Chapter 3.4.4 : Methods of Targeting Animal Sources of Fecal Pollution in Water

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Methods of Targeting Animal Sources of Fecal Pollution in Water, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch3.4.4-1.gif /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch3.4.4-2.gif


The determination of fecal pollution sources in waters is essential in the management of catchments. Although traditional microbial water analyses using indicator microorganisms have been used for water-health management for more than a century, it is known that they cannot provide information about the origin of fecal pollution. The distinction between anthropogenic and non-anthropogenic (animal) fecal pollution in water would greatly support assessment of health risks based on knowledge of the host-specificity of many pathogens. For example, human sewage could constitute a higher health risk to humans than wastewater of animal origin. However, there are some exceptions because some pathogens can infect and cause clinical disease in both humans and animals. Therefore, the fecal pollution source assessment could support different water management strategies, treatment measures and policies to prevent or decrease fecal inputs in water and remediation at the source.

In this chapter, proposed chemical and biological MST indicators for the determination of animal fecal sources are discussed. The biological indicators are grouped based on the phylogenetic description of the proposed target (eukarya, bacteria, and virus). A comprehensive description for each proposed target is provided and the developed methodologies employed are presented. Emphasis is placed on the validation and applicability of each proposed method and animal-MST indicator. New molecular approaches for animal-NST targets based on metagenomics are also presented. Finally, MST assay implementation, their contribution to the assessment of maximum fecal load of water bodies and their relationship to traditional microbial indicators and water-borne pathogens is examined.

Citation: Blanch A, Ballesté E, Weidhaas J, Santo Domingo J, Ryu H. 2016. Methods of Targeting Animal Sources of Fecal Pollution in Water, p 3.4.4-1-3.4.4-28. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.4.4
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Schoen M, Ashbolt N. 2010. Assessing pathogen risk to swimmers at non-sewage impacted recreational beaches. Environ Sci Technol 44:22862291.[PubMed][CrossRef]
2. Schoen M, Soller J, Ashbolt N. 2011. Evaluating the importance of faecal sources in human-impacted waters. Water Res 45:26702680.[PubMed][CrossRef]
3. Morse S, Mazet J, Woolhouse M, Parrish C, Carroll D, Karesh W, Zambrana-Torrelio C, Lipkin W, Daszak P. 2012. Prediction and prevention of the next pandemic zoonosis. Lancet 380:19561965.[PubMed][CrossRef]
4. Hagedorn C, Weisberg S. 2009. Chemical-based fecal source tracking methods: current status and guidelines for evaluation. Rev Environ Sci Biotechnol 8:275287.[CrossRef]
5. Leeming R, Ball A, Ashbolt N, Nichols P. 1996. Using faecal sterols from humans and animals to distinguish faecal pollution in receiving waters. Water Res 30:28932900.[CrossRef]
6. Jaffrezic A, Jardé E, Pourcher A-M, Gourmelon M, Caprais M-P, Heddadj D, Cottinet P, Bilal M, Derrien M, Marti R, Mieszkin S. 2011. Microbial and chemical markers: runoff transfer in animal manure–amended soils. J Environ Qual 40:959968.[PubMed][CrossRef]
7. Tyagi P, Edwards D, Coyne M. 2008. Use of serol and bile acid biomarkers to identify domesticated animal sources of fecal pollution. Water Air Soil Poll 187:263274.[CrossRef]
8. Tyagi P, Edwards D, Coyne M. 2009. Fecal sterol and bile acid biomarkers: runoff concentrations in animal waste-amended pastures. Water Air Soil Poll 198:4554.[CrossRef]
9. Blanch AR, Belanche-Munoz L, Bonjoch X, Ebdon J, Gantzer C, Lucena F, Ottoson J, Kourtis C, Iversen A, Kuhn I, Moce L, Muniesa M, Schwartzbrod J, Skraber S, Papageorgiou GT, Taylor H, Wallis J, Jofre J. 2006. Integrated analysis of established and novel microbial and chemical methods for microbial source tracking. Appl Environ Microbiol 72:59155926.[PubMed][CrossRef]
10. Furtula V, Osachoff H, Derksen G, Juahir H, Colodey A, Chambers P. 2012. Inorganic nitrogen, sterols and bacterial source tracking as tools to characterize water quality and possible contamination sources in surface water. Water Res 46:10791092.[PubMed][CrossRef]
11. Jardé E, Gruau G, Mansuy-Huault L. 2007. Detection of manure-derived organic compounds in rivers draining agricultural areas of intensive manure spreading. Appl Geochem 22:18141824.[CrossRef]
12. Standley LJ, Kaplan LA, Smith D. 2000. Molecular tracers of organic matter sources to surface water resources. Environ Sci Technol 34:31243130.[CrossRef]
13. Noblet JA, Young DL, Zeng EY, Ensari S. 2004. Use of fecal steroids to infer the sources of fecal Indicator bacteria in the lower Santa Ana river watershed, California: sewage is unlikely a significant source. Environ Sci Technol 38:60026008.[PubMed][CrossRef]
14. Isobe KO, Tarao M, Zakaria MP, Chiem NH, Minh LY, Takada H. 2002. Quantitative application of fecal sterols using gas chromatography–mass spectrometry to investigate fecal pollution in tropical waters: western Malaysia and Mekong Delta, Vietnam. Environ Sci Technol 36:44974507.[PubMed][CrossRef]
15. Leeming R, Nichols PD. 1996. Concentrations of coprostanol that correspond to existing bacterial indicator guideline limits. Water Res 30:29973006.[CrossRef]
16. Gilpin BJ, James T, Nourozi F, Saunders D, Scholes P, Savill MG. 2003. The use of chemical and molecular microbial indicators for faecal source identification. Water Sci Technol 47:3943.[PubMed]
17. Evershed Richard P, Bethell Philip H. 1996. Application of multimolecular biomarker techniques to the identification of fecal material in archaeological soils and sediments, p. 157172. In Archaeological Chemistry. ACS Symposium Series, vol. 625. American Chemical Society, Washington, DC.
18. Simpson IA, van Bergen PF, Perret V, Elhmmali MM, Roberts DJ, Evershed RP. 1999. Lipid biomarkers of manuring practice in relict anthropogenic soils. Holocene 9:223229.[CrossRef]
19. Seurinck S, Verstraete W, Siciliano S. 2005. Microbial source tracking for identification of fecal pollution. Rev Environ Sci Biotechnol 4:1937.[CrossRef]
20. Elhmmali MM, Roberts DJ, Evershed RP. 1999. Combined analysis of bile acids and sterols/atanols from riverine particulates to assess sewage discharges and other fecal sources. Environ Sci Technol 34:3946.[CrossRef]
21. Elhmmali MM, Roberts DJ, Evershed RP. 1997. Bile acids as a new class of sewage pollution indicator. Environ Sci Technol 31:36633668.[CrossRef]
22. Bilal M, Jaffrezic A, Dudal Y, Le Guillou C, Menasseri S, Walter C. 2010. Discrimination of farm waste contamination by fluorescence spectroscopy coupled with multivariate analysis during a biodegradation study. J Agric Food Chem 58:30933100.[PubMed][CrossRef]
23. Baker A. 2002. Fluorescence properties of some farm wastes: implications for water quality monitoring. Water Res 36:189195.[PubMed][CrossRef]
24. Düreth S, Herrmann R, Pecher K. 1986. Tracing faecal pollution by coprostanol and intestinal bacteria in an ice-covered finnish lake loaded with both industrial and domestic sewage. Water Air Soil Poll 28:131149.
25. Caldwell JM, Payment P, Villemur R,. 2011. Mitochondrial DNA as source tracking markers of fecal contamination, p. 642. In Hagedorn C, Blanch AR, Harwood VJ (eds), Microbial Source Tracking: Methods, Applications and Case Studies. Springer, New York.
26. Martellini A, Payment P, Villemur R. 2005. Use of eukaryotic mitochondrial DNA to differentiate human, bovine, porcine and ovine sources in fecally contaminated surface water. Water Res 39:541548.[PubMed][CrossRef]
27. Balleste E, Bonjoch X, Belanche LA, Blanch AR. 2010. Molecular indicators used in the development of predictive models for microbial source tracking. Appl Environ Microbiol 76:17891795.[PubMed][CrossRef]
28. Caldwell JM, Levine JF. 2009. Domestic wastewater influent profiling using mitochondrial real-time PCR for source tracking animal contamination. J Microbiol Meth 77:1722.[CrossRef]
29. Caldwell JM, Raley ME, Levine JF. 2007. Mitochondrial multiplex real-time PCR as a source tracking method in fecal-contaminated effluents. Environ Sci Technol 41:32773283.[PubMed][CrossRef]
30. Schill WB, Mathes MV. 2008. Real-time PCR detection and quantification of nine potential sources of fecal contamination by analysis of mitochondrial cytochrome b targets. Environ Sci Technol 42:52295234.[PubMed][CrossRef]
31. Kortbaoui R, Locas A, Imbeau M, Payment P, Villemur R. 2009. Universal mitochondrial PCR combined with species-specific dot-blot assay as a source-tracking method of human, bovine, chicken, ovine, and porcine in fecal-contaminated surface water. Water Res 43:20022010.[PubMed][CrossRef]
32. Baker-Austin C, Morris J, Lowther JA, Rangdale R, Lees DN. 2009. Rapid identification and differentiation of agricultural faecal contamination sources using multiplex PCR. Lett Appl Microbiol 49:529532.[PubMed][CrossRef]
33. Baker-Austin C, Rangdale R, Lowther J, Lees D. 2010. Application of mitochondrial DNA analysis for microbial source tracking purposes in shellfish harvesting waters. Water Sci Technol 61:17.[PubMed][CrossRef]
34. Bernhard AE, Field KG. 2000. A PCR assay To discriminate human and ruminant feces on the basis of host differences in Bacteroides-Prevotella genes encoding 16S rRNA. Appl Environ Microbiol 66:45714574.[PubMed][CrossRef]
35. Ahmed W, Powell D, Goonetilleke A, Gardner T. 2008. Detection and source identification of faecal pollution in non-sewered catchment by means of host-specific molecular markers. Water Sci Technol 58:579586.[PubMed][CrossRef]
36. Shanks OC, White K, Kelty CA, Hayes S, Sivaganesan M, Jenkins M, Varma M, Haugland RA. 2010. Performance assessment PCR-based assays targeting bacteroidales genetic markers of bovine fecal pollution. Appl Environ Microbiol 76:13591366.[PubMed][CrossRef]
37. Balleste E, Blanch AR. 2010. Persistence of Bacteroides species populations in a river as measured by molecular and culture techniques. Appl Environ Microbiol 76:76087616.[PubMed][CrossRef]
38. Walters SP, Field KG. 2009. Survival and persistence of human and ruminant-specific faecal Bacteroidales in freshwater microcosms. Environ Microbiol 11:14101421.[PubMed][CrossRef]
39. Fremaux B, Gritzfeld J, Boa T, Yost CK. 2009. Evaluation of host-specific Bacteroidales 16S rRNA gene markers as a complementary tool for detecting fecal pollution in a prairie watershed. Water Res 43:48384849.[PubMed][CrossRef]
40. Gawler AH, Beecher JE, Brandao J, Carroll NM, Falcao L, Gourmelon M, Masterson B, Nunes B, Porter J, Rince A, Rodrigues R, Thorp M, Walters JM, Meijer WG. 2007. Validation of host-specific Bacteriodales 16S rRNA genes as markers to determine the origin of faecal pollution in Atlantic Rim countries of the European Union. Water Res 41:37803784.[PubMed][CrossRef]
41. Gourmelon M, Caprais MP, Segura R, Le Mennec C, Lozach S, Piriou JY, Rince A. 2007. Evaluation of two library-independent microbial source tracking methods to identify sources of fecal contamination in French estuaries. Appl Environ Microbiol 73:48574866.[PubMed][CrossRef]
42. Kildare BJ, Leutenegger CM, McSwain BS, Bambic DG, Rajal VB, Wuertz S. 2007. 16S rRNA-based assays for quantitative detection of universal, human-, cow-, and dog-specific fecal Bacteroidales: a Bayesian approach. Water Res 41:37013715.[PubMed][CrossRef]
43. Silkie SS, Nelson KL. 2009. Concentrations of host-specific and generic fecal markers measured by quantitative PCR in raw sewage and fresh animal feces. Water Res 43:48604871.[PubMed][CrossRef]
44. Bae S, Wuertz S. 2009. Rapid decay of host-specific fecal Bacteroidales cells in seawater as measured by quantitative PCR with propidium monoazide. Water Res 43:48504859.[PubMed][CrossRef]
45. Bae S, Wuertz S. 2012. Survival of host-associated bacteroidales cells and their relationship with Enterococcus spp., Campylobacter jejuni, Salmonella enterica serovar Typhimurium, and adenovirus in freshwater microcosms as measured by propidium monoazide-quantitative PCR. Appl Environ Microbiol 78:922932.[PubMed][CrossRef]
46. Reischer GH, Kasper DC, Steinborn R, Mach RL, Farnleitner AH. 2006. Quantitative PCR method for sensitive detection of ruminant fecal pollution in freshwater and evaluation of this method in alpine karstic regions. Appl Environ Microbiol 72:56105614.[PubMed][CrossRef]
47. Mieszkin S, Furet JP, Corthier G, Gourmelon M. 2009. Estimation of pig fecal contamination in a river catchment by real-time PCR using two pig-specific Bacteroidales 16S rRNA genetic markers. Appl Environ Microbiol 75:30453054.[PubMed][CrossRef]
48. Tambalo DD, Fremaux B, Boa T, Yost CK. 2012. Persistence of host-associated Bacteroidales gene markers and their quantitative detection in an urban and agricultural mixed prairie watershed. Water Res 46:28912904.[PubMed][CrossRef]
49. Sokolova E, Astrom J, Pettersson TJ, Bergstedt O, Hermansson M. 2012. Decay of Bacteroidales genetic markers in relation to traditional fecal indicators for water quality modeling of drinking water sources. Environ Sci Technol 46:892900.[PubMed][CrossRef]
50. Mieszkin S, Yala JF, Joubrel R, Gourmelon M. 2010. Phylogenetic analysis of Bacteroidales 16S rRNA gene sequences from human and animal effluents and assessment of ruminant faecal pollution by real-time PCR. J Appl Microbiol 108:974984.[PubMed][CrossRef]
51. Stricker AR, Wilhartitz I, Farnleitner AH, Mach RL. 2008. Development of a Scorpion probe-based real-time PCR for the sensitive quantification of Bacteroides sp. ribosomal DNA from human and cattle origin and evaluation in spring water matrices. Microbiol Res 163:140147.[PubMed][CrossRef]
52. Okabe S, Shimazu Y. 2007. Persistence of host-specific Bacteroides-Prevotella 16S rRNA genetic markers in environmental waters: effects of temperature and salinity. Appl Microbiol Biotechnol 76:935944.[PubMed][CrossRef]
53. Jeong JY, Park HD, Lee KH, Hwang JH, Ka JO. 2010. Quantitative analysis of human and cow-specific 16S rRNA gene markers for assessment of fecal pollution in river waters by real-time PCR. J Microbiol Biotechnol 20:245253.[PubMed]
54. Layton A, McKay L, Williams D, Garrett V, Gentry R, Sayler G. 2006. Development of Bacteroides 16S rRNA gene TaqMan-based real-time PCR assays for estimation of total, human, and bovine fecal pollution in water. Appl Environ Microbiol 72:42144224.[PubMed][CrossRef]
55. Shanks OC, Santo Domingo JW, Lamendella R, Kelty CA, Graham JE. 2006. Competitive metagenomic DNA hybridization identifies host-specific microbial genetic markers in cow fecal samples. Appl Environ Microbiol 72:40544060.[PubMed][CrossRef]
56. Shanks OC, Atikovic E, Blackwood AD, Lu J, Noble RT, Domingo JS, Seifring S, Sivaganesan M, Haugland RA. 2008. Quantitative PCR for detection and enumeration of genetic markers of bovine fecal pollution. Appl Environ Microbiol 74:745752.[PubMed][CrossRef]
57. Dick LK, Bernhard AE, Brodeur TJ, Santo Domingo JW, Simpson JM, Walters SP, Field KG. 2005. Host distributions of uncultivated fecal Bacteroidales bacteria reveal genetic markers for fecal source identification. Appl Environ Microbiol 71:31843191.[PubMed][CrossRef]
58. Lamendella R, Santo Domingo JW, Yannarell AC, Ghosh S, Di Giovanni G, Mackie RI, Oerther DB. 2009. Evaluation of swine-specific PCR assays used for fecal source tracking and analysis of molecular diversity of swine-specific “bacteroidales” populations. Appl Environ Microbiol 75:57875796.[PubMed][CrossRef]
59. ISO. 1995. ISO 10705-1: Water quality Detection and enumeration of bacteriophages part 1: Enumeration of F-specific RNA bacteriophages. International Organization for Standardization, Geneva.
60. U.S. EPA. 2001. Method 1601: Male-specific (F+) and somatic coliphage in water by two-step enrichment procedure, vol. 821-R-01-030. U.S. EPA, Office of Water, Washington, DC.
61. U.S. EPA. 2001. Method 1602. Male-specific (F+) and somatic coliphage in water by single agar layer (SAL) procedure, vol. 821-R-01-029. U.S. EPA, Office of Water, Washington, DC.
62. Duran AE, Muniesa M, Mendez X, Valero F, Lucena F, Jofre J. 2002. Removal and inactivation of indicator bacteriophages in fresh waters. J Appl Microbiol 92:338347.[PubMed][CrossRef]
63. Muniesa M, Payan A, Moce-Llivina L, Blanch AR, Jofre J. 2009. Differential persistence of F-specific RNA phage subgroups hinders their use as single tracers for faecal source tracking in surface water. Water Res 43:15591564.[PubMed][CrossRef]
64. Long SC, Sobsey MD. 2004. A comparison of the survival of F+RNA and F+DNA coliphages in lake water microcosms. J Water Health 2:1522.[PubMed]
65. Okabe S, Okayama N, Savichtcheva O, Ito T. 2007. Quantification of host-specific Bacteroides-Prevotella 16S rRNA genetic markers for assessment of fecal pollution in freshwater. Appl Microbiol Biotechnol 74:890901.[PubMed][CrossRef]
66. Marti R, Mieszkin S, Solecki O, Pourcher AM, Hervio-Heath D, Gourmelon M. 2011. Effect of oxygen and temperature on the dynamic of the dominant bacterial populations of pig manure and on the persistence of pig-associated genetic markers, assessed in river water microcosms. J Appl Microbiol 111:11591175.[PubMed][CrossRef]
67. Fremaux B, Boa T, Yost CK. 2010. Quantitative real-time PCR assays for sensitive detection of Canada goose-specific fecal pollution in water sources. Appl Environ Microbiol 76:48864889.[PubMed][CrossRef]
68. Gomez-Donate M, Balleste E, Muniesa M, Blanch AR. 2012. New molecular quantitative PCR assay for detection of host-specific bifidobacteriaceae suitable for microbial source tracking. Appl Environ Microbiol 78:57885795.[PubMed][CrossRef]
69. Marti R, Dabert P, Pourcher AM. 2009. Pig manure contamination marker selection based on the influence of biological treatment on the dominant fecal microbial groups. Appl Environ Microbiol 75:49674974.[PubMed][CrossRef]
70. Weidhaas J, Macbeth T, Olsen R, Sadowsky M, Norat D, Harwood V. 2010. Identification of a poultry litter-specific DNA marker gene and development of a 16S rRNA-based quantitative PCR assay. J Appl Microbiol 109:334347.[PubMed]
71. Weidhaas J, Macbeth T, Olsen R, Harwood V. 2011. Correlation of Quantitative PCR for a Poultry-Specific Brevibacterium Marker Gene with Bacterial and Chemical Indicators of Water Pollution in a Watershed Impacted by Land Application of Poultry Litter. App Environ Microbiol 77:20942102.[CrossRef]
72. ISO. 2001. ISO 10705-4: Water quality. Detection and enumeration of bacteriophages part 4: Enumeration of bacteriophages infecting Bacteroides fragilis. International Organization for Standardization, Geneva.
73. Payan A, Ebdon J, Taylor H, Gantzer C, Ottoson J, Papageorgiou GT, Blanch AR, Lucena F, Jofre J, Muniesa M. 2005. Method for isolation of Bacteroides bacteriophage host strains suitable for tracking sources of fecal pollution in water. Appl Environ Microbiol 71:56595662.[PubMed][CrossRef]
74. Gomez-Donate M, Payan A, Cortes I, Blanch AR, Lucena F, Jofre J, Muniesa M. 2011. Isolation of bacteriophage host strains of Bacteroides species suitable for tracking sources of animal faecal pollution in water. Environ Microbiol 13:16221631.[PubMed][CrossRef]
75. Ley V, Higgins J, Fayer R. 2002. Bovine enteroviruses as indicators of fecal contamination. Appl Environ Microbiol 68:34553461.[PubMed][CrossRef]
76. Jimenez-Clavero MA, Escribano-Romero E, Mansilla C, Gomez N, Cordoba L, Roblas N, Ponz F, Ley V, Saiz JC. 2005. Survey of bovine enterovirus in biological and environmental samples by a highly sensitive real-time reverse transcription-PCR. Appl Environ Microbiol 71:35363543.[PubMed][CrossRef]
77. Jimenez-Clavero MA, Fernandez C, Ortiz JA, Pro J, Carbonell G, Tarazona JV, Roblas N, Ley V. 2003. Teschoviruses as indicators of porcine fecal contamination of surface water. Appl Environ Microbiol 69:63116315.[PubMed][CrossRef]
78. Maluquer de Motes C, Clemente-Casares P, Hundesa A, Martin M, Girones R. 2004. Detection of bovine and porcine adenoviruses for tracing the source of fecal contamination. Appl Environ Microbiol 70:14481454.[PubMed][CrossRef]
79. Hundesa A, Maluquer de Motes C, Albinana-Gimenez N, Rodriguez-Manzano J, Bofill-Mas S, Sunen E, Girones R. 2009. Development of a qPCR assay for the quantification of porcine adenoviruses as an MST tool for swine fecal contamination in the environment. J Virol Meth 158:130135.[CrossRef]
80. Wong K, Xagoraraki I. 2010. Quantitative PCR assays to survey the bovine adenovirus levels in environmental samples. J Appl Microbiol 109:605612.[PubMed]
81. Hundesa A, Maluquer de Motes C, Bofill-Mas S, Albinana-Gimenez N, Girones R. 2006. Identification of human and animal adenoviruses and polyomaviruses for determination of sources of fecal contamination in the environment. Appl Environ Microbiol 72:78867893.[CrossRef]
82. Wong K, Xagoraraki I. 2011. Evaluating the prevalence and genetic diversity of adenovirus and polyomavirus in bovine waste for microbial source tracking. Appl Microbiol Biotechnol 90:15211526.[PubMed][CrossRef]
83. Hundesa A, Bofill-Mas S, Maluquer de Motes C, Rodriguez-Manzano J, Bach A, Casas M, Girones R. 2010. Development of a quantitative PCR assay for the quantitation of bovine polyomavirus as a microbial source-tracking tool. J Virol Meth 163:385389.[CrossRef]
84. Tobe SS, Linacre AMT. 2008. A technique for the quantification of human and non-human mammalian mitochondrial DNA copy number in forensic and other mixtures. Forensic Sci Int Genet 2:249256.[CrossRef]
85. Xiao L, Morgan UM, Fayer R, Thompson RCA, Lal AA. 2000. Cryptosporidium Systematics and Implications for Public Health. Trends Parasitol 16:287292.[CrossRef]
86. Xiao L, Fayer R, Ryan U, Upton SJ. 2004. Cryptosporidium Taxonomy: Recent Advances and Implications for Public Health. Clin Microbiol Rev 17:7297.[PubMed][CrossRef]
87. Slavin D. 1955. Cryptosporidium meleagridis (sp. nov.). J Comp Pathol 65:262266.[PubMed][CrossRef]
88. Current WL, Garcia LS. 1991. Cryptosporidiosis. Clin Microbiol Rev 4:325358.[PubMed]
89. Dubey JP, Speers CA, Fayer R. 1990. Cryptosporidiosis of Man and Animals. CRC Press, New York.
90. Cama VA, Bern C, Sulaiman IM, Gilman RH, Ticona E, Vivar A, Kawai V, Vargas D, Zhou L, Xiao L. 2003. Cryptosporidium species and genotypes in HIV-positive patients in Lima, Peru. J Eukaryot Microbiol 50(Suppl):531533.[PubMed]
91. Feng Y, Zhao X, Chen J, Jin W, Zhou X, Li N, Wang L, Xiao L. 2011. Occurrence, source, and human infection potential of cryptosporidium and Giardia spp. in source and tap water in shanghai, China. Appl Environ Microbiol 77:36093616.[PubMed][CrossRef]
92. Jellison KL, Lynch AE, Ziemann JM. 2009. Source tracking identifies deer and geese as vectors of human-infectious Cryptosporidium genotypes in an urban/suburban watershed. Environ Sci Technol 43:42674272.[PubMed][CrossRef]
93. Nichols RA, Connelly L, Sullivan CB, Smith HV. 2010. Identification of Cryptosporidium species and genotypes in Scottish raw and drinking waters during a one-year monitoring period. Appl Environ Microbiol 76:59775986.[CrossRef]
94. Oates SC, Miller MA, Hardin D, Conrad PA, Melli A, Jessup DA, Dominik C, Roug A, Tinker MT, Miller WA. 2012. Prevalence, environmental loading, and molecular characterization of Cryptosporidium and Giardia isolates from domestic and wild animals along the central California coast. Appl Environ Microbiol 78:87628772.[PubMed][CrossRef]
95. Yang W, Chen P, Villegas EN, Landy RB, Kanetsky C, Cama V, Dearen T, Schultz CL, Orndorff KG, Prelewicz GJ, Brown MH, Young KR, Xiao L. 2008. Cryptosporidium source tracking in the Potomac River watershed. Appl Environ Microbiol 74:64956504.[PubMed][CrossRef]
96. Cama VA, Bern C, Roberts J, Cabrera L, Sterling CR, Ortega Y, Gilman RH, Xiao L. 2008. Cryptosporidium species and subtypes and clinical manifestations in children. Peru Emerg Infect Dis 14:15671574.[PubMed][CrossRef]
97. Sulaiman IM, Hira PR, Zhou L, Al-Ali FM, Al-Shelahi FA, Shweiki HM, Iqbal J, Khalid N, Xiao L. 2005. Unique endemicity of cryptosporidiosis in children in Kuwait. J Clin Microbiol 43:28052809.[PubMed][CrossRef]
98. Xiao L, Bern C, Limor J, Sulaiman I, Roberts J, Checkley W, Cabrera L, Gilman RH, Lal AA. 2001. Identification of 5 types of Cryptosporidium parasites in children in Lima, Peru. J Infect Dis 183:492497.[PubMed][CrossRef]
99. Caccio SM, Thompson RC, McLauchlin J, Smith HV. 2005. Unravelling Cryptosporidium and Giardia epidemiology. Trends Parasitol 21:430437.[PubMed][CrossRef]
100. Feng Y, Xiao L. 2011. Zoonotic potential and molecular epidemiology of Giardia species and giardiasis. Clin Microbiol Rev 24:110140.[PubMed][CrossRef]
101. Monis PT, Caccio SM, Thompson RC. 2009. Variation in Giardia: towards a taxonomic revision of the genus. Trends Parasitol 25:93100.[PubMed][CrossRef]
102. Thompson RC, Monis PT. 2004. Variation in Giardia: implications for taxonomy and epidemiology. Adv Parasitol 58:69137.[CrossRef]
103. Wielinga CM, Thompson RC. 2007. Comparative evaluation of Giardia duodenalis sequence data. Parasitol 134:17951821.[CrossRef]
104. Almeida A, Pozio E, Caccio SM. 2010. Genotyping of Giardia duodenalis cysts by new real-time PCR assays for detection of mixed infections in human samples. Appl Environ Microbiol 76:18951901.[PubMed][CrossRef]
105. Guy RA, Payment P, Krull UJ, Horgen PA. 2003. Real-time PCR for quantification of Giardia and Cryptosporidium in environmental water samples and sewage. Appl Environ Microbiol 69:51785185.[PubMed][CrossRef]
106. Caccio SM, Beck R, Lalle M, Marinculic A, Pozio E. 2008. Multilocus genotyping of Giardia duodenalis reveals striking differences between assemblages A and B. Int J Parasitol 38:15231531.[PubMed][CrossRef]
107. LeChevallier MW, Norton WD, Lee RG. 1991. Occurrence of Giardia and Cryptosporidium spp. in surface water supplies. App Environ Microbiol 57:26102616.
108. Ryu H, Abbaszadegan M. 2008. Long-term study of Cryptosporidium and Giardia occurrence and quantitative microbial risk assessment in surface waters of Arizona in the USA. J Water Health 6:263273.[PubMed][CrossRef]
109. Ryu H, Alum A, Abbaszadegan M. 2005. Microbial characterization and population changes in nonpotable reclaimed water distribution systems. Environ Sci Technol 39:86008605.[PubMed][CrossRef]
110. Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI. 2008. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol 6:776788.[PubMed][CrossRef]
111. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. 2005. Diversity of the human intestinal microbial flora. Science 308:16351638.[PubMed][CrossRef]
112. Perkins GA, den Bakker HC, Burton AJ, Erb HN, McDonough SP, McDonough PL, Parker J, Rosenthal RL, Wiedmann M, Dowd SE, Simpson KW. 2012. Equine stomachs harbor an abundant and diverse mucosal microbiota. Appl Environ Microbiol 78:25222532.[PubMed][CrossRef]
113. Lu J, Santo Domingo J, Shanks OC. 2007. Identification of chicken-specific fecal microbial sequences using a metagenomic approach. Water Res 41:35613574.[CrossRef]
114. Lee JE, Lee S, Sung J, Ko G. 2011. Analysis of human and animal fecal microbiota for microbial source tracking. ISME J 5:362365.[PubMed][CrossRef]
115. Shanks OC, Kelty CA, Archibeque S, Jenkins M, Newton RJ, McLellan SL, Huse SM, Sogin ML. 2011. Community structures of fecal bacteria in cattle from different animal feeding operations. Appl Environ Microbiol 77:29923001.[PubMed][CrossRef]
116. Kim HB, Borewicz K, White BA, Singer RS, Sreevatsan S, Tu ZJ, Isaacson RE. 2011. Longitudinal investigation of the age-related bacterial diversity in the feces of commercial pigs. Vet Microbiol 153:124133.[PubMed][CrossRef]
117. Lu J, Santo Domingo JW, Lamendella R, Edge T, Hill S. 2008. Phylogenetic diversity and molecular detection of bacteria in gull feces. Appl Environ Microbiol 74:39693976.[PubMed][CrossRef]
118. Jeter SN, McDermott CM, Bower PA, Kinzelman JL, Bootsma MJ, Goetz GW, McLellan SL. 2009. Bacteroidales diversity in ring-billed gulls (Laurus delawarensis) residing at Lake Michigan beaches. Appl Environ Microbiol 75:15251533.[PubMed][CrossRef]
119. Kelty CA, Varma M, Sivaganesan M, Haugland RA, Shanks OC. 2012. Distribution of genetic marker concentrations for fecal indicator bacteria in sewage and animal feces. Appl Environ Microbiol 78:42254232.[PubMed][CrossRef]
120. Fogarty LR, Voytek MA. 2005. Comparison of Bacteroides-Prevotella 16S rRNA genetic markers for fecal samples from different animal species. Appl Environ Microbiol 71:59996007.[PubMed][CrossRef]
121. Bernhard AE, Field KG. 2000. Identification of nonpoint sources of fecal pollution in coastal waters by using host-specific 16S ribosomal DNA genetic markers from fecal anaerobes. Appl Environ Microbiol 66:15871594.[PubMed][CrossRef]
122. Dick LK, Simonich MT, Field KG. 2005. Microplate subtractive hybridization to enrich for bacteroidales genetic markers for fecal source identification. Appl Environ Microbiol 71:31793183.[PubMed][CrossRef]
123. Mauffret A, Caprais MP, Gourmelon M. 2012. Relevance of bacteroidales and f-specific RNA bacteriophages for efficient fecal contamination tracking at the level of a catchment in france. Appl Environ Microbiol 78:51435152.[PubMed][CrossRef]
124. Chase E, Hunting J, Staley C, Harwood VJ. 2012. Microbial source tracking to identify human and ruminant sources of fecal pollution in an ephemeral Florida river. J Appl Microbiol 113:13961406.[PubMed][CrossRef]
125. Reischer G, Kollanur D, Vierheilig J, Wehrspaun C, Mach R, Sommer R, Stadler H, Farnleitner A. 2011. Hypothesis-driven approach for the identification of fecal pollution sources in water resources. Environ Sci Technol 45:40384045.[PubMed][CrossRef]
126. Santiago-Rodriguez TM, Tremblay RL, Toledo-Hernandez C, Gonzalez-Nieves JE, Ryu H, Santo Domingo JW, Toranzos GA. 2012. Microbial quality of tropical inland waters and effects of rainfall events. Appl Environ Microbiol 78:51605169.[PubMed][CrossRef]
127. Jenkins MW, Tiwari S, Lorente M, Gichaba CM, Wuertz S. 2009. Identifying human and livestock sources of fecal contamination in Kenya with host-specific Bacteroidales assays. Water Res 43:49564966.[PubMed][CrossRef]
128. Kreader CA. 1998. Persistence of PCR-detectable Bacteroides distasonis from human feces in river water. Appl Environ Microbiol 64:41034105.[PubMed]
129. Walters SP, Yamahara KM, Boehm AB. 2009. Persistence of nucleic acid markers of health-relevant organisms in seawater microcosms: implications for their use in assessing risk in recreational waters. Water Res 43:49294939.[PubMed][CrossRef]
130. Dick LK, Stelzer EA, Bertke EE, Fong DL, Stoeckel DM. 2010. Relative decay of Bacteroidales microbial source tracking markers and cultivated Escherichia coli in freshwater microcosms. App Environ Microbiol 76:32553262.[CrossRef]
131. Jeanneau L, Solecki O, Wery N, Jarde E, Gourmelon M, Communal PY, Jadas-Hecart A, Caprais MP, Gruau G, Pourcher AM. 2012. Relative decay of fecal indicator bacteria and human-associated markers: a microcosm study simulating wastewater input into seawater and freshwater. Environ Sci Technol 46:23752382.[PubMed][CrossRef]
132. Schulz CJ, Childers GW. 2011. Fecal bacteroidales diversity and decay in response to variations in temperature and salinity. Appl Environ Microbiol 77:25632572.[PubMed][CrossRef]
133. Bell A, Layton AC, McKay L, Williams D, Gentry R, Sayler GS. 2009. Factors influencing the persistence of fecal Bacteroides in stream water. J Environ Qual 38:12241232.[PubMed][CrossRef]
134. Walters SP, Gannon VP, Field KG. 2007. Detection of Bacteroidales fecal indicators and the zoonotic pathogens E. coli 0157:H7, salmonella, and campylobacter in river water. Environ Sci Technol 41:18561862.[PubMed][CrossRef]
135. Schriewer A, Miller WA, Byrne BA, Miller MA, Oates S, Conrad PA, Hardin D, Yang HH, Chouicha N, Melli A, Jessup D, Dominik C, Wuertz S. 2010. Presence of Bacteroidales as a predictor of pathogens in surface waters of the central California coast. Appl Environ Microbiol 76:58025814.[PubMed][CrossRef]
136. Walters SP, Thebo AL, Boehm AB. 2011. Impact of urbanization and agriculture on the occurrence of bacterial pathogens and stx genes in coastal waterbodies of central California. Water Res 45:17521762.[PubMed][CrossRef]
137. Rogers SW, Donnelly M, Peed L, Kelty CA, Mondal S, Zhong Z, Shanks OC. 2011. Decay of bacterial pathogens, fecal indicators, and real-time quantitative PCR genetic markers in manure-amended soils. Appl Environ Microbiol 77:48394848.[PubMed][CrossRef]
138. Resnick IG, Levin MA. 1981. Assessment of bifidobacteria as indicators of human fecal pollution. Appl Environ Microbiol 42:433438.[PubMed]
139. Bonjoch X, Balleste E, Blanch AR. 2005. Enumeration of bifidobacterial populations with selective media to determine the source of waterborne fecal pollution. Water Res 39:16211627.[PubMed][CrossRef]
140. Mara DD, Oragui JI. 1983. Sorbitol-fermenting bifidobacteria as specific indicators of human faecal pollution. J Appl Bacteriol 55:349357.[PubMed][CrossRef]
141. Bonjoch X, Balleste E, Blanch AR. 2004. Multiplex PCR with 16S rRNA gene-targeted primers of Bifidobacterium spp. to identify sources of fecal pollution. Appl Environ Microbiol 70:31713175.[PubMed][CrossRef]
142. King EL, Bachoon DS, Gates KW. 2007. Rapid detection of human fecal contamination in estuarine environments by PCR targeting of Bifidobacterium adolescentis. J Microbiol Meth 68:7681.[CrossRef]
143. Balleste E, Blanch AR. 2011. Bifidobacterial diversity and the development of new microbial source tracking indicators. Appl Environ Microbiol 77:35183525.[PubMed][CrossRef]
144. Biavati B, Mattarelli P,. 2006. The family Bifidobacteriaceae, p. 322382. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds), The Prokaryotes, vol. 3: Archaea. Bacteria: Firmicutes, Actinomycetes. Springer, New York.
145. Garcia-Aljaro C, Balleste E, Rossello-Mora R, Cifuentes A, Richter M, Blanch AR. 2012. Neoscardovia arbecensis gen. nov., sp. nov., isolated from porcine slurries. Syst Appl Microbiol 35:374379.[PubMed][CrossRef]
146. Lamendella R, Santo Domingo JW, Kelty C, Oerther DB. 2008. Bifidobacteria in feces and environmental waters. Appl Environ Microbiol 74:575584.[PubMed][CrossRef]
147. Bonjoch X, Lucena F, Blanch AR. 2009. The persistence of bifidobacteria populations in a river measured by molecular and culture techniques. J Appl Microbiol 107:11781185.[PubMed][CrossRef]
148. Rowbotham TJ, Cross T. 1977. Rhodococcus coprophilus sp. nov.: an aerobic nocardioform actinomycete belonging to the “rhodochrous” complex. J Gen Microbiol 100:123138.[CrossRef]
149. Rowbotham TJ, Cross T. 1977. Ecology of Rhodococcus coprophilus and associated actinomycetes in fresh water and agricultural habitats. J Gen Microbiol 100:231240.[CrossRef]
150. Jagals P, Grabow W,, de Villiers JC. 1995. Evaluation of indicators for assessment of human and animal faecal pollution of surface run-off. Water Sci Technol 31:235241.[CrossRef]
151. Mara DD, Oragui JI. 1981. Occurrence of Rhodococcus coprophilus and associated actinomycetes in feces, sewage, and freshwater. Appl Environ Microbiol 42:10371042.[PubMed]
152. Oragui JI, Mara DD. 1983. Investigation of the survival characteristics of Rhodococcus coprophilus and certain fecal indicator bacteria. Appl Environ Microbiol 46:356360.[PubMed]
153. Savill MG, Murray SR, Scholes P, Maas EW, McCormick RE, Moore EB, Gilpin BJ. 2001. Application of polymerase chain reaction (PCR) and TaqMan™ PCR techniques to the detection and identification of Rhodococcus coprophilus in faecal samples. J Microbiol Meth 47:355368.[CrossRef]
154. Mara DD, Oragui JI. 1985. Bacteriological methods for distinguishing between human and animal faecal pollution of water: results of fieldwork in Nigeria and Zimbabwe. Bull World Health Org 63:773783.[PubMed]
155. Lechevalier HA,.1986. Nocardioforms, p. 14581506.In Sneath P, Mair N, Sharp M, Holt J (eds), Bergey's Manual of Systematic Bacteriology, vol. 2. Williams and Wilkins, Baltimore, MD.
156. Wicki M, Auckenthaler A, Felleisen R, Liniger M, Loutre C, Niederhauser I, Tanner M, Baumgartner A. 2012. Improved detection of Rhodococcus coprophilus with a new quantitative PCR assay. Appl Microbiol Biotechnol 93:21612169.[PubMed][CrossRef]
157. Plummer J, Long S. 2007. Monitoring source water for microbial contamination: evaluation of water quality measures. Water Res 41:37163728.[PubMed][CrossRef]
158. Wiggins BA. 1996. Discriminant analysis of antibiotic resistance patterns in fecal streptococci, a method to differentiate human and animal sources of fecal pollution in natural waters. Appl Environ Microbiol 62:39974002.[PubMed]
159. Wheeler AL, Hartel PG, Godfrey DG, Hill JL, Segars WI. 2002. Potential of Enterococcus faecalis as a human fecal indicator for microbial source tracking. J Environ Qual 31:12861293.[PubMed][CrossRef]
160. Kuntz RL, Hartel PG, Rodgers K, Segars WI. 2004. Presence of Enterococcus faecalis in broiler litter and wild bird feces for bacterial source tracking. Water Res 38:35513557.[PubMed][CrossRef]
161. Ryu H, Henson M, Elk M, Toledo-Hernandez C, Griffith J, Blackwood D, Noble R, Gourmelon M, Glassmeyer S, Santo Domingo J. 2012. Development of quantitative PCR assays targeting 16S rRNA gene of Enterococcus spp. and their application to the identification of Enterococcus species in environmental samples. Appl Environ Microbiol 79:196204.[PubMed][CrossRef]
162. Jackson CR, Fedorka-Cray PJ, Barrett JB. 2004. Use of a genus- and species-specific multiplex PCR for identification of enterococci. J Clin Microbiol 42:35583565.[PubMed][CrossRef]
163. Scott TM, Jenkins TM, Lukasik J, Rose JB. 2005. Potential use of a host associated molecular marker in Enterococcus faecium as an index of human fecal pollution. Environ Sci Technol 39:283287.[PubMed][CrossRef]
164. Ahmed W, Stewart J, Powell D, Gardner T. 2008. Evaluation of the host-specificity and prevalence of enterococci surface protein (esp) marker in sewage and its application for sourcing human fecal pollution. J Environ Qual 37:15831588.[PubMed][CrossRef]
165. McQuaig SM, Scott TM, Harwood VJ, Farrah SR, Lukasik JO. 2006. Detection of human-derived fecal pollution in environmental waters by use of a PCR-based human polyomavirus assay. Appl Environ Microbiol 72:75677574.[PubMed][CrossRef]
166. Lanthier M, Scott A, Lapen DR, Zhang Y, Topp E. 2010. Frequency of virulence genes and antibiotic resistances in Enterococcus spp. isolates from wastewater and feces of domesticated mammals and birds, and wildlife. Can J Microbiol 56:715729.[PubMed][CrossRef]
167. Layton BA, Walters SP, Boehm AB. 2009. Distribution and diversity of the enterococcal surface protein (esp) gene in animal hosts and the Pacific coast environment. J Appl Microbiol 106:15211531.[PubMed][CrossRef]
168. Whitman RL, Przybyla-Kelly K, Shively DA, Byappanahalli MN. 2007. Incidence of the enterococcal surface protein (esp) gene in human and animal fecal sources. Environ Sci Technol 41:60906095.[PubMed][CrossRef]
169. Johanson JJ, Feriancikova L, Xu S. 2012. Influence of enterococcal surface protein (esp) on the transport of Enterococcus faecium within saturated quartz sands. Environ Sci Technol 46:15111518.[PubMed][CrossRef]
170. Lawson PA, Collins MD, Falsen E, Foster G. 2006. Catellicoccus marimammalium gen. nov., sp. nov., a novel Gram-positive, catalase-negative, coccus-shaped bacterium from porpoise and grey seal. Int J Syst Evol Microbiol 56:429432.[PubMed][CrossRef]
171. Ryu H, Lu J, Vogel J, Elk M, Chavez-Ramirez F, Ashbolt N, Santo Domingo J. 2012. Development and evaluation of a quantitative PCR assay targeting sandhill crane (Grus canadensis) fecal pollution. Appl Environ Microbiol 78:43384345.[PubMed][CrossRef]
172. Ryu H, Griffith JF, Khan IU, Hill S, Edge TA, Toledo-Hernandez C, Gonzalez-Nieves J, Santo Domingo J. 2012. Comparison of gull feces-specific assays targeting the 16S rRNA genes of Catellicoccus marimammalium and Streptococcus spp. Appl Environ Microbiol 78:19091916.[PubMed][CrossRef]
173. Weigand MR, Ryu H, Bozcek L, Konstantinidis KT, Santo Domingo J. 2013. Draft genome sequence of Catellicoccus marimammalium, a novel species commonly found in gull feces. Genome Announce 1:e00019-12[CrossRef]
174. Bisgaard M, Bojesen AM, Petersen MR, Christensen H. 2012. A major outbreak of Streptococcus equi subsp. zooepidemicus infections in free-range chickens is linked to horses. Avian Dis 56:561566.[PubMed][CrossRef]
175. Devriese LA, Vandamme P, Collins MD, Alvarez N, Pot B, Hommez J, Butaye P, Haesebrouck F. 1999. Streptococcus pluranimalium sp. nov., from cattle and other animals. Int J Syst Bacteriol 49(Pt 3):12211226.[PubMed][CrossRef]
176. Vela AI, Casamayor A, Sanchez Del Rey V, Dominguez L, Fernandez-Garayzabal JF. 2009. Streptococcus plurextorum sp. nov., isolated from pigs. Int J Syst Evol Microbiol 59:504508.[PubMed][CrossRef]
177. Vela AI, Sanchez V, Mentaberre G, Lavin S, Dominguez L, Fernandez-Garayzabal JF. 2011. Streptococcus porcorum sp. nov., isolated from domestic and wild pigs. Int J Syst Evol Microbiol 61:15851589.[PubMed][CrossRef]
178. Lawson PA, Foster G, Falsen E, Markopoulos SJ, Collins MD. 2005. Streptococcus castoreus sp. nov., isolated from a beaver (Castor fiber). Int J Syst Evol Microbiol 55:843846.[PubMed][CrossRef]
179. Hagedorn C, Crozier JB, Mentz KA, Booth AM, Graves AK, Nelson NJ, Reneau RB Jr. 2003. Carbon source utilization profiles as a method to identify sources of faecal pollution in water. J Appl Microbiol 94:792799.[PubMed][CrossRef]
180. Simonsen GS, Smabrekke L, Monnet DL, Sorensen TL, Moller JK, Kristinsson KG, Lagerqvist-Widh A, Torell E, Digranes A, Harthug S, Sundsfjord A. 2003. Prevalence of resistance to ampicillin, gentamicin and vancomycin in Enterococcus faecalis and Enterococcus faecium isolates from clinical specimens and use of antimicrobials in five Nordic hospitals. J Antimicrob Chemother 51:323331.[PubMed][CrossRef]
181. Witte W. 2000. Selective pressure by antibiotic use in livestock. Int J Antimicrob. Agents. 16(Suppl 1):S19–S24.[CrossRef]
182. Geldreich EE, Kenner BA. 1969. Concepts of fecal streptococci in stream pollution. J Water Pollut Control Fed 41(Suppl):R336+.
183. Kummerer K. 2009. Antibiotics in the aquatic environment–a review–part I. Chemosphere 75:417434.[PubMed][CrossRef]
184. Koike S, Aminov RI, Yannarell AC, Gans HD, Krapac IG, Chee-Sanford JC, Mackie RI. 2010. Molecular ecology of macrolide-lincosamide-streptogramin B methylases in waste lagoons and subsurface waters associated with swine production. Microb Ecol 59:487498.[PubMed][CrossRef]
185. Duan H, Chai T, Liu J, Zhang X, Qi C, Gao J, Wang Y, Cai Y, Miao Z, Yao M, Schlenker G. 2009. Source identification of airborne Escherichia coli of swine house surroundings using ERIC-PCR and REP-PCR. Environ Res 109:511517.[PubMed][CrossRef]
186. Seurinck S, Verstraete W, Siciliano SD. 2003. Use of 16S-23S rRNA intergenic spacer region PCR and repetitive extragenic palindromic PCR analyses of Escherichia coli isolates to identify nonpoint fecal sources. App Environ Microbiol 69:49424950.[CrossRef]
187. Casarez EA, Pillai SD, Di Giovanni GD. 2007. Genotype diversity of Escherichia coli isolates in natural waters determined by PFGE and ERIC-PCR. Water Res 41:36433648.[PubMed][CrossRef]
188. McLellan SL, Daniels AD, Salmore AK. 2003. Genetic characterization of Escherichia coli populations from host sources of fecal pollution by using DNA fingerprinting. Appl Environ Microbiol 69:25872594.[PubMed][CrossRef]
189. Moore DF, Harwood VJ, Ferguson DM, Lukasik J, Hannah P, Getrich M, Brownell M. 2005. Evaluation of antibiotic resistance analysis and ribotyping for identification of faecal pollution sources in an urban watershed. J Appl Microbiol 99:618628.[PubMed][CrossRef]