1887

Chapter 4.1.2 : Evolutionary Ecology of Microorganisms: From the Tamed to the Wild

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Evolutionary Ecology of Microorganisms: From the Tamed to the Wild, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch4.1.2-1.gif /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch4.1.2-2.gif

Abstract:

An overarching goal of biology is to understand how evolutionary and ecological processes generate and maintain biodiversity. While evolutionary biologists interested in biodiversity tend to focus on the mechanisms controlling rates of evolution and how this influences the phylogenetic relationship among species, ecologists attempt to explain the distribution and abundance of taxa based upon interactions among species and their environment. Recently, a more concerted effort has been made to integrate some of the theoretical and empirical approaches from the fields of ecology and evolutionary biology. This integration has been motivated in part by the growing evidence that evolution can happen on “rapid” or contemporary time scales, suggesting that eco-evolutionary feedbacks can alter system dynamics in ways that cannot be predicted based on ecological principles alone. As such, it may be inappropriate to ignore evolutionary processes when attempting to understand ecological phenomena in natural and managed ecosystems. In this chapter, we highlight why it is particularly important to consider eco-evolutionary feedbacks for microbial populations. We emphasize some of the major processes that are thought to influence the strength of eco-evolutionary dynamics, provide an overview of methods used to quantify the relative importance of ecology and evolution, and showcase the importance of considering evolution in a community context and how this may influence the dynamics and stability of microbial systems under novel environmental conditions.

Citation: Lennon J, Denef V. 2016. Evolutionary Ecology of Microorganisms: From the Tamed to the Wild, p 4.1.2-1-4.1.2-12. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch4.1.2
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Conceptual diagram depicting feedbacks between ecological and evolutionary processes. Within the domain of ecological processes, there are interacting hierarchical levels of organization (individuals, populations, communities, and ecosystems), which can affect microevolutionary processes (i.e., anagenesis) and macroevolutionary processes (cladogenesis). Reciprocally, evolutionary processes can affect ecological processes. The strength of these feedbacks is influenced by the time scale at which ecological and evolutionary processes take place and by factors such as mutation rates, genetic drift, gene flow/disperal, and the diversity of a biological community. Adapted from ( ), with permission. doi: 10.1128/9781555818821.ch4.1.2.f1

Citation: Lennon J, Denef V. 2016. Evolutionary Ecology of Microorganisms: From the Tamed to the Wild, p 4.1.2-1-4.1.2-12. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch4.1.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Relationship between phenotypic and genotypic change over time. Data originate from competing and evaluating fitness differences between ancestral and evolved lineages. While fitness increases saturate over time, fixed genetic changes continue to increase linearly over time. This pattern highlights some of the difficulties when trying to translate genotypic traits to phenotypic traits. Adapted from ( ), with permission. doi: 10.1128/9781555818821.ch4.1.2.f2

Citation: Lennon J, Denef V. 2016. Evolutionary Ecology of Microorganisms: From the Tamed to the Wild, p 4.1.2-1-4.1.2-12. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch4.1.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Determining rates of evolutionary in the wild. (a) Samples were collected from one location in the AMD system (C75) and sequence assembly of sequencing reads led to the reconstruction of a genome for the dominant group II at the site (type III). (b) Read recruitment of all 13 sequence data sets generated from C75 samples over 5 years to the type III reference genome allowed for the identification of additional fixed mutations and estimation of the nucleotide substitution rate. Lower frequency mutations could be observed in each of the data sets as well, but only fixed variants are included for rate calculations. Adapted from ( ), with permission. doi: 10.1128/9781555818821.ch4.1.2.f3

Citation: Lennon J, Denef V. 2016. Evolutionary Ecology of Microorganisms: From the Tamed to the Wild, p 4.1.2-1-4.1.2-12. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch4.1.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Pairwise sequence divergence of populations isolated from a global survey of hot springs ecosystems scales positively with geographic distance providing evidence against the view of panmicitic microbial distributions. Adapted from ( ), with permission. doi: 10.1128/9781555818821.ch4.1.2.f4

Citation: Lennon J, Denef V. 2016. Evolutionary Ecology of Microorganisms: From the Tamed to the Wild, p 4.1.2-1-4.1.2-12. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch4.1.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Evidence for local adaptation demonstrating the distance decay for the relative fitness of soil bacteria grown on resources from different geographic locations. Adapted from ( ), with permission. doi: 10.1128/9781555818821.ch4.1.2.f5

Citation: Lennon J, Denef V. 2016. Evolutionary Ecology of Microorganisms: From the Tamed to the Wild, p 4.1.2-1-4.1.2-12. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch4.1.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Some bacteria can rapidly evolve in response to starvation. The upper panel shows a typical growth curve of . When populations deplete resources, they enter stationary phase followed by a death phase. Subsequently, (and other types of bacteria) can enter growth advantage in stationary phase (GASP), where novel starvation-resistant mutants evolve and invade a system as depicted by the colored curves in the top panel (adapted from ( ), with permission) and the conceptual model in the lower panel. doi: 10.1128/9781555818821.ch4.1.2.f6

Citation: Lennon J, Denef V. 2016. Evolutionary Ecology of Microorganisms: From the Tamed to the Wild, p 4.1.2-1-4.1.2-12. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch4.1.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

When challenged with conditions that are suboptimal for growth and reproduction, some microorganisms enter a reversible state of reduced metabolic activity or dormancy. The size of the active population is determined by the net reproductive rates, losses due to mortality, and losses due to dormancy. The size of the dormant population is determined by the rate at which active individuals transition into dormancy, the mortality rate during dormancy, and resuscitation from dormancy. This bet-hedging strategy is important for the maintenance of microbial biodiversity. Adapted from ( ), with permission. doi: 10.1128/9781555818821.ch4.1.2.f7

Citation: Lennon J, Denef V. 2016. Evolutionary Ecology of Microorganisms: From the Tamed to the Wild, p 4.1.2-1-4.1.2-12. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch4.1.2
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818821.ch4.1.2
1. Hendry AP, Kinnison MT. 1999. Perspective: the pace of modern life: Measuring rates of contemporary microevolution. Evolution. 53 : 1637 1653.[CrossRef]
2. Thompson JN. 1998. Rapid evolution as an ecological process. Trends Ecol. Evol. 13 : 329 332.[PubMed][CrossRef]
3. Fussmann GF, Loreau M, Abrams PA. 2007. Eco-evolutionary dynamics of communities and ecosystems. Funct. Ecol. 21 : 465 477.[CrossRef]
4. Bassar RD, Marshall MC, Lopez-Sepulcre A, Zandona E, Auer SK, Travis J, Pringle CM, Flecker AS, Thomas SA, Fraser DF, Reznick DN. 2010. Local adaptation in Trinidadian guppies alters ecosystem processes. Proc. Natl. Acad. Sci. USA. 107 : 3616 3621.[PubMed][CrossRef]
5. Matthews B, Narwani A, Hausch S, Nonaka E, Peter H, Yamamichi M, Sullam KE, Bird KC, Thomas MK, Hanley TC, Turner CB. 2011. Toward an integration of evolutionary biology and ecosystem science. Ecol. Lett. 14 : 690 701.[PubMed][CrossRef]
6. Yoshida T, Ellner SP, Jones LE, Bohannan BJM, Lenski RE, Hairston NG. 2007. Cryptic population dynamics: Rapid evolution masks trophic interactions. PLoS Biol. 5 : 1868 1879.[CrossRef]
7. Fox CW, Roff DA, Fairbairn DJ. 2001. Evolutionary Ecology: Concepts and Case Studies. Oxford University Press, Oxford.
8. Mayhew PJ. 2006. Discovering Evolutionary Ecology: Bringing Together Ecology and Evolution, vol. 232. Oxford University Press, Oxford.
9. Pianka ER,. 2011. Evolutionary Ecology, 7th ed. (ebook). Pianka Eric R.
10. Fierer N, Lennon JT. 2011. The generation and maintenance of diversity in microbial communities. Am. J. Botany. 98 : 439 448.[PubMed][CrossRef]
11. Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Ovreas L, Reysenbach AL, Smith VH, Staley JT. 2006. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4 : 102 112.[PubMed][CrossRef]
12. Shade A, Caporaso JG, Handelsman J, Knight R, Fierer N. 2013. A meta-analysis of changes in bacterial and archaeal communities with time. ISME J. 7 : 1493 1506.[PubMed][CrossRef]
13. Amann RI, Lin CH, Key R, Montgomery L, Stahl DA. 1992. Diversity among Fibrobacter isolates—towards a phylogenetic classification. System. Appl. Microbiol. 15 : 23 31.[CrossRef]
14. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. 2007. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. System. Evol. Microbiol. 57 : 81 91.[PubMed][CrossRef]
15. Ramette A, Tiedje JM. 2007. Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem. Proc. Natl. Acad. Sci. USA. 104 : 2761 2766.[PubMed][CrossRef]
16. Hunt DE, David LA, Gevers D, Preheim SP, Alm EJ, Polz MF. 2008. Resource partitioning and sympatric differentiation among closely related bacterioplankton. Science. 320 : 1081 1085.[PubMed][CrossRef]
17. Dethlefsen L, McFall-Ngai M, Relman DA. 2007. An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature. 449 : 811 818.[PubMed][CrossRef]
18. Hillesland KL, Stahl DA. 2010. Rapid evolution of stability and productivity at the origin of a microbial mutualism. Proc. Natl. Aca. Sci. USA. 107 : 2124 2129.[PubMed][CrossRef]
19. Otto SP. 2009. The evolutionary enigma of sex. Am. Nat. 174 : S1 S14.[PubMed][CrossRef]
20. Vos M, Didelot X. 2008. A comparison of homologous recombination rates in bacteria and archaea. ISME J. 3 : 199 208.[PubMed][CrossRef]
21. Eppley JM, Tyson GW, Getz WM, Banfield JF. 2007. Genetic exchange across a species boundary in the archaeal genus Ferroplasma. Genetics. 177 : 407 416.[PubMed][CrossRef]
22. Ochman H, Lawrence JG, Groisman EA. 2000. Lateral gene transfer and the nature of bacterial innovation. Nature. 405 : 299 304.[PubMed][CrossRef]
23. Elena SF, Lenski RE. 2003. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat. Rev. Genet. 4 : 457 469.[PubMed][CrossRef]
24. Kaeberlein T, Lewis K, Epstein S. 2002. Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science. 296 : 1127.[PubMed][CrossRef]
25. Giovannoni S, Stingl U. 2007. The importance of culturing bacterioplankton in the “omics” age. Nat. Rev. Microbiol. 5 : 820 826.[PubMed][CrossRef]
26. Raes J, Bork P. 2008. Molecular eco-systems biology: towards an understanding of community function. Nat. Rev. Microbiol. 6 : 693 699.[PubMed][CrossRef]
27. DeLong EF. 2009. The microbial ocean from genomes to biomes. Nature. 459 : 200 206.[PubMed][CrossRef]
28. Denef VJ, Mueller RS, Banfield JF. 2010. AMD biofilms: using model communities to study microbial evolution and ecological complexity in nature. ISME J. 4 : 599 610.[PubMed][CrossRef]
29. Lennon JT, Aanderud ZT, Lehmkuhl BK, Schoolmaster DR Jr, 2012. Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology. 93 : 1867 1879.[PubMed][CrossRef]
30. Grant PR. 1999. Ecology and evolution of Darwin's finches. Princeton University Press, Princeton, NJ.
31. Foster RA, Kuypers MMM, Vagner T, Paerl RW, Musat N, Zehr JP. 2011. Nitrogen fixation and transfer in open ocean diatom-cyanobacterial symbioses. ISME J. 5 : 1484 1493.[PubMed][CrossRef]
32. Hall EK, Singer GA, Poelzl M, Haemmerle I, Schwarz C, Daims H, Maixner F, Battin TJ. 2011. Looking inside the box: using Raman microspectroscopy to deconstruct microbial biomass stoichiometry one cell at a time. ISME J. 5 : 196 208.[PubMed][CrossRef]
33. Seymour JR, Ahmed T, Durham WM, Stocker R. 2010. Chemotactic response of marine bacteria to the extracellular products of Synechococcus and Prochlorococcus. Aquat. Microbial. Ecol. 59 : 161 168.[CrossRef]
34. Green JL, Bohannan BJM, Whitaker RJ. 2008. Microbial biogeography: from taxonomy to traits. Science. 320 : 1039 1043.[PubMed][CrossRef]
35. Philippot L, Andersson SGE, Battin TJ, Prosser JI, Schimel JP, Whitman WB, Hallin S. 2010. The ecological coherence of high bacterial taxonomic ranks. Nat. Rev. Microbiol. 8 : 523 529.[PubMed][CrossRef]
36. Martiny AC, Treseder K, Pusch G. 2013. Phylogenetic conservatism of functional traits in microorganisms. ISME J. 7 : 830 838.[PubMed][CrossRef]
37. Livermore JA, Emrich SJ, Tan J, Jones SE. 2013. Freshwater bacterial lifestyles inferred from comparative genomics. Environ. Microbiol. 16 : 746 758.[PubMed][CrossRef]
38. Stepanauskas R, Sieracki ME. 2007. Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time. Proc. Natl. Acad. Sci. USA. 104 : 9052 9057.[PubMed][CrossRef]
39. di Rienzi SC, Sharon I, Wrighton KC, Omry K, Hug LA, Thomas BC, Goodrich JK, Bell JT, Spector TD, Banfield JF, Ley RE. 2013. The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria. eLife. 2 : e01102.[PubMed][CrossRef]
40. Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Thurber RLV, Knight R, Beiko RG, Huttenhower C. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31 : 814.[PubMed][CrossRef]
41. Denef VJ, Kalnejais LH, Mueller RS, Wilmes P, Baker BJ, Thomas BC, Verberkmoes NC, Hettich RL, Banfield JF. 2010. Proteogenomic basis for ecological divergence of closely related bacteria in natural acidophilic microbial communities. Proc. Natl. Acad. Sci. USA. 107 : 2383 2390.[PubMed][CrossRef]
42. Lenski RE. 2011. Evolution in action: a 50,000-generation salute to Charles Darwin. Microbe. 6 : 30 33[CrossRef].
43. Luria SE, Delbruck M. 1943. Mutations of bacteria from virus sensitivity to virus resistance. Genetics. 28 : 491 511.[PubMed]
44. Lederberg J, Lederber E. 1952. Replica plating and indirect selection of bacterial mutants. J.Bacteriol. 63 : 399 406.[PubMed]
45. Elena SF, Cooper VS, Lenski RE. 1996. Punctuated evolution caused by selection of rare beneficial mutations. Science. 272 : 1802 1804.[PubMed][CrossRef]
46. Riley MS, Cooper VS, Lenski RE, Forney LJ, Marsh TL. 2001. Rapid phenotypic change and diversification of a soil bacterium during 1000 generations of experimental evolution. Microbiol. SGM. 147 : 995 1006.[PubMed]
47. Blount ZD, Borland CZ, Lenski RE. 2008. Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proc. Natl. Acad. Sci. 105 : 7899 7906.[PubMed][CrossRef]
48. Barrick JE, Yu DS, Yoon SH, Jeong H, Oh TK, Schneider D, Lenski RE, Kim JF. 2009. Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature. 461 : 1243 1274.[PubMed][CrossRef]
49. Puentes-Teliez PE, Hansen MA, Sorensen SJ, van Elsas JD. 2013. Adaptation and heterogeneity of Escherichia coli MC1000 growing in complex environments. Appl. Environ. Microbiol. 79 : 1008 1017.[PubMed][CrossRef]
50. Reid SD, Herbelin CJ, Bumbaugh AC, Selander RK, Whittam TS. 2000. Parallel evolution of virulence in pathogenic Escherichia coli. Nature. 406 : 64 67.[PubMed][CrossRef]
51. Levin BR, Stewart FM, Chao L. 1977. Resource-limited growth, competition, and predation—a model and experimental studies with bacteria and bacteriophage. Am. Nat. 111 : 3 24.[CrossRef]
52. Finkel SE, Kolter R. 1999. Evolution of microbial diversity during prolonged starvation. Proc Natl AcadSciUSA. 96 : 4023 4027.[PubMed][CrossRef]
53. Gagneux S, Long CD, Small PM, Van T, Schoolnik GK, Bohannan BJM. 2006. The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science. 312 : 1944 1946.[PubMed][CrossRef]
54. Lennon JT. 2007. Is there a cost of viral resistance in marine cyanobacteria? ISME J. 1 : 300 312.[PubMed]
55. Lenski RE, Rose MR, Simpson SC, Tadler SC. 1991. Long-term experimental evolution in Escherichia coli 1: adaptation and divergence during 2,000 generations L. Am. Nat. 138 : 1315 1341.[CrossRef]
56. Smith HL, Waltman P. 1995. The Theory of the Chemostat: Dynamics of Microbial Competition. Cambridge University Press, New York.[CrossRef]
57. Bohannan BJM, Lenski RE. 2000. The relative importance of competition and predation varies with productivity in a model community. Am. Nat. 156 : 329 340.[CrossRef]
58. Traverse CC, Mayo-Smith LM, Poltak SR, Cooper VS. 2013. Tangled bank of experimentally evolved Burkholderia biofilms reflects selection during chronic infections. Proc Natl. Acad. Sci USA. 110 : E250 E259.[PubMed][CrossRef]
59. Kerr B, Neuhauser C, Bohannan BJM, Dean AM. 2006. Local migration promotes competitive restraint in a host-pathogen “tragedy of the commons.” Nature. 442 : 75 78.[PubMed][CrossRef]
60. Gomez P, Buckling A. 2013. Real-time microbial adaptive diversification in soil. Ecol. Lett. 16 : 650 655.[PubMed][CrossRef]
61. Denef VJ, Banfield JF. 2012. In situ evolutionary rate measurements show ecological success of recently emerged bacterial hybrids. Science. 336 : 462 466.[PubMed][CrossRef]
62. Yang L, Jelsbak L, Marvig RL, Damkiaer S, Workman CT, Rau MH, Hansen SK, Folkesson A, Johansen HK, Ciofu O, Hoiby N, Sommer MOA, Molin S. 2011. Evolutionary dynamics of bacteria in a human host environment. Proc. Natl. Acad. Sci. 108 : 7481 7486.[PubMed][CrossRef]
63. Nei M, Gojobori T. 1986. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3 : 418 426.[PubMed]
64. Konstantinidis KT, Braff J, Karl DM, DeLong EF. 2009. Comparative metagenomic analysis of a microbial community residing at a depth of 4,000 meters at Station ALOHA in the North Pacific Subtropical Gyre. Appl. Environ. Microbiol. 75 : 5345 5355.[PubMed][CrossRef]
65. Tai V, Poon AFY, Paulsen IT, Palenik B. 2011. Selection in coastal Synechococcus (Cyanobacteria) populations evaluated from environmental metagenomes. PLoS ONE. 6 : e24249.[PubMed][CrossRef]
66. Kryazhimskiy S, Plotkin JB. 2008. The population genetics of dN/dS. PLoS Genetics. 4 : e1000304.[PubMed][CrossRef]
67. McDonald JH, Kreitman M. 1991. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 351 : 652 654.[PubMed][CrossRef]
68. Simmons SL, DiBartolo G, Denef VJ, Goltsman DSA, Thelen MP, Banfield JF. 2008. Population genomic analysis of strain variation in Leptospirillum group II bacteria involved in acid mine drainage formation. PLoS Biol. 6 : e177.[PubMed][CrossRef]
69. Johnson PLF, Slatkin M. 2008. Accounting for bias from sequencing error in population genetic estimates. Mol. Biol. Evol. 25 : 199 206.[PubMed][CrossRef]
70. Moran NA, McLaughlin HJ, Sorek R. 2009. The dynamics and time scale of ongoing genomic erosion in symbiotic bacteria. Science. 323 : 379 382.[PubMed][CrossRef]
71. Cooper TF. 2007. Recombination speeds adaptation by reducing competition between beneficial mutations in populations of Escherichia coli. PLoS Biol. 5 : e225.[PubMed][CrossRef]
72. Konstantinidis KT, Delong EF. 2008. Genomic patterns of recombination, clonal divergence and environment in marine microbial populations. ISME. J. 2 : 1052 1065.[PubMed][CrossRef]
73. Johnson PLF, Slatkin M. 2009. Inference of microbial recombination rates from metagenomic data. PLoS Genetics. 5 : e1000674.[PubMed][CrossRef]
74. Morowitz MJ, Denef VJ, Costello EK, Thomas BC, Poroyko V, Relman DA, Banfield JF. 2011. Strain-resolved community genomic analysis of gut microbial colonization in a premature infant. Proc. Natl. Acad. Sci. USA. 108 : 1128 1133.[PubMed][CrossRef]
75. Sharon I, Morowitz MJ, Thomas BC, Costello EK, Relman DA, Banfield JF. 2013. Time series community genomics analysis reveals rapid shifts in bacterial species, strains, and phage during infant gut colonization. Genome Res. 23 : 111 120.[PubMed][CrossRef]
76. Nemergut DR, Schmidt SK, Fukami T, O'Neill SP, Bilinski TM, Stanish LF, Knelman JE, Darcy JL, Lynch RC, Wickey P, Ferrenberg S. 2013. Patterns and processes of microbial community assembly. Microbiol. Mol. Biol. Rev. 77 : 342 356.[PubMed][CrossRef]
77. Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A. 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7 : 601 613.[CrossRef]
78. Warner NJ, Allen MF, Macmahon JA. 1987. Dispersal agents of vesicular-arbuscular mycorrhizal fungi in a disturbed arid ecosystem. Mycologia. 79 : 721 730.[CrossRef]
79. Burrows SM, Butler T, Joeckel P, Tost H, Kerkweg A, Poeschl U, Lawrence MG. 2009. Bacteria in the global atmosphere—Part 2: Modeling of emissions and transport between different ecosystems. Atmos. Chem. Phys. 9 : 9281 9297.[CrossRef]
80. Yamaguchi N, Ichijo T, Sakotani A, Baba T, Nasu M. 2012. Global dispersion of bacterial cells on Asian dust. Scientific Rep. 2 : 525.[PubMed]
81. Whitaker RJ, Grogan DW, Taylor JW. 2003. Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science. 301 : 976 978.[PubMed][CrossRef]
82. Horner-Devine MC, Lage M, Hughes JB, Bohannan BJM. 2004. A taxa-area relationship for bacteria. Nature. 432 : 750 753.[PubMed][CrossRef]
83. Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH. 2012. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat. Rev. Microbiol. 10 : 497 506.[PubMed]
84. Belotte D, Curien JB, Maclean RC, Bell G. 2003. An experimental test of local adaptation in soil bacteria. Evolution. 57 : 27 36.[PubMed][CrossRef]
85. Thompson JN. 2005. The Geographic Mosaic of Coevolution. University of Chicago Press, Chicago.
86. Forde SE, Thompson JN, Holt RD, Bohannan BJM. 2008. Coevolution drives temporal changes in fitness and diversity across environments in a bacteria-bacteriophage interaction. Evolution. 62 : 1830 1839.[PubMed]
87. Vos M, Birkett PJ, Birch E, Griffiths RI, Buckling A. 2009. Local adaptation of bacteriophages to their bacterial hosts in soil. Science. 325 : 833 833.[PubMed][CrossRef]
88. Finkel SE. 2006. Long-term survival during stationary phase: evolution and the GASP phenotype. Nat. Rev. Microbiol. 4 : 113 120.[PubMed][CrossRef]
89. Vulic M, Kolter R. 2001. Evolutionary cheating in Escherichia coli stationary phase cultures. Genetics. 158 : 519 526.[PubMed]
90. Yeiser B, Pepper ED, Goodman MF, Finkel SE. 2002. SOS-induced DNA polymerases enhance long-term survival and evolutionary fitness. Proc. Natl. Acad. Sci USA. 99 : 8737 8741.[PubMed][CrossRef]
91. Johnson SS, Hebsgaard MB, Christensen TR, Mastepanov M, Nielsen R, Munch K, Brand T, Gilbert MTP, Zuber MT, Bunce M, Ronn R, Gilichinsky D, Froese D, Willerslev E. 2007. Ancient bacteria show evidence of DNA repair. Proc. Natl. Acad. Sci. USA. 104 : 14401 14405.[PubMed][CrossRef]
92. Lennon JT, Jones SE. 2011. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol. 9 : 119 130.[PubMed][CrossRef]
93. del Giorgio PA, Gasol JM,. 2008. Physiological structure and single-cell activity in marine bacterioplankton, p. 243 298. In Kirchman DL (ed), Microbial Ecology of the Oceans, John Wiley & Sons, New York.[CrossRef]
94. Jones SE, Lennon JT. 2010. Dormancy contributes to the maintenance of microbial diversity. Proc. Natl. Aca. Sci. USA. 107 : 5881 5886.[PubMed][CrossRef]
95. Flardh K, Cohen PS, Kjelleberg S. 1992. Ribosomes exist in large excess over the apparent demand for protein synthesis during carbon starvation in marine Vibrio sp strain-CCUG-15956. J. Bacteriol. 174 : 6780 6788.[PubMed]
96. Campbell BJ, Yu L, Heidelberg JF, Kirchman DL. 2011. Activity of abundant and rare bacteria in a coastal ocean. Proc. Natl. Acad. Sci. USA. 108 : 12776 12781.[PubMed][CrossRef]
97. Kemp PF, Lee S, Laroche J. 1993. Estimating the growth rate of slowly growing marine bacteria from RNA conent. Appl. Environ. Microbiol. 59 : 2594 2601.[PubMed]
98. Blazewicz SJ, Barnard RL, Daly RA, Firestone MK. 2013. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J. 7 : 2061 2068.[PubMed][CrossRef]
99. Pfennig DW, Servedio MR. 2013. The role of transgenerational epigenetic inheritance in diversification and speciation. Non-genet. Inherit. 1 : 17 26.[CrossRef]
100. Casadesus J, Low D. 2006. Epigenetic gene regulation in the bacterial world. Microbiol. Mol. Biol. Rev. 70 : 830 856.[PubMed][CrossRef]
101. Casadesus J, Low D. 2013. Programmed heterogeneity: epigenetic mechanisms in bacteria. J. Biol. Chem. 17 : 13929 13935.[CrossRef]
102. Bendall ML, Luong K, Wetmore KM, Blow M, Korlach J, Deutschbauer A, Malmstrom RR. 2013. Exploring the roles of DNA methylation in the metal-reducing bacterium Shewanella oneidensis MR-1. J. Bacteriol. 195 : 4966 4974.[PubMed][CrossRef]
103. Haloin JR, Strauss SY. 2008. Interplay between ecological communities and evolution. Ann. N.Y. Acad. Sci. 1133 : 87 125.[PubMed][CrossRef]
104. Hairston NG, Ellner SP, Geber MA, Yoshida T, Fox JA. 2005. Rapid evolution and the convergence of ecological and evolutionary time. Ecol. Lett. 8 : 1114 1127.[CrossRef]
105. Schoener TW. 2011. The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science. 331 : 426 429.[PubMed][CrossRef]
106. Labrie SJ, Samson JE, Moineau S. 2010. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8 : 317 327.[PubMed][CrossRef]
107. Jessup CM, Forde SE. 2006. Ecology and evolution in microbial systems: the generation and maintenance of diversity in phage-host interactions. Res. Microbiol. 159 : 382 389.[CrossRef]
108. Bohannan BJM, Travisano M, Lenski RE. 1999. Epistatic interactions can lower the cost of resistance to multiple consumers. Evolution. 53 : 292 295.[CrossRef]
109. Yoshida T, Jones LE, Ellner SP, Fussmann GF, Hairston NG. 2003. Rapid evolution drives ecological dynamics in a predator-prey system. Nature. 424 : 303 306.[PubMed][CrossRef]
110. Rodriguez-Brito B, Li L, Wegley L, Furlan M, Angly F, Breitbart M, Buchanan J, Desnues C, Dinsdale E, Edwards R, Felts B, Haynes M, Liu H, Lipson D, Mahaffy J, Martin-Cuadrado AB, Mira A, Nulton J, Pasic L, Rayhawk S, Rodriguez-Mueller J, Rodriguez-Valera F, Salamon P, Srinagesh S, Thingstad TF, Tran T, Thurber RV, Willner D, Youle M, Rohwer F. 2010. Viral and microbial community dynamics in four aquatic environments. ISME J. 4 : 739 751.[PubMed][CrossRef]
111. Weitz JS, Wilhelm SW. 2012. Ocean viruses and their effects on microbial communities and biogeochemical cycles. F1000 Biol. Rep. 4 : 17.[PubMed]
112. Lennon JT, Martiny JBH. 2008. Rapid evolution buffers ecosystem impacts of viruses in a microbial food web. Ecol. Lett. 11 : 1178 1188.[PubMed]
113. Moran NA, McCutcheon JP, Nakabachi A. 2008. Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 42 : 165 190.[PubMed][CrossRef]
114. Hillesland KL, Stahl DA. 2010. Rapid evolution of stability and productivity at the origin of a microbial mutualism. Proc. Natl. Acad. Sci. 107 : 2124 2129.[PubMed][CrossRef]
115. Hoffmann AA, Sgro CM. 2011. Climate change and evolutionary adapatation. Nature. 470 : 479 485.[PubMed][CrossRef]
116. Zilber-Rosenber I, Rosenberg E. 2008. Role of microorganisms in the evolution ofanimals and plants: the hologenome theoryof evolution. FEMS. Microbiol. Rev. 32 : 723 735.[PubMed][CrossRef]
117. Reshef L, Koren O,, Loya Y., Zilber-Rosenberg I, Rosenberg E. 2006. The coral probiotic hypothesis. Environ. Microbiol. 8 : 2068 2073.[PubMed][CrossRef]
118. Lau JA, Lennon JT. 2012. Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc. Natl. Acad. Sci. 109 : 14058 14062.[PubMed][CrossRef]
119. Sharon G, Segal D, Ringo JM, Hefetz A, Zilber-Rosenber I, Rosenberg E. 2010. Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc. Natl. Acad. Sci. 107 : 20051 20056.[PubMed][CrossRef]
120. Brucker RM, Bordenstein SR. 2013. The hologenomic basis of speciation: gut bacteria cause hybrid lethality in the genus Nasonia. Science. 341 : 667 669.[PubMed][CrossRef]
121. Pelletier F, Garant D, Hendry AP. 2009. Eco-evolutionary dynamics. Phil. Trans. R. Soc. B. 364 : 1483 1489.[PubMed][CrossRef]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error