1887

Chapter 3.4.6 : Fecal Indicator Organism Modeling and Microbial Source Tracking in Environmental Waters

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Fecal Indicator Organism Modeling and Microbial Source Tracking in Environmental Waters, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch3.4.6-1.gif /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch3.4.6-2.gif

Abstract:

Mathematical models have been widely applied to surface waters to estimate rates of settling, resuspension, flow, dispersion, and advection in order to calculate movement of particles that influence water quality. Of particular interest are the movement, survival, and persistence of microbial pathogens or their surrogates, which may contaminate recreational water, drinking water, or shellfish. Most models devoted to microbial water quality have been focused on fecal indicator organisms (FIO), which act as a surrogate for pathogens and viruses. Process-based modeling and statistical modeling have been used to track contamination events to source and to predict future events. The use of these two types of models require different levels of expertise and input; process-based models rely on theoretical physical constructs to explain present conditions and biological distribution while data-based, statistical models use extant paired data to do the same. The selection of the appropriate model and interpretation of results is critical to proper use of these tools in microbial source tracking. Integration of the modeling approaches could provide insight for tracking and predicting contamination events in real time. A review of modeling efforts reveals that process-based modeling has great promise for microbial source tracking efforts; further, combining the understanding of physical processes influencing FIO contamination developed with process-based models and molecular characterization of the population by gene-based (i.e., biological) or chemical markers may be an effective approach for locating sources and remediating contamination in order to protect human health better.

Citation: Nevers M, Byappanahalli M, Phanikumar M, Whitman R. 2016. Fecal Indicator Organism Modeling and Microbial Source Tracking in Environmental Waters, p 3.4.6-1-3.4.6-16. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.4.6
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Output of a process-based model showing of distribution in water at a Chicago beach. Diagram indicates concentrations 8 hr after a resuspension event within the embayment. (a) Suspended culturable concentration (b) settled culturable concentration. Reprinted with permission from ( ). doi:10.1128/9781555818821.ch3.4.6.f1

Citation: Nevers M, Byappanahalli M, Phanikumar M, Whitman R. 2016. Fecal Indicator Organism Modeling and Microbial Source Tracking in Environmental Waters, p 3.4.6-1-3.4.6-16. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.4.6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Diagram outlining the process that might be followed for using models to identify sources of fecal contamination and initiate remediation activities. doi:10.1128/9781555818821.ch3.4.6.f2

Citation: Nevers M, Byappanahalli M, Phanikumar M, Whitman R. 2016. Fecal Indicator Organism Modeling and Microbial Source Tracking in Environmental Waters, p 3.4.6-1-3.4.6-16. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.4.6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Example of a structural equation model (path analysis) for determining the source and pathway of FIO contamination in nearshore beach water. The exhibited results are from data collected from 63rd Street Beach in Chicago in 2000, from several water depths, shoreline sand, and submerged sand. Numbers on each box refer to the cumulative value, while numbers associated with the arrows are regression weights. Significance is indicated: *, 0.05, **, 0.01; ***, 0.001. Errors (E1–E4) are included in path analysis. Reprinted with permission from ( ). doi:10.1128/9781555818821.ch3.4.6.f3

Citation: Nevers M, Byappanahalli M, Phanikumar M, Whitman R. 2016. Fecal Indicator Organism Modeling and Microbial Source Tracking in Environmental Waters, p 3.4.6-1-3.4.6-16. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.4.6
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818821.ch3.4.6
1. Boehm AB. 2003. Model of microbial transport and inactivation in the surf zone and application to field measurements of total coliform in northern Orange County, California. Environ Sci Technol 37:55115517.[PubMed][CrossRef]
2. Boehm AB, Keymer DP, Shellenbarger GG. 2005. An analytical model of enterococci inactivation, grazing, and transport in the surf zone of a marine beach. Water Res 39:35653578.[PubMed][CrossRef]
3. Canale RP, Auer MT, Owens EM, Heidtke TM, Effler SW. 1993. Modeling fecal coliform bacteria—II. Model development and application. Water Res 27:703714.[CrossRef]
4. Grant SB, Kim JH, Jones BH, Jenkins SA, Wasyl J, Cudaback C. 2005. Surf zone entrainment, along-shore transport, and human health implications of pollution from tidal outlets. J Geophys Res C 110:120.
5. Liu L, Phanikumar MS, Molloy SL, Whitman RL, Shively DA, Nevers MB, Schwab DJ, Rose JB. 2006. Modeling the transport and inactivation of E. coli and enterococci in the near-shore region of Lake Michigan. Environ Sci Technol 40:50225028.[PubMed][CrossRef]
6. Kashefipour SM, Lin B, Falconer RA. 2005. Neural networks for predicting seawater bacterial levels. P I Civil Eng-Wat M 158:111118.
7. de Brauwere A, de Brye B, Servais P, Passerat J, Deleersnijder E. 2011. Modelling Escherichia coli concentrations in the tidal Scheldt River and estuary. Water Res 45:27242738.[PubMed][CrossRef]
8. Gao G, Falconer RA, Lin B. 2011. Numerical modelling of sediment-bacteria interaction processes in surface waters. Water Res 45:19511960.[PubMed][CrossRef]
9. Sanders BF, Arega F, Sutula M. 2005. Modeling the dry-weather tidal cycling of fecal indicator bacteria in surface waters of an intertidal wetland. Water Res 39:33943408.[PubMed][CrossRef]
10. Zhu X, Wang JD, Solo-Gabriele HM, Fleming LE. 2011. A water quality modeling study of non-point sources at recreational marine beaches. Water Res 45:29852995.[PubMed][CrossRef]
11. Hellweger FL, Masopust P. 2008. Investigating the fate and transport of Escherichia coli in the Charles River, Boston, using high-resolution observation and modeling. J Amer Water Resour Ass 44:509522.[CrossRef]
12. Thupaki P, Phanikumar MS, Beletsky D, Schwab DJ, Nevers MB, Whitman RL. 2010. Budget analysis of Escherichia coli at a southern Lake Michigan beach. Environ Sci Technol 44:10101016.[PubMed][CrossRef]
13. Connolly JP, Blumberg AF, Quadrin JD. 1999. Modeling fate of pathogenic organisms in coastal waters of Oahu, Hawaii. J Environ Engineer-ASCE 125:398406.[CrossRef]
14. Hipsey MR, Antenucci JP, Brookes JD. 2008. A generic, process-based model of microbial pollution in aquatic systems. Water Resour Res 44:W07408.
15. Grant SB, Sanders BF. 2010. Beach boundary layer: a framework for addressing recreational water quality impairment at enclosed beaches. Environ Sci Technol 44:88048813.[PubMed][CrossRef]
16. Crowther J, Kay D, Wyer MD. 2001. Relationships between microbial water quality and environmental conditions in coastal recreational waters: the Fylde coast, UK. Water Res 35:40294038.[PubMed][CrossRef]
17. Hou D, Rabinovici SJM, Boehm AB. 2006. Enterococci predictions from partial least squares regression models in conjunction with a single-sample standard improve the efficacy of beach management advisories. Environ Sci Technol 40:17371743.[PubMed][CrossRef]
18. Eleria A, Vogel RM. 2005. Predicting fecal coliform bacteria levels in the Charles River, Massachusetts, USA. J Am Water Resour Assn 41:11951209.[CrossRef]
19. Nevers MB, Whitman RL. 2005. Nowcast modeling of Escherichia coli concentrations at multiple urban beaches of southern Lake Michigan. Water Res 39:52505260.[PubMed][CrossRef]
20. Frick WA, Ge Z, Zepp RG. 2008. Nowcasting and forecasting concentrations of biological contaminants at beaches: a feasibility and case study. Environ Sci Technol 42:42184824.[CrossRef]
21. Gronewold AD, Qian SS, Wolpert RL, Reckhow KH. 2009. Calibrating and validating bacterial water quality models: a Bayesian approach. Water Res 43:26882698.[PubMed][CrossRef]
22. Nevers MB, Whitman RL, Frick WA, Ge Z. 2007. Interaction and influence of two creeks on E. coli concentrations of nearby beaches: exploration of predictability and mechanisms. J Environ Qual 36:13381345.[PubMed][CrossRef]
23. Olyphant GA, Whitman RL. 2004. Elements of a predictive model for determining beach closures on a real time basis: the case of 63rd Street Beach Chicago. Environ Monit Assess 98:175190.[PubMed][CrossRef]
24. Mas DML, Ahlfeld DP. 2007. Comparing artificial neural networks and regression models for predicting faecal coliform concentrations. Hydrolog Sci J 52:713731.[CrossRef]
25. Zhang Z, Deng Z, Rusch KA. 2012. Development of predictive models for determining enterococci levels at Gulf Coast beaches. Water Res 46:465474.[PubMed][CrossRef]
26. Nevers MB, Whitman RL. 2008. Coastal strategies to predict Escherichia coli concentrations for beaches along a 35 km stretch of southern Lake Michigan. Environ Sci Technol 42:44544460.[PubMed][CrossRef]
27. Whitman RL, Nevers MB. 2008. Summer E. coli patterns and responses along 23 Chicago beaches. Environ Sci Technol 42:92179224.[PubMed][CrossRef]
28. Wong M, Kumar L, Jenkins TM, Xagoraraki I, Phanikumar MS, Rose JB. 2009. Evaluation of public health risks at recreational beaches in Lake Michigan via detection of enteric viruses and a human-specific bacteriological marker. Water Res 43:11371149.[PubMed][CrossRef]
29. Shibata T, Solo-Gabriele HM, Sinigalliano CD, Gidley ML, Plano LRW, Fleisher JM, Wang JD, Elmir SM, He G, Wright ME, Abdelzaher AM, Ortega C, Wanless D, Garza AC, Kish J, Scott T, Hollenbeck J, Backer LC, Fleming LE. 2010. Evaluation of conventional and alternative monitoring methods for a recreational marine beach with nonpoint source of fecal contamination. Environ Sci Technol 44:81758181.[PubMed][CrossRef]
30. Nnane DE, Ebdon JE, Taylor HD. 2011. Integrated analysis of water quality parameters for cost-effective faecal pollution management in river catchments. Water Res 45:22352246.[PubMed][CrossRef]
31. Shibata T, Solo-Gabriele HM, Fleming LE, Elmir S. 2004. Monitoring marine recreational water quality using multiple microbial indicators in an urban tropical environment. Water Res 38:31193131.[PubMed][CrossRef]
32. Sokolova E, Pettersson TJR, Bergstedt O, Hermansson M. 2013. Hydrodynamic modelling of the microbial water quality in a drinking water source as input for risk reduction management. J Hydrol 497:1523.[CrossRef]
33. Vale P. 2012. Two simple models for accounting mussel contamination with diarrhoetic shellfish poisoning toxins at Aveiro lagoon: control by rainfall and atmospheric forcing. Est Coast Shelf Sci 98:94100.[CrossRef]
34. Wilkinson RJ, McKergow LA, Davies-Colley RJ, Ballantine DJ, Young RG. 2011. Modelling storm-event E. coli pulses from the Motueka and Sherry Rivers in the South Island, New Zealand. NZ J Mar Freshw Res 45:369393.[CrossRef]
35. Francy DS. 2009. Use of predictive models and rapid methods to nowcast bacteria levels at coastal beaches. Aquat Ecosyst Health Manage 12:177182.[CrossRef]
36. Stidson RT, Gray CA, McPhail CD. 2012. Development and use of modelling techniques for real-time bathing water quality predictions. Water Environ J 26:718.[CrossRef]
37. Byappanahalli M, Fowler M, Shively D, Whitman R. 2003. Ubiquity and persistence of Escherichia coli in a midwestern stream. Appl Environ Microbiol 69:45494555.[PubMed][CrossRef]
38. Solo-Gabriele HM, Wolfert MA, Desmarais TR, Palmer CJ. 2000. Sources of Escherichia coli in a coastal subtropical environment. Appl Environ Microbiol 66:230237.[PubMed][CrossRef]
39. Byappanahalli MN, Roll BM, Fujioka RS. 2012. Evidence for occurrence, persistence, and growth of Escherichia coli and enterococci in Hawaii's soil environments. Microbes Environ 27:164170.[PubMed][CrossRef]
40. Ferguson D, Signoretto C,. 2011. Environmental persistence and naturalization of fecal indicator organisms, p. 379397. In Hagedorn C,, Blanch AR,, Harwood VJ (eds), Microbial Source Tracking: Methods, Applications, and Case Studies. Springer, New York.
41. Hagedorn C, Blanch AR, Harwood VJ (eds). 2011. Microbial Source Tracking: Methods, Applications, and Case Studies. Springer, New York.
42. Unno T, Jang J, Han D, Kim JH, Sadowsky MJ, Kim OS, Chun J, Hur H-G. 2010. Use of barcoded pyrosequencing and shared OTUs to determine sources of fecal bacteria in watersheds. Environ Sci Technol 44:77777782.[PubMed][CrossRef]
43. Bradford SA, Wang Y, Kim H, Torkzaban S, Šimůnek J. 2014. Modeling microorganism transport and survival in the subsurface. J Environ Qual 43:421440.[PubMed][CrossRef]
44. Yates MV, Yates SR, Wagner J, Gerba CP. 1987. Modeling virus survival and transport in the subsurface. J Contam Hydrol 1:329345.[CrossRef]
45. Dukta BJ. 1973. Coliforms are an inadequate index of water quality. J Environ Health 36:3946.
46. Byappanahalli MN, Nevers MB, Korajkic A, Staley ZR, Harwood VJ. 2012. Enterococci in the environment: a review. Microbiol Mol Biol Rev 76:685706.[PubMed][CrossRef]
47. Winfield MD, Groisman EA. 2003. Role of nonhost environments in the lifestyles of Salmonella and Escherichia coli. Appl Environ Microbiol 69:36873694.[PubMed][CrossRef]
48. Fujioka R, Sian-Denton C, Borja M, Castro J, Morphew K. 1999. Soil: the environmental source of Escherichia coli and enterococci in Guam's streams. J Appl Microbiol Symp Suppl 85:83S89S.[CrossRef]
49. Brennan FP, O'Flaherty V, Kramers G, Grant J, Richards KG. 2010. Long-term persistence and leaching of Escherichia coli in temperate maritime soils. Appl Environ Microbiol 76:14491455.[PubMed][CrossRef]
50. Hardina CM, Fujioka RS. 1991. Soil: the environmental source of Escherichia coli and enterococci in Hawaii's streams. Environ Toxicol Water Qual 6:185195.[CrossRef]
51. Ishii S, Yan T, Shively DA, Byappanahalli MN, Whitman RL, Sadowsky MJ. 2006. Cladophora (Chlorophyta) spp. harbor human bacterial pathogens in nearshore water of Lake Michigan. Appl Environ Microbiol 72:45454553.[PubMed][CrossRef]
52. Lasalde C, Rodriguez R, Toranzos GA, Smith HH. 2005. Heterogeneity of uidA gene in environmental Escherichia coli populations. J Water Health 3:297304.[PubMed]
53. Ishii S, Ksoll WB, Hicks RE, Sadowsky MJ. 2006. Presence and growth of naturalized Escherichia coli in temperate soils from Lake Superior watersheds. Appl Environ Microbiol 72:612621.[PubMed][CrossRef]
54. Whitman RL, Nevers MB, Byappanahalli MN. 2006. Watershed-wide distribution of Escherichia coli along southern Lake Michigan: an integrated approach. Appl Environ Microbiol 72:73017310.[PubMed][CrossRef]
55. Byappanahalli M, Fujioka R. 2004. Indigenous soil bacteria and low moisture may limit but allow faecal bacteria to multiply and become a minor population in tropical soils. Water Sci Technol 50:2732.[PubMed]
56. Byappanahalli MN. 2000. Assessing the persistence and multiplication of fecal indicator bacteria in Hawaii soil environment. Ph.D. thesis, University of Hawaii at Manoa, Honolulu.
57. Brennan FP, Grant J, Botting CH, O'Flaherty V, Richards KG, Abram F. 2012. Insights into the low-temperature adaptation and nutritional flexibility of a soil-persistent Escherichia coli. FEMS Microbiol Ecol 84:7585.[PubMed][CrossRef]
58. Fujioka RS, Byappanahalli MN,. 2001. Microbial ecology controls the establishment of fecal bacteria in tropical soil environment, p. 273283. In Matsuo T,, Hanaki K,, Takizawa S,, Satoh H (eds), Advances in Water and Wastewater Treatment Technology: Molecular Technology, Nutrient Removal, Sludge Reduction, and Environmental Health. Elsevier Science, Amsterdam.
59. Anderson KL, Whitlock JE, Harwood VJ. 2005. Persistence and differential survival of fecal indicator bacteria in subtropical waters and sediments. Appl Environ Microbiol 71:30413048.[PubMed][CrossRef]
60. Davies CM, Long JAH, Donald M, Ashbolt NJ. 1995. Survival of fecal microorganisms in marine and freshwater sediments. Appl Environ Microbiol 61:18881896.[PubMed]
61. Gerba CP, McLeod JS. 1976. Effects of sediments on the survival of Escherichia coli in marine waters. Appl Environ Microbiol 32:114120.[PubMed]
62. Sayler GS, Nelson J, Justice A, Colwell RR. 1975. Distribution and significance of fecal indicator organisms in the Upper Chesapeake Bay. Appl Microbiol 30:625638.[PubMed]
63. Desmarais TR, Solo-Gabriele HM, Palmer CJ. 2002. Influence of soil on fecal indicator organisms in a tidally influenced subtropical environment. Appl Environ Microbiol 68:11651172.[PubMed][CrossRef]
64. Gary HL, Adams JC. 1985. Indicator bacteria in water and stream sediments near the Snowy Range in southern Wyoming. Water Air Soil Pollut 25:133144.[CrossRef]
65. An YJ, Kampbell DH, Breidenbach GP. 2002. Escherichia coli and total coliforms in water and sediments at lake marinas. Environ Pollut 120:771778.[PubMed][CrossRef]
66. Craig DL, Fallowfield HJ, Cromar NJ. 2004. Use of microcosms to determine persistence of Escherichia coli in recreational coastal water and sediment and validation with in situ measurements. J Appl Microbiol 96:922930.[PubMed][CrossRef]
67. Grimes DJ. 1980. Bacteriological water quality effects of hydraulically dredging contaminated upper Mississippi River bottom sediment. Appl Environ Microbiol 39:782789.[PubMed]
68. Steets BM, Holden PA. 2003. A mechanistic model of runoff-associated fecal coliform fate and transport through a coastal lagoon. Water Res 37:589608.[PubMed][CrossRef]
69. Jamieson RC, Joy DM, Lee H, Kostaschuk R, Gordon RJ. 2005. Resuspension of sediment-associated Escherichia coli in a natural stream. J Environ Qual 34:581589.[PubMed][CrossRef]
70. Wilkinson J, Kay D, Wyer M, Jenkins A. 2006. Processes driving the episodic flux of faecal indicator organisms in streams impacting on recreational and shellfish harvesting waters. Water Res 40:153161.[PubMed][CrossRef]
71. Garcia-Armisen T, Servais P. 2007. Respective contributions of point and non-point sources of E. coli and enterococci in a large urbanized watershed (the Seine River, France). J Environ Manag 82:512518.[CrossRef]
72. Ferguson C, De Roda H, usman AM, Altavilla N, Deere D, Ashbolt N. 2003. Fate and transport of surface water pathogens in watersheds. Crit Rev Environ Sci Technol 33:299361.[CrossRef]
73. Unc A, Goss MJ. 2004. Transport of bacteria from manure and protection of water resources. J Appl Ecol 25:118.
74. Dorner SM, Anderson WB, Slawson RM, Kouwen N, Huck PM. 2006. Hydrologic modeling of pathogen fate and transport. Environ Sci Technol 40:47464753.[PubMed][CrossRef]
75. Jamieson R, Joy DM, Lee H, Kostaschuk R, Gordon R. 2005. Transport and deposition of sediment-associated Escherichia coli in natural streams. Water Res 39:26652675.[PubMed][CrossRef]
76. Byappanahalli MN, Whitman RL, Shively DA, Evert Ting WT, Tseng CC, Nevers MB. 2006. Seasonal persistence and population characteristics of Escherichia coli and enterococci in deep backshore sand of two freshwater beaches. J Water Health 4:313320.[PubMed]
77. Whitman RL, Nevers MB. 2003. Foreshore sand as a source of Escherichia coli in nearshore water of a Lake Michigan beach. Appl Environ Microbiol 69:55555562.[PubMed][CrossRef]
78. Ghinsberg RC, Leibowitz P, Witkin H, Mates A, Seinberg Y, Bar DL, Nitzan Y, Rogol M. 1994. Monitoring of selected bacteria and fungi in sand and seawater along the Tel Aviv coast. MAP Technical Reports Series 87:6581.
79. Halliday E, Gast RJ. 2011. Bacteria in beach sands: an emerging challenge in protecting coastal water quality and bather health. Environ Sci Technol 45:370379.[PubMed][CrossRef]
80. Phillips MC, Solo-Gabriele HM, Piggot AM, Klaus JS, Zhang YJ. 2011. Relationships between sand and water quality at recreational beaches. Water Res 45:67636769.[PubMed][CrossRef]
81. Yamahara KM, Layton BA, Santoro AE, Boehm AB. 2007. Beach sands along the California coast are diffuse sources of fecal bacteria to coastal waters. Environ Sci Technol 41:45154521.[PubMed][CrossRef]
82. Fogarty LR, Haack SK, Wolcott MJ, Whitman RL. 2003. Abundance and characteristics of the recreational water quality indicator bacteria Escherichia coli and enterococci in gull faeces. J Appl Microbiol 94:865878.[PubMed][CrossRef]
83. Kinzelman J, Pond K, Longmaid K, Bagley R. 2004. The effect of two mechanical beach grooming strategies on Escherichia coli density in beach sand at a southwestern Lake Michigan beach. Aquat Ecosyst Health Manage 7:425432.[CrossRef]
84. Lévesque B, Brousseau P, Simard P, Dewailly E, Meisels M, Ramsay D, Joly J. 1993. Impact of the ring-billed gull (Larus delawarensis) on the microbiological quality of recreational water. Appl Environ Microbiol 59:12281230.
85. Standridge JH, Delfino JJ, Kleppe LB, Butler R. 1979. Effect of waterfowl (Anas platyrhynchos) on indicator bacteria populations in a recreational lake in Madison, Wisconsin. Appl Environ Microbiol 38:547550.[PubMed]
86. Wyer MD, Kay D, Jackson GF, Dawson HM, Yeo J, Tanguy L. 1995. Indicator organism sources and coastal water quality: a catchment study on the Island of Jersey. J Appl Bacteriol 78:290296.[PubMed][CrossRef]
87. Ge Z, Whitman RL, Nevers MB, Phanikumar MS. 2012. Wave-induced mass transport affects daily Escherichia coli fluctuations in nearshore water. Environ Sci Technol 46:22042211.[PubMed][CrossRef]
88. Le Fevre NM, Lewis GD. 2003. The role of resuspension in enterococci distribution in water at an urban beach. Water Sci Technol 47:205210.[PubMed]
89. Gast RJ, Gorrell L, Raubenheimer B, Elgar S. 2011. Impact of erosion and accretion on the distribution of enterococci in beach sands. Cont Shelf Res 31:14571461.[PubMed][CrossRef]
90. He LM, He ZL. 2008. Water quality prediction of marine recreational beaches receiving watershed baseflow and stormwater runoff in southern California, USA. Water Res 42:25632573.[PubMed][CrossRef]
91. Boehm AB, Shellenbarger GG, Paytan A. 2004. Groundwater discharge: potential association with fecal indicator bacteria in the surf zone. Environ Sci Technol 38:35583566.[PubMed][CrossRef]
92. Fong TT, Mansfield LS, Wilson DL, Schwab DJ, Molloy SL, Rose JB. 2007. Massive microbiological groundwater contamination associated with a waterborne outbreak in Lake Erie, South Bass Island, Ohio. Environ Health Perspect 115:856864.[PubMed][CrossRef]
93. Page RM, Scheidler S, Polat E, Svoboda P, Huggenberger P. 2012. Faecal indicator bacteria: groundwater dynamics and transport following precipitation and river water infiltration. Water Air Soil Pollut 223:27712782.[CrossRef]
94. Anderson SA, Turner SJ, Lewis GD. 1997. Enterococci in the New Zealand environment: implications for water quality monitoring. Water Sci Technol 35:325331.[CrossRef]
95. Grant SB, Sanders BF, Boehm AB, Redman JA, Kim JH, Mrše RD, Chu AK, Gouldin M, McGee CD, Gardiner NA, Jones BH, Svejkovsky J, Leipzig GV, Brown A. 2001. Generation of enterococci bacteria in a coastal saltwater marsh and its impact on surf zone water quality. Environ Sci Technol 35:24072416.[PubMed][CrossRef]
96. Imamura GJ, Thompson RS, Boehm AB, Jay JA. 2011. Wrack promotes the persistence of fecal indicator bacteria in marine sands and seawater. FEMS Microbiol Ecol 77:4049.[PubMed][CrossRef]
97. Whitman RL, Shively DA, Pawlik H, Nevers MB, Byappanahalli MN. 2003. Occurrence of Escherichia coli and enterococci in Cladophora (Chlorophyta) in nearshore water and beach sand of Lake Michigan. Appl Environ Microbiol 69:47144719.[PubMed][CrossRef]
98. Muller T, Ulrich A, Ott EM, Muller M. 2001. Identification of plant-associated enterococci. J Appl Microbiol 91:268278.[PubMed][CrossRef]
99. Badgley BD, Thomas FIM, Harwood VJ. 2010. The effects of submerged aquatic vegetation on the persistence of environmental populations of Enterococcus spp. Environ Microbiol 12:12711281.[PubMed][CrossRef]
100. Ott E-M, Muller T, Muller M, Franz CMAP, Ulrich A, Gabel M, Seyfarth W. 2001. Population dynamics and antagonistic potential of enterococci colonizing the phyllosphere of grasses. J Appl Microbiol 91:5466.[PubMed][CrossRef]
101. Byappanahalli MN, Sawdey R, Ishii S, Shively DA, Ferguson J, Whitman RL, Sadowsky MJ. 2009. Seasonal stability of Cladophora-associated Salmonella in Lake Michigan watersheds. Water Res 43:806814.[PubMed][CrossRef]
102. Badgley BD, Nayak BS, Harwood VJ. 2010. The importance of sediment and submerged aquatic vegetation as potential habitats for persistent strains of enterococci in a subtropical watershed. Water Res 44:58575866.[PubMed][CrossRef]
103. Badgley BD, Thomas FIM, Harwood VJ. 2011. Quantifying environmental reservoirs of fecal indicator bacteria associated with sediment and submerged aquatic vegetation. Environ Microbiol 13:932942.[PubMed][CrossRef]
104. Whitman RL, Nevers MB, Przybyla-Kelly K, Byappanahalli MN,. 2011. Physical and biological factors influencing environmental sources of fecal indicator bacteria in surface water, p. 111134. In Sadowsky MJ,, Whitman RL (eds), The Fecal Bacteria. ASM Press, Washington, DC.
105. Byappanahalli MN, Ishii S,. 2011. Environmental sources of fecal bacteria, p. 93110. In Sadowsky MJ,, Whitman RL (eds), The Fecal Bacteria. ASM Press, Washington, DC.
106. Gauthier F, Archibald F. 2001. The ecology of fecal indicator bacteria commonly found in pulp and paper mill water systems. Water Res 35:22072218.[PubMed][CrossRef]
107. Beauchamp CJ, Simao-Beaunoir A-M, Beaulieu C, Chalifour F-P. 2006. Confirmation of E. coli among other thermotolerant coliform bacteria in paper mill effluents, wood chips screening rejects and paper sludges. Water Res 40:24522462.[PubMed][CrossRef]
108. Byappanahalli MN, Shively DA, Nevers MB, Sadowsky MJ, Whitman RL. 2003. Growth and survival of Escherichia coli and enterococci populations in the macro-alga Cladophora (Chlorophyta). FEMS Microbiol Ecol 46:203211.[PubMed][CrossRef]
109. Grimes DJ. 1975. Release of sediment bound fecal coliforms by dredging. Appl Microbiol 29:109111.[PubMed]
110. Crowther J, Wyer MD, Bradford M, Kay D, Francis CA. 2003. Modelling faecal indicator concentrations in large rural catchments using land use and topographic data. J Appl Microbiol 94:962973.[PubMed][CrossRef]
111. Bai S, Lung WS. 2005. Modeling sediment impact on the transport of fecal bacteria. Water Res 39:52325240.[PubMed][CrossRef]
112. Noble RT, Weisberg SB, Leecaster MK, McGee CD, Dorsey JH, Vainik P, Orozco-Borbón V. 2003. Storm effects on regional beach water quality along the southern California shoreline. J Water Health 1:2331.[PubMed]
113. Parker JK, McIntyre D, Noble RT. 2010. Characterizing fecal contamination in stormwater runoff in coastal North Carolina, USA. Water Res 44:41864194.[PubMed][CrossRef]
114. Wright ME, Abdelzaher AM, Solo-Gabriele HM, Elmir S, Fleming LE. 2011. The inter-tidal zone is the pathway of input of enterococci to a subtropical recreational marine beach. Water Sci Technol 63:542549.[PubMed][CrossRef]
115. Ho LC, Litton RM, Grant SB. 2011. Anthropogenic currents and shoreline water quality in Avalon Bay, California. Environ Sci Technol 45:20792085.[PubMed][CrossRef]
116. Phillips MC, Solo-Gabriele HM, Reniers AJHM, Wang JD, Kiger RT, Abdel-Mottaleb N. 2011. Pore water transport of enterococci out of beach sediments. Mar Pollut Bull 62:22932298.[PubMed][CrossRef]
117. Russell TL, Yamahara KM, Boehm AB. 2012. Mobilization and transport of naturally occurring enterococci in beach sands subject to transient infiltration of seawater. Environ Sci Technol 46:59885996.[PubMed][CrossRef]
118. Badgley BD, Ferguson J, Vanden Heuvel A, Kleinheinz GT, McDermott CM, Sandrin TR, Kinzelman J, Junion EA, Byappanahalli MN, Whitman RL, Sadowsky MJ. 2011. Multi-scale temporal and spatial variation in genotypic composition of Cladophora-borne Escherichia coli populations in Lake Michigan. Water Res 45:721731.[PubMed][CrossRef]
119. Bermudez M, Hazen TC. 1988. Phenotypic and genotypic comparison of Escherichia coli from pristine tropical waters. Appl Environ Microbiol 54:979983.[PubMed]
120. Whitman RL, Byers SE, Shively DA, Ferguson DM, Byappanahalli MN. 2005. Occurrence and growth characteristics of Escherichia coli and enterococci within the accumulated fluid of the northern pitcher plant (Sarracenia purpurea L.). Can J Microbiol 51:10271037.[PubMed][CrossRef]
121. Byappanahalli MN, Whitman RL, Shively DA, Ting WTE, Tseng CC, Nevers MB. 2006. Seasonal persistence and population characteristics of Escherichia coli and enterococci in deep backshore sand of two freshwater beaches. J Water Health 4:313320.[PubMed]
122. Yamahara KM, Walters SP, Boehm AB. 2009. Growth of enterococci in unaltered, unseeded beach sands subjected to tidal wetting. Appl Environ Microbiol 75:15171524.[PubMed][CrossRef]
123. American Public Health Association. 2005. Standard Methods for the Examination of Water and Wastewater, 21st ed. American Public Health Association, Washington, DC.
124. Niemala SI, Lee JV, Fricker CR. 2003. A comparison of the International Standards Organization reference method for the detection of coliforms and Escherichia coli in water with a defined substrate procedure. J Appl Microbiol 95:12851292.[CrossRef]
125. Prüss A. 1998. Review of epidemiological studies on health effects from exposure to recreational water. Int J Epidemiol 27:19.[PubMed][CrossRef]
126. Calderon RL, Mood EW, Dufour AP. 1991. Health effects of swimmers and nonpoint sources of contaminated water. Int J Environ Health Res 1:2131.[CrossRef]
127. Fleisher JM, Fleming LE, Solo-Gabriele HM, Kish JK, Sinigalliano CD, Plano L, Elmir SM, Wang JD, Withum K, Shibata T, Gidley ML, Abdelzaher A, He G, Ortega C, Zhu X, Wright M, Hollenbeck J, Backer LC. 2010. The BEACHES Study: health effects and exposures from non-point source microbial contaminants in subtropical recreational marine waters. Int J Epidemiol 39:12911298.[PubMed][CrossRef]
128. Drozd M, Merrick NN, Sanad YM, Dick LK, Dick WA, Rajashekara G. 2013. Evaluating the occurrence of host-specific bacteroidales, general fecal indicators, and bacterial pathogens in a mixed-use watershed. J Environ Qual 42:713725.[PubMed][CrossRef]
129. Hörman A, Rimhanen-Finne R, Maunula L, Von Bonsdorff CH, Torvela N, Heikinheimo A, Hänninen ML. 2004. Campylobacter spp., Giardia spp., Cryptosporidium spp., boroviruses, and indicator organisms in surface water in Southwestern Finland, 2000–2001. Appl Environ Microbiol 70:8795.[PubMed][CrossRef]
130. Oladeinde A, Bohrmann T, Wong K, Purucker ST, Bradshaw K, Brown R, Snyder B, Molina M. 2014. Decay of fecal indicator bacterial populations and bovine-associated source-tracking markers in freshly deposited cow pats. Appl Environ Microbiol 80:110118.[PubMed][CrossRef]
131. Roslev P, Bastholm S, Iversen N. 2008. Relationship between fecal indicators in sediment and recreational waters in a Danish estuary. Water Air Soil Pollut 194:1321.[CrossRef]
132. Bhattarai R, Kalita P, Trask J, Kuhlenschmidt MS. 2011. Development of a physically-based model for transport of Cryptosporidium parvum in overland flow. Environ Modell Softw 26:12891297.[CrossRef]
133. Desai A, Rifai HS, Petersen TM, Stein R. 2011. Mass balance and water quality modeling for load allocation of Escherichia coli in an urban watershed. J Water Res Pl ASCE 137:412427.[CrossRef]
134. Harmel RD, Karthikeyan R, Gentry T, Srinivasan R. 2010. Effects of agricultural management, land use, and watershed scale on E. coli concentrations in runoff and streamflow. T ASABE 53:18331841.[CrossRef]
135. Pachepsky YA, Sadeghi AM, Bradford SA, Shelton DR, Guber AK, Dao T. 2006. Transport and fate of manure-borne pathogens: modeling perspective. Agric Water Manag 86:9192.[CrossRef]
136. Petersen CM, Rifai HS, Stein R. 2009. Bacteria load estimator spreadsheet tool for modeling spatial Escherichia coli loads to an urban bayou. J Environ Engineer-ASCE 135:203217.[CrossRef]
137. Riebschleager KJ, Karthikeyan R, Srinivasan R, McKee K. 2012. Estimating potential E. coli sources in a watershed using spatially explicit modeling techniques. J Amer Water Resour Assn 48:745761.[CrossRef]
138. Smith JH, Wickham JD, Norton D, Wade TG, Jones KB. 2001. Utilization of landscape indicators to model potential pathogen impaired waters. J Amer Water Resour Assn 37:805814.[CrossRef]
139. Surbeck CQ, Jiang SC, Ahn JH, Grant SB. 2006. Flow fingerprinting fecal pollution and suspended solids in stormwater runoff from an urban coastal watershed. Environ Sci Technol 40:44354441.[PubMed][CrossRef]
140. Teague A, Karthikeyan R, Babbar-Sebens M, Srinivasan R, Persyn RA. 2009. Spatially explicit load enrichment calculation tool to identify potential E. coli sources in watersheds. T ASABE 52:11091120.[CrossRef]
141. Vescovi L, Mailhot A, Rousseau AN, Villeneuve JP. 1999. Hydrobiochemical modeling of the Saint-Charles watershed. 2: water quality. Water Qual Res J Can 34:335360.
142. Viau EJ, Goodwin KD, Yamahara KM, Layton BA, Sassoubre LM, Burns SL, Tong HI, Wong SH, Lu Y, Boehm AB. 2011. Bacterial pathogens in Hawaiian coastal streams—associations with fecal indicators, land cover, and water quality. Water Res 45:32793290.[PubMed][CrossRef]
143. Vidon P, Tedesco LP, Wilson J, Campbell MA, Casey LR, Gray M. 2008. Direct and indirect hydrological controls on E. coli concentration and loading in midwestern streams. J Environ Qual 37:17611768.[PubMed][CrossRef]
144. Zeckoski RW, Benham BL, Shah SB, Wolfe ML, Brannan KM, Al-Smadi M, Dillaha TA, Mostaghimi S, Heatwole CD. 2005. Bslc: a tool for bacteria source characterization for watershed management. Appl Eng Agric 21:879889.[CrossRef]
145. Benham BL, Baffaut C, Zeckoski RW, Mankin KR, Pachepsky YA, Sadeghi AA, Brannan KM, Soupir ML, Habersack MJ. 2006. Modeling bacteria fate and transport in watersheds to support TMDLs. T ASABE 49:9871002.[CrossRef]
146. Weill S, Mazzia A, Putti M, Paniconi C. 2011. Coupling water flow and solute transport into a physically-based surface-subsurface hydrological model. Adv Water Resour 34:128136.[CrossRef]
147. VanderKwaak JE. 1999. Numerical Simulation of Flow and Chemical Transport in Integrated Surface-Subsurface Hydrologic Systems. University of Waterloo, Waterloo.
148. Kolditz O, Bauer S, Bilke L, Böttcher N, Delfs JO, Fischer T, Görke UJ, Kalbacher T, Kosakowski G, McDermott CI, Park CH, Radu F, Rink K, Shao H, Shao HB, Sun F, Sun YY, Singh AK, Taron J, Walther M, Wang W, Watanabe N, Wu Y, Xie M, Xu W, Zehner B. 2012. OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ Earth Sci 67:589599.[CrossRef]
149. Kollet SJ, Maxwell RM. 2006. Integrated surface-groundwater flow modeling: a freesurface overland flow boundary condition in a parallel groundwater flow model. Adv Water Resour 29:945958.[CrossRef]
150. Shen C, Phanikumar MS. 2010. A process-based, distributed hydrologic model based on a large-scale method for surface-subsurface coupling. Adv Water Resour 33:15241541.[CrossRef]
151. Yeh GT, Shih DS, Cheng JRC. 2011. An integrated media, integrated processes watershed model. Comput Fluids 45:213.[CrossRef]
152. Maxwell RM, Putti M, Meyerhoff S, Delfs J-O, Ferguson IM, Ivanov VY, Kim J, Kolditz O, Kollet SJ, Kumar M, Lopez S, Niu J, Paniconi C, Park Y-J, Phanikumar MS, Shen CP, Sudicky EA, Sulis M. 2014. Surface-subsurface model intercomparison: a first set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resour Res 50:15311549.[CrossRef]
153. Niu J. 2013. Modeling the movement of water, bacteria and nutrients across heterogeneous landscapes in the great lakes region using a process-based hydrologic model. Ph.D. thesis, Michigan State University, East Lansing.
154. Parajuli PB, Mankin KR, Barnes PL. 2009. Source specific fecal bacteria modeling using soil and water assessment tool model. Bioresour Technol 100:953963.[PubMed][CrossRef]
155. Parajuli PB, Douglas-Mankin KR, Barnes PL, Rossi CG. 2009. Fecal bacteria source characterization and sensitivity analysis of SWAT 2005. T ASABE 52:18471858.[CrossRef]
156. Cho KH, Pachepsky YA, Kim JH, Guber AK, Shelton DR, Rowland R. 2010. Release of Escherichia coli from the bottom sediment in a first-order creek: experiment and reach-specific modeling. J Hydrol 391:322332.[CrossRef]
157. Guber AK, Karns JS, Pachepsky YA, Sadeghi AM, Van Kessel JS, Dao TH. 2007. Comparison of release and transport of manure-borne Escherichia coli and enterococci under grass buffer conditions. Lett Appl Microbiol 44:161167.[PubMed][CrossRef]
158. Guber AK, Shelton DR, Pachepsky YA, Sadeghi AM, Sikora LJ. 2006. Rainfall-induced release of fecal coliforms and other manure constituents: comparison and modeling. Appl Environ Microbiol 72:75317539.[PubMed][CrossRef]
159. Kim JW, Pachepsky YA, Shelton DR, Coppock C. 2010. Effect of streambed bacteria release on E. coli concentrations: monitoring and modeling with the modified SWAT. Ecol Model 221:15921604.[CrossRef]
160. Pachepsky YA, Garzio-Hadzick A, Shelton DR, Hadzick ZZ, Hill RL. 2011. Survival of E. coli O157:H12 in creek sediments after inoculation and re-inoculation. Int J Environ Pollut 46:234245.[CrossRef]
161. Pachepsky YA, Guber AK, Shelton DR, McCarty GW. 2009. Size distributions of manure particles released under simulated rainfall. J Environ Manag 90:13651369.[CrossRef]
162. Shelton DR, Pachepsky YA, Sadeghi AM, Stout WL, Karns JS, Gburek WJ. 2003. Release rates of manure-borne coliform bacteria from data on leaching through stony soil. Vadose Zone J 2:3439.[CrossRef]
163. Stout WL, Pachepsky YA, Shelton DR, Sadeghi AM, Saporito LS, Sharpley AN. 2005. Runoff transport of faecal coliforms and phosphorus released from manure in grass buffer conditions. Lett Appl Microbiol 41:230234.[PubMed][CrossRef]
164. Germann PF, Smith MS, Thomas GW. 1987. Kinematic wave approximation to the transport of Escherichia coli in the vadose zone. Water Resour Res 23:12811287.[CrossRef]
165. Cho KH, Pachepsky YA, Kim JH, Kim JW, Park MH. 2012. The modified SWAT model for predicting fecal coliforms in the Wachusett Reservoir Watershed, USA. Water Res 46:47504760.[PubMed][CrossRef]
166. Petersen CM, Rifai HS, Villarreal GC, Stein R. 2011. Modeling Escherichia coli and its sources in an urban bayou with hydrologic simulation program-FORTRAN. J Environ Engineer-ASCE 137:487503.[CrossRef]
167. Nekouee N. 2010. Dynamics and Numerical Modeling of River Plumes in Lakes. Technical Memorandum GLERL-151. NOAA, Washington, DC.
168. Wendzel A. 2014. Constraining mechanistic models of indicator bacteria at recreational beaches in Lake Michigan using easily-measurable environmental variables. M.S. thesis, Michigan State University, East Lansing.
169. Schimmelpfennig S, Kirillin G, Engelhardt C, Nützmann G. 2012. Effects of wind-driven circulation on river intrusion in Lake Tegel: modeling study with projection on transport of pollutants. Environ Fluid Mech 12:321339.[CrossRef]
170. Thupaki P, Phanikumar MS, Schwab DJ, Nevers MB, Whitman RL. 2013. Evaluating the role of sediment-bacteria interactions on Escherichia coli concentrations at beaches in southern Lake Michigan. J Geophys Res C 118:70497065.[CrossRef]
171. Ge Z, Whitman RL, Nevers MB, Phanikumar MS, Byappanahalli MN. 2012. Nearshore hydrodynamics as loading and forcing factors for Escherichia coli contamination at an embayed beach. Limnol Oceanogr 57:362381.
172. Russell TL, Sassoubre LM, Wang D, Masuda S, Chen H, Soetjipto C, Hassaballah A, Boehm AB. 2013. A coupled modeling and molecular biology approach to microbial source tracking at Cowell Beach, Santa Cruz, CA, United States. Environ Sci Technol 47:1023110239.[PubMed]
173. Sokolova E, Aström J, Pettersson TJR, Bergstedt O, Hermansson M. 2012. Estimation of pathogen concentrations in a drinking water source using hydrodynamic modelling and microbial source tracking. J Water Health 10:358370.[PubMed][CrossRef]
174. Thupaki P, Phanikumar MS, Whitman RL. 2013. Mixing and transport in the coastal boundary layer of southern Lake Michigan. J Geophys Res C 118:112.
175. Brooks WR, Fienen MN, Corsi SR. 2013. Partial least squares for efficient models of fecal indicator bacteria on Great Lakes beaches. J Environ Manag 114:470475.[CrossRef]
176. Cahoon LB, Hales JC, Carey ES, Loucaides S, Rowland KR, Nearhoof JE. 2006. Shellfishing closures in southwest Brunswick County, North Carolina: septic tanks vs. storm-water runoff as fecal coliform sources. J Coast Res 22:319327.[CrossRef]
177. Edge TA, Hill S, Seto P, Marsalek J. 2010. Library-dependent and library-independent microbial source tracking to identify spatial variation in faecal contamination sources along a Lake Ontario beach (Ontario, Canada). Water Sci Technol 62:719727.[PubMed][CrossRef]
178. Goulding R, Jayasuriya N, Horan E. 2012. A Bayesian network model to assess the public health risk associated with wet weather sewer overflows discharging into waterways. Water Res 46:49334940.[PubMed][CrossRef]
179. Kelsey H, Porter DE, Scott G, Neet M, White D. 2004. Using geographic information systems and regression analysis to evaluate relationships between land use and fecal coliform bacterial pollution. J Exp Mar Biol Ecol 298:197209.[CrossRef]
180. Wyer MD, Kay D, Watkins J, Davies C, Kay C, Thomas R, Porter J, Stapleton CM, Moore H. 2010. Evaluating short-term changes in recreational water quality during a hydrograph event using a combination of microbial tracers, environmental microbiology, microbial source tracking and hydrological techniques: a case study in Southwest Wales, UK. Water Res 44:47834795.[PubMed][CrossRef]
181. U.S. Department of Health and Human Services. 2009. National shellfish sanitation program guide for the control of molluscan shellfish, p. 63. FR 38659.
182. Wang J, Deng Z. 2012. Detection and forecasting of oyster norovirus outbreaks: recent advances and future perspectives. Mar Environ Res 80:6269.[PubMed][CrossRef]
183. Coulliette AD, Money ES, Serre ML, Noble RT. 2009. Space/time analysis of fecal pollution and rainfall in an eastern North Carolina estuary. Environ Sci Technol 43:37283735.[PubMed][CrossRef]
184. Boehm AB, Whitman RL, Nevers MB, Hou D, Weisberg SB,. 2007. Modeling: nowcasting recreational water quality, p. 179210. In Wymer LJ (ed), Statistical framework for recreational water quality criteria and monitoring. Wiley, West Sussex, UK.
185. U.S. EPA. 1999. Action plan for beaches and recreational waters. EPA/600/R-98/079. U.S. Environmental Protection Agency. Washington, DC.
186. Nevers MB, Boehm AB,. 2011. Modeling fate and transport of fecal bacteria in surface water, p. 165188. In Sadowsky MJ,, Whitman RL (eds), The Fecal Bacteria. ASM Press, Washington, DC.
187. Olyphant GA. 2005. Statistical basis for predicting the need for bacterially induced beach closures: emergence of a paradigm? Water Res 39:49534960.[PubMed][CrossRef]
188. Nevers MB, Whitman RL. 2011. Efficacy of monitoring and empirical predictive modeling at improving public health protection at Chicago beaches. Water Res 45:16591668.[PubMed][CrossRef]
189. David MM, Haggard BE. 2011. Development of regression-based models to predict fecal bacteria numbers at select sites within the Illinois River Watershed, Arkansas and Oklahoma, USA. Water Air Soil Pollut 215:525547.[CrossRef]
190. Kelsey RH, Scott GI, Porter DE, Siewicki TC, Edwards DG. 2010. Improvements to shellfish harvest area closure decision making using GIS, remote sensing, and predictive models. Estuar Coast 5:111.