bacterioplankton. Appl Environ Microbiol 61:12011207.[PubMed]
97. Picard C, Ponsonnet C, Paget E, Nesme X, Simonet P. 1992. Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction. Appl Environ Microbiol 58:27172722.[PubMed]
98. Ferre F. 1992. Quantitative or semi-quantitative PCR: reality versus myth. PCR Meth Appl 2:19.[CrossRef]
99. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT. 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611622.[PubMed][CrossRef]
100. Yamamoto N, Kimura M, Matsuki H, Yanagisawa Y. 2010. Optimization of a real-time PCR assay to quantitate airborne fungi collected on a gelatin filter. J Biosci Bioeng 109:8388.[PubMed][CrossRef]
101. Alvarez AJ, Buttner MP, Stetzenbach LD. 1995. PCR for bioaerosol monitoring: sensitivity and environmental interference. Appl Environ Microbiol 61:36393644.[PubMed]
102. Cruz-Perez P, Buttner MP, Stetzenbach LD. 2001. Detection and quantitation of Aspergillus fumigatus in pure culture using polymerase chain reaction. Mol Cell Probes 15:8188.[PubMed][CrossRef]
103. Cruz-Perez P, Buttner MP, Stetzenbach LD. 2001. Specific detection of Stachybotrys chartarum in pure culture using quantitative polymerase chain reaction. Mol Cell Probes 15:129138.[PubMed][CrossRef]
104. Cruz P, Buttner MP. 2008. Development and evaluation of a real-time quantitative PCR assay for Aspergillus flavus. Mycologia 100:683690.[PubMed][CrossRef]
105. McDevitt JJ, Lees PSJ, Merz WG, Schwab KJ. 2007. Inhibition of quantitative PCR analysis of fungal conidia associated with indoor air particulate matter. Aerobiologia 23:3545.[CrossRef]
106. Wilson IG. 1997. Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol 63:37413751.[PubMed]
107. Vadrot C, Bex V, Mouilleseaux A, Squinazi F, Darbord J-C. 2004. Detection of Mycobacterium tuberculosis complex by PCR in hospital air samples. J Hosp Infect 58:262267.[PubMed][CrossRef]
108. Orlando C, Pinzani P, Pazzagli M. 1998. Developments in quantitative PCR. Clin Chem Lab Med 36:255269.[PubMed][CrossRef]
109. Heid CA, Stevens J, Livak KJ, Williams PM. 1996. Real time quantitative PCR. Genome Res 6:986994.[PubMed][CrossRef]
110. Bassler HA, Flood SJA, Livak KJ, Marmaro J, Knorr R, Batt CA. 1995. Use of a fluorogenic probe in a PCR-based assay for the detection of Listeria monocytogenes. Appl Environ Microbiol 61:37243728.[PubMed]
111. Nogva HK, Lillehaug D. 1999. Detection and quantification of Salmonella in pure cultures using 5′-nuclease polymerase chain reaction. Intl J Food Microbiol 51:191196.[CrossRef]
112. Oppliger A, Charrière N, Droz P-O, Rinsoz T. 2008. Exposure to bioaerosols in poultry houses at different stages of fattening; use of real-time PCR for airborne bacterial quantification. Ann Occup Hyg 52:405412.[PubMed][CrossRef]
113. Haugland RA, Vesper SJ, Wymer LJ. 1999. Quantitative measurement of Stachybotrys chartarum conidia using real time detection of PCR products with the TaqManTM fluorogenic probe system. Mol Cell Probes 13:329340.[PubMed][CrossRef]
114. Leenders ACAP, Van Belkum A, Behrendt M, Luijendijk A, Verbrugh HA. 1999. Density and molecular epidemiology of Aspergillus in air and relationship to outbreaks of Aspergillus infection. J Clin Microbiol 37:17521757.[PubMed]
115. Vesper S, Dearborn DG, Yike I, Allan T, Sobolewski J, Hinkley SF, Jarvis BB, Haugland RA. 2000. Evaluation of Stachybotrys chartarum in the house of an infant with pulmonary hemorrhage: quantitative assessment before, during, and after remediation. J Urban Health 77:6884.[PubMed][CrossRef]
116. Pyankov OV, Agranovski IE, Pyankova O, Mokhonova E, Mokhonov V, Safatov AS, Khromykh AA. 2007. Using a bioaerosol personal sampler in combination with real-time PCR analysis for rapid detection of airborne viruses. Environ Microbiol 9:9921000.[PubMed][CrossRef]
117. Loeffler J, Henke N, Hebart H, Schmidt D, Hagmeyer L, Schumacher U, Einsele H. 2000. Quantification of fungal DNA by using fluorescence resonance energy transfer and the Light Cycler system. J Clin Microbiol 38:586590.[PubMed]
118. Hein I, Lehner A, Rieck P, Klein K, Brandl E, Wagner M. 2001. Comparison of different approaches to quantify Staphylococcus aureus cells by real-time quantitative PCR and application of this technique for examination of cheese. Appl Environ Microbiol 67:31223126.[PubMed][CrossRef]
119. Higgins JA, Cooper M, Schroeder-Tucker L, Black S, Miller JD, Karns JS, Manthey E, Breeze R, Perdue ML. 2003. A field investigation of Bacillus anthracis contamination of US Department of Agriculture and other Washington D.C. buildings during the anthrax attack of October 2001. Appl Environ Microbiol 69:593599.[PubMed][CrossRef]
120. Ivnitski D, O'Neil DJ, Gattuso A, Schlicht R, Calidonna M, Fisher R. 2003. Nucleic acid approaches for detection and identification of biological warfare and infectious agents. BioTechniques 35:862869.[PubMed]
121. Hindson BJ, Brown SB, Marshall GD, McBride MT, Makarewicz AJ, Gutierrez DM, Wolcott DK, Metz TR, Madabhushi RS, Dzenitis JM, Colston BWJr. 2004. Development of an automated sample preparation module for environmental monitoring of biowarfare agents. Anal Chem 76:34923497.[PubMed][CrossRef]
122. de Aguirre L, Hurst SF, Choi JS, Shin JH, Hinrikson HP, Morrison CJ. 2004. Rapid differentiation of Aspergillus species from other medically important opportunistic molds and yeasts by PCR-enzyme immunoassay. J Clin Microbiol 42:34953504.[PubMed][CrossRef]
123. Emanuel PA, Fruchey IR, Bailey AM, Dang JL, Niyogi K, Roos JW, Cullin D, Emanuel DC. 2005. Automated screening for biological weapons in homeland defense. Biosecur Bioterror 3:3950.[PubMed][CrossRef]
124. Caruana DJ. 2011. Detection and analysis of airborne particles of biogical origin: present and future. Analyst 136:46414652.[PubMed][CrossRef]
125. Nonnenmann MW, Bextine B, Dowd SE, Gilmore K, Levin JL. 2010. Culture-independent characterization of bacteria and fungi in a poultry bioaerosol using pyrosequencing: a new approach. J Occup Environ Hyg 7:693699.[PubMed][CrossRef]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error