1887

Chapter 4.3.2 : Life in High-Salinity Environments

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Life in High-Salinity Environments, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch4.3.2-1.gif /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch4.3.2-2.gif

Abstract:

A great variety of hypersaline environments exist, here defined as environments with salt concentrations exceeding seawater salinity. These include natural inland salt lakes such as Great Salt Lake, Utah, and the Dead Sea, alkaline soda lakes with salt concentrations often close to saturation, and man-made saltern ponds for the production of salt from seawater. There are thalassohaline (seawater-derived) and athalassohaline brines with ionic compositions very different from that of seawater. High salt environments are inhabited by diverse halophilic and/or halotolerant microorganisms belonging to all three domains of life: Archaea, Bacteria, and Eukarya. Many halophilic microorganisms are 'polyextremophiles', able to thrive in environments stressed not only by high salt concentrations but also by extremes of pH, temperature, or both. There are two different strategies that enable microorganisms to live at high salt: some maintain a low-salt cytoplasm and produce organic 'compatible' solutes to provide osmotic balance, while others accumulate molar concentration of KCl intracellularly. Not all physiological types of microorganisms are found up to the highest salinities, and this is probably due to the high energetic cost of osmotic adaptation. At the highest salinities most aerobic heterotrophic activity is due to Archaea of the family Halobacteriaceae, but extremely halophilic Bacteria also exist. The microbial communities inhabiting high salt environments can be studied by culture-dependent and by molecular, culture-independent techniques. Different groups of halophiles have characteristic lipids and pigments, and these can be used as biomarkers for the qualitative and quantitative characterization of the biota of salt lakes, saltern ponds and other hypersaline environments.

Citation: Oren A. 2016. Life in High-Salinity Environments, p 4.3.2-1-4.3.2-13. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch4.3.2
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

A crystallizer pond of Salt of the Earth Eilat, showing NaCl-saturated brine colored pink-red by dense communities of halophilic microorganisms, mainly and other members of the archaeal family and β-carotene-rich cells of the unicellular green alga . doi:10.1128/9781555818821.ch4.3.2.f1

Citation: Oren A. 2016. Life in High-Salinity Environments, p 4.3.2-1-4.3.2-13. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch4.3.2
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818821.ch4.3.2
1. Javor B. 1989. Hypersaline environments. Microbiology and biogeochemistry. Springer, Berlin.
2. Oren A. 2002. Halophilic microorganisms and their environments. Kluwer Scientific, Dordrecht.
3. McGenity TJ, Oren A,. 2012. Hyperaline environments, p 402437. In Bell EM (ed.), Life at extremes. Environments, organisms and strategies for survival. CABI International, Wallingford, UK.
4. Oren A,. 2011. Ecology of halophiles, p 343361. In Horikoshi K (ed.), Extremophiles handbook. Springer, Tokyo.
5. Oren A,. 2012. Approaches toward the study of halophilic microorganisms in their natural environments: who are they and what are they doing? p 133. In Vreeland RH (ed.), Advances in the understanding of Halophilic microorganisms. Springer, Dordecht.
6. Hallsworth JE, Yakimov MM, Golyshin PN, Gillion JLM, D'Auria G, De Lima Alves F, La Cono V, Genovese M, McKew BA, Hayes SL, Harris G, Giuliano L, Timmis KN, McGenity TJ. 2007. Limits of life in MgCl2-containing environments: chaotropicity defines the window. Environ Microbiol 9:801813.[PubMed][CrossRef]
7. Oren A. 2002. Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:5663.[PubMed][CrossRef]
8. Oren A,. 2011. Diversity of halophiles, p 309325. In Horikoshi K (ed.), Extremophiles handbook. Springer, Tokyo.
9. Oren A. 2008. Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:2.[PubMed][CrossRef]
10. Burns DG, Janssen PH, Itoh T, Kamekura M, Li Z, Jensen G, Rodríguez-Valera F, Bolhuis H, Dyall-Smith ML. 2007. Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 57:387392.[PubMed][CrossRef]
11. Walsby AE. 1980. A square bacterium. Nature 283:6971.[CrossRef]
12. Antón J, Oren A, Benlloch S, Rodríguez-Valera F, Amann R, Rosselló-Mora R. 2002. Salinibacter ruber gen. nov., sp. nov., a novel extreme halophilic member of the Bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52:485491.[CrossRef]
13. Antón J, Peña A, Santos F, Martínez-García M, Schmitt-Kopplin P, Rosselló-Mora R. 2008. Distribution, abundance and diversity of the extremely halophilic bacterium Salinibacter ruber. Saline Syst 4:15.[CrossRef]
14. Ventosa A, Márquez MC, Sánchez-Porro C, de la Haba R,. 2012. Taxonomy of halophilic Archaea and Bacteria, p 5980. In Vreeland RH (ed.), Advances in understanding of the biology of halophilic microorganisms. Springer, Dordrecht.
15. Oren A,. 2006. The order Halobacteriales, p 116164. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds.), The prokaryotes. A handbook on the biology of bacteria: ecophysiology and biochemistry, vol 3. Springer, New York.
16. Antunes A, Taborda M, Huber R, Moissl C, Nobre MF, Da Costa MS. 2008. Halorhabdus tiamatea sp. nov., a non-pigmented, extremely halophilic archaeon from a deep-sea, hypersaline anoxic basin of the red sea, and emended description of the genus Halorhabdus. Int J Syst Evol Microbiol 58:215220.[PubMed][CrossRef]
17. Andrei A-Ş, Banciu HL, Oren A. 2012. Metabolic diversity in Archaea living in saline ecosystems. FEMS Microbiol Lett 330:19.[PubMed][CrossRef]
18. Anderson I, Scheuner C, Göker M, Mavromatis K, Hooper SD, Porat I, Klenk HP, Ivanova N, Kyrpides N. 2011. Novel insights into the diversity of catabolic metabolism from ten haloarchaeal genomes. PLoS One 6(5):e20237.[PubMed][CrossRef]
19. Antunes A, Rainey FA, Wanner G, Taborda M, Pätzold J, Nobre MF, Da Costa MS, Huber R. 2008. A new lineage of halophilic, wall-less, contractile bacteria from a brine-filled deep of the Red Sea. J Bacteriol 190:35803587.[PubMed][CrossRef]
20. Oren A,. 2006. Life at high salt concentrations, p 263282. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds.), The prokaryotes. A handbook on the biology of bacteria: ecophysiology and biochemistry, vol 2. Springer, New York.
21. Oren A, Kühl M, Karsten U. 1995. An endoevaporitic microbial mat within a gypsum crust: zonation of phototrophs, photopigments, and light penetration. Mar Ecol Prog Ser 128:151159.[CrossRef]
22. Oren A. 2005. A hundred years of Dunaliella research—1905–2005. Saline Syst 1:2.[PubMed][CrossRef]
23. Butinar L, Sonjak S, Zalar P, Plemenitaš A, Gunde-Cimerman N. 2005. Melanized halophilic fungi are eukaryotic members of microbial communities in hypersaline waters of solar salterns. Bot Mar 48:7379.[CrossRef]
24. Butinar L, Santos S, Spencer-Martins I, Oren A, Gunde-Cimerman N. 2005. Yeast diversity in hypersaline habitats. FEMS Microbiol Lett 244:229234.[PubMed][CrossRef]
25. Gunde-Cimerman N, Zalar P, de Hoog GS, Plemenitaš A. 2000. Hypersaline water in salterns—natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32:235240.
26. Gunde-Cimerman N, Ramos J, Plemenitaš A. 2009. Halotolerant and halophilic fungi. Mycol Res 113:12311241.[PubMed][CrossRef]
27. Cho BC,. 2005. Heterotrophic flagellates in hypersaline waters, p 543549. In Gunde-Cimerman N, Oren A, Plemenitaš A (eds.), Adaptation to life at high salt concentrations in archaea, bacteria, and eukarya. Springer, Dordrecht.
28. Hauer G, Rogerson A,. 2005. Heterotrophic protozoa from hypersaline environments, p 521539. In Gunde-Cimerman N, Oren A, Plemenitaš A (eds.), Adaptation to life at high salt concentrations in archaea, bacteria, and eukarya. Springer, Dordrecht.
29. Pedrós-Alió C, Calderón-Paz JI, MacLean MH, Medina G, Marassé C, Gasol JM, Guixa-Boixereu N. 2000. The microbial food web along salinity gradients. FEMS Microbiol Ecol 32:143155.[CrossRef]
30. Pedrós-Alió C, Calderón-Paz JI, Gasol JM. 2000. Comparative analysis shows that bacterivory, not viral lysis, controls the abundance of heterotrophic prokaryotic plankton. FEMS Microbiol Ecol 32:157165.[CrossRef]
31. Gasol JM, Casamayor EO, Joint I, Garde K, Gustavson K, Benlloch S, Díez B, Schauer M, Massana R, Pedrós-Alió C. 2004. Control of heterotrophic prokaryotic abundance and growth rate in hypersaline planktonic environments. Aquat Microb Ecol 34:193206.[CrossRef]
32. Stock A, Breiner H-W, Pachiadaki M, Edgcomb V, Filker S, La Cono V, Yakimov MM, Stoeck T. 2012. Microbial eukaryote life in the new hypersaline deep-sea basin Thetis. Extremophiles 16:2134.[PubMed][CrossRef]
33. Mullakhanbhai MF, Larsen H. 1975. Halobacterium volcanii, spec. nov., a Dead Sea halobacterium with a moderate salt requirement. Arch Microbiol 104:207214.[PubMed][CrossRef]
34. Oren A. 1983. Halobacterium sodomense sp. nov., a Dead Sea halobacterium with an extremely high magnesium requirement. Int J Syst Bacteriol 33:381386.[CrossRef]
35. Oren A, Gurevich P, Gemmell RT, Teske A. 1995. Halobaculum gomorrense gen. nov., sp. nov., a novel extremely halophilic archaeon from the Dead Sea. Int J Syst Bacteriol 45:747754.[PubMed][CrossRef]
36. Oren A. 1993. The Dead Sea—alive again. Experientia 49:518522.[CrossRef]
37. Oren A, Gurevich P. 1995. Dynamics of a bloom of halophilic archaea in the Dead Sea. Hydrobiologia 315:149158.[CrossRef]
38. Oren A, Gurevich P, Anati DA, Barkan E, Luz B. 1995. A bloom of Dunaliella parva in the Dead Sea in 1992: biological and biogeochemical aspects. Hydrobiologia 297:173185.[CrossRef]
39. Oren A,. 2013. Two centuries of microbiological research in the Wadi Natrun, Egypt: a model system for the study of the ecology, physiology, and taxonomy of haloalkaliphilic microorganisms, pp. 101119. In Seckbach J, Oren A, Stan-Lotter H (eds.), Polyextremophiles—organisms living under multiple stress. Springer, Dordrecht.
40. Oren A,. 2014. Family Ectothiorhodospiraceae. Chapter 248. In Rosenberg E, DeLong EF, Thompson F, Lory S, Stackebrandt E (eds.), The prokaryotes. A handbook on the biology of bacteria: ecophysiology and biochemistry. 4th ed. Springer, New York.
41. Sorokin DY, Kuenen JG. 2005. Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes. FEMS Microbiol Rev 29:685702.[PubMed][CrossRef]
42. Sorokin DY, Tourova TP, Henstra AM, Stams AM, Galinski EA, Muyzer G. 2008. Sulfidogenesis under extremely haloalkaline conditions by Desulfonatronospira thiodismutans gen. nov., sp. nov., and Desulfonatronospira delicata sp. nov.—a novel lineage of Deltaproteobacteria from hypersaline soda lakes. Microbiology 154:14441453.[PubMed][CrossRef]
43. Sorokin DY, Kuenen JG, Muyzer G. 2011. Microbial sulfur cycle at extremely haloalkaline conditions of soda lakes. Frontiers Microb Physiol Metabol 2:44.[CrossRef]
44. Minegishi H, Mizuki T, Echigo A, Fukushima T, Kamekura M, Usami R. 2008. Acidophilic haloarchaeal strains are isolated from various solar salts. Saline Syst 4:16.[PubMed][CrossRef]
45. Minegishi H, Echigo A, Nagaoka S, Kamekura M, Usami R. 2010. Halarchaeum acidiphilum gen. nov., sp. nov., a moderately acidophilic haloarchaeon isolated from commercial solar salt. Int J Syst Evol Microbiol 60:25132516.[PubMed][CrossRef]
46. Franzmann PD, Stackebrandt E, Sanderson K, Volkman JK, Cameron DE, Stevenson PL, McMeekin TA, Burton HR. 1988. Halobacterium lacusprofundi sp. nov., a halophilic bacterium isolated from Deep Lake, Antarctica. System Appl Microbiol 11:2027.[CrossRef]
47. Murray AE, Kenig F, Fritsen CH, McKay CP, Cawley KM, Edwards R, Kuhn E, McKnight DM, Ostrom NE, Peng V, Ponce A, Priscu JC, Samarkin V, Townsend TA, Wagh P, Young SA, Yung PT, Doran PT. 2012. Microbial life at −13°C in the brine of an ice-sealed Antarctic lake. Proc Natl Acad Sci USA 109:2062620631.[PubMed][CrossRef]
48. Cayol J-L, Ollivier B, Patel BKC, Prensier G, Guezennec J, Garcia J-L. 1994. Isolation and characterization of Halothermothrix orenii gen. nov., sp. nov., a halophilic, thermophilic, fermentative, strictly anaerobic bacterium. Int J Syst Bacteriol 44:534540.[PubMed][CrossRef]
49. Mesbah NM, Wiegel J. 2008. Life at extreme limits the anaerobic halophilic alkalithermophiles. Ann New York Acad Sci 1125:4457.[CrossRef]
50. Mesbah NM, Hedrick DB, Peacock AD, Rohde M, Wiegel J. 2007. Natranaerobius thermophilus gen. nov., sp. nov., a halophilic alkalithermophilic bacterium from soda lakes of the Wadi An Natrun, Egypt, and proposal of Natranaerobiaceae fam. nov. and Natranaerobiales ord. nov. Int J Syst Evol Microbiol 57:25072512.[PubMed][CrossRef]
51. Bowers KJ, Mesbah NM, Wiegel J. 2009. Biodiversity of polyextremophilic Bacteria: Does combining the extremes of high salt, alkaline pH and elevated temperature approach a physico-chemcial boundary for life? Saline Syst 5:9.[PubMed][CrossRef]
52. Galinski EA. 1995. Osmoadaptation in bacteria. Adv Microb Physiol 37:273328.[CrossRef]
53. Grant WD. 2004. Life at low water activity. Phil Trans R Soc London B 359:12491267.[CrossRef]
54. Roberts MF,. 2006. Characterization of organic compatible solutes of halotolerant and halophilic microorganisms, p 615647. In Rainey FA, Oren A (eds.), Extremophiles—methods in microbiology, vol 35. Elsevier/Academic Press, Amsterdam.
55. Oren A. 1993. Availability, uptake, and turnover of glycerol in hypersaline environments. FEMS Microbiol Ecol 12:1523.[CrossRef]
56. Oren A. 1995. The role of glycerol in the nutrition of halophilic archaeal communities: a study of respiratory electron transport. FEMS Microbiol Ecol 16:281290.[CrossRef]
57. Rosselló-Mora R, Lee N, Antón J, Wagner M. 2003. Substrate uptake in extremely halophilic microbial communities revealed by microautoradiography and fluorescence in situ hybridization. Extremophiles 7:409413.[CrossRef]
58. Elevi Bardavid R, Oren A. 2008. Dihydroxyacetone metabolism in Salinibacter ruber and in Haloquadratum walsbyi. Extremophiles 12:125131.[PubMed][CrossRef]
59. Elevi Bardavid R, Khristo P, Oren A. 2008. Interrelationships between Dunaliella and halophilic prokaryotes in saltern crystallizer ponds. Extremophiles 12:514.[PubMed][CrossRef]
60. Welsh DT. 2000. Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiol Rev 24:263290.[PubMed][CrossRef]
61. Lanyi JK. 1974. Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev 38:272290.[PubMed]
62. Elevi Bardavid R, Oren A. 2012. Acid-shifted isoelectric point profiles of the proteins in a hypersaline microbial mat—an adaptation to life at high salt concentrations? Extremophiles 16:787792.[PubMed][CrossRef]
63. Kunin V, Raes J, Harris JK, Spear JR, Walker JJ, Ivanova N, von Mering C, Bebout BM, Pace NR, Bork P, Hugenholtz P. 2008. Millimeter scale genetic gradients and community-level molecular convergence in a hypersaline microbial mat. Mol Systems Biol 4:198.[CrossRef]
64. Elevi Bardavid R, Oren A. 2012. The amino acid composition of proteins from anaerobic halophilic bacteria of the order Halanaerobiales. Extremophiles 16:567572.[PubMed][CrossRef]
65. Oren A. 1999. Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334348.[PubMed]
66. Oren A. 2001. The bioenergetic basis for the decrease in metabolic diversity in increasing salt concentrations: implications for the functioning of salt lake ecosystems. Hydrobiologia 466:6172.[CrossRef]
67. Oren A. 2011. Thermodynamic limits to microbial life at high salt concentrations. Environ Microbiol 13:19081923.[PubMed][CrossRef]
68. Brandt KK, Vester F, Jensen AN, Ingvorsen K. 2001. Sulfate reduction dynamics and enumeration of sulfate-reducing bacteria in hypersaline sediments of the Great Salt Lake (Utah, USA). Microb Ecol 41:111.[PubMed]
69. Kjeldsen KU, Loy A, Jakobsen TF, Thomsen TR, Wagner M, Ingvorsen K. 2006. Diversity of sulfate-reducing bacteria from an extreme hypersaline sediment, Great Salt Lake (Utah). FEMS Microbiol Ecol 60:287298.[CrossRef]
70. Sorokin DY, Detkova EN, Muyzer G. 2010. Propionate and butyrate dependent bacterial sulfate reduction at extremely haloalkaline conditions and description of Desulfobotulus alkaliphilus sp. nov. Extremophiles 14:7177.[PubMed][CrossRef]
71. Sorokin DY, Rusanov II, Pimenov NV, Tourova TP, Abbas B, Muyzer G. 2010. Sulfidogenesis at extremely haloalkaline conditions in soda lakes of Kulunda Steppe (Altai, Russia). FEMS Microbiol Ecol 73:278290.[PubMed]
72. Kamekura M, Oesterhelt D, Wallace R, Anderson P, Kushner DJ. 1988. Lysis of halobacteria in Bacto-peptone by bile acids. Appl Environ Microbiol 54:990995.[PubMed]
73. Dussault HP. 1956. Study of red halophilic bacteria in solar salt and salted fish: II. Bacto-oxgall as a selective agent for differentiation. J Fish Res Bd Can 13:195199.[CrossRef]
74. Oren A. 1990. The use of protein synthesis inhibitors in the estimation of the contribution of halophilic archaebacteria to bacterial activity in hypersaline environments. FEMS Microbiol Ecol 73:187192.[CrossRef]
75. Oren A. 1990. Estimation of the contribution of halobacteria to the bacterial biomass and activity in a solar saltern by the use of bile salts. FEMS Microbiol Ecol 73:4148.[CrossRef]
76. Elevi Bardavid R, Oren A. 2008. Sensitivity of Haloquadratum and Salinibacter to antibiotics and other inhibitors: implications for the assessment of the contribution of archaea and bacteria to heterotrophic activities in hypersaline environments. FEMS Microbiol Ecol 63:309315.[PubMed][CrossRef]
77. Burns DG, Camakaris HM, Janssen PH, Dyall-Smith ML. 2004. Cultivation of Walsby's square haloarchaeon. FEMS Microbiol Lett 238:469473.[PubMed]
78. Bolhuis H, te Poele EM, Rodríguez-Valera F. 2004. Isolation and cultivation of Walsby's square archaeon. Environ Microbiol 6:12871291.[PubMed][CrossRef]
79. Oren A,. 2013. Strategies for the isolation and cultivation of halophilic microorganisms, p 7594. In Singh OV (ed.), Extremophiles: sustainable resources and biotechnological implications. Wiley-Blackwell, Chichester.
80. Schneegurt MA,. 2012. Media and conditions for the growth of halophilic and halotolerant bacteria and archaea, p 3585. In Vreeland RH (ed.), Advances in understanding of the biology of halophilic microorganisms. Springer, Dordrecht.
81. Burns DG, Camakaris HM, Janssen PH, Dyall-Smith ML. 2004. Combined use of cultivation-dependent and cultivation-independent methods indicates that members of most haloarchaeal groups in an Australian crystallizer pond are cultivable. Appl Environ Microbiol 70:52585265.[PubMed][CrossRef]
82. Makhdoumi-Kakhki A, Amoozegar MA, Kazemi B, Pašić L, Ventosa A. 2012. Prokaryotic diversity in Aran-Bidgol salt lake, the largest hypersaline playa in Iran. Microbes Environ 27:8793.[PubMed][CrossRef]
83. Leuko S, Legat A, Fendrihan S, Stan-Lotter H. 2004. Evaluation of the LIVE/DEAD BacLight kit for detection of extremophilic Archaea and visualization of microorganisms in environmental hypersaline samples. Appl Environ Microbiol 70:68846886.[PubMed][CrossRef]
84. Stan-Lotter H, Leuko S, Legat A, Fendrihan S,. 2006. The assessment of the viability of halophilic microorganisms in natural communities, p 569584. In Rainey FA, Oren A (eds.), Extremophiles—methods in microbiology, vol 35. Elsevier/Academic Press, Amsterdam.
85. Bolhuis H, Palm P, Wende A, Falb M, Rampp M, Rodriguez-Valera F, Pfeiffer F, Oesterhelt D. 2006. The genome of the square archaeon Haloquadratum walsbyi: life at the limits of water activity. BMC Genomics 7:169.[PubMed][CrossRef]
86. Elevi Bardavid R, Ionescu I, Oren A, Rainey FA, Hollen BJ, Bagaley DR, Small AM, McKay C. 2007. Selective enrichment, isolation and molecular detection of Salinibacter and related extremely halophilic Bacteria from hypersaline environments. Hydrobiologia 576:313.[CrossRef]
87. Oren A, Gurevich P. 1993. Characterization of the dominant halophilic archaea in a bacterial bloom in the Dead Sea. FEMS Microbiol Ecol 12:249256.[CrossRef]
88. Oren A. 1994. Characterization of the halophilic archaeal community in saltern crystallizer ponds by means of polar lipid analysis. Int J Salt Lake Res 3:1529.[CrossRef]
89. Oren A, Duker S, Ritter S. 1996. The polar lipid composition of Walsby's square bacterium. FEMS Microbiol Lett 138:135140.[CrossRef]
90. Litchfield CD, Oren A. 2001. Polar lipids and pigments as biomarkers for the study of the microbial community structure of solar salterns. Hydrobiologia 466:8189.[CrossRef]
91. Litchfield CD, Irby A, Kis-Papo T, Oren A. 2000. Comparisons of the polar lipid and pigment profiles of two solar salterns located in Newark, California, USA, and Eilat, Israel. Extremophiles 4:259265.[PubMed][CrossRef]
92. Lobasso S, Lopalco P, Mascolo G, Corcelli A. 2008. Lipids of the ultra-thin square halophilic archaeon Haloquadratum walsbyi. Archaea 2:177181.[PubMed][CrossRef]
93. Corcelli A, Lobasso S,. 2006. Characterization of lipids of halophilic archaea, p 585613. In Rainey FA, Oren A (eds.), Extremophiles—methods in microbiology, vol 35. Elsevier/Academic Press, Amsterdam.
94. Corcelli A, Lattanzio VMT, Mascolo G, Babudri F, Oren A, Kates M. 2004. Novel sulfonolipid in the extremely halophilic bacterium Salinibacter ruber. Appl Environ Microbiol 70:66786685.[PubMed][CrossRef]
95. Lattanzio V, Corcelli A, Mascolo G, Oren A. 2002. Presence of two novel cardiolipins in the halophilic archaeal community in the crystallizer brines from the salterns of Margherita di Savoia (Italy) and Eilat (Israel). Extremophiles 6:437444.[PubMed][CrossRef]
96. Lopalco P, Lobasso S, Baronio M, Angelini R, Corcelli A,. 2011. Impact of lipidomics on the microbial world of hypersaline environments, p 123135. In Ventosa A, Oren A, Ma Y (eds.), Halophiles and hypersaline environments. Current research and future trends. Springer, Heidelberg.
97. Lutnæs BF, Oren A, Liaaen-Jensen S. 2002. New C40-carotenoid acyl glycoside as principal carotenoid of Salinibacter ruber, an extremely halophilic eubacterium. J Nat Prod 65:13401343.[CrossRef]
98. Oren A, Rodríguez-Valera F. 2001. The contribution of Salinibacter species to the red coloration of saltern crystallizer ponds. FEMS Microbiol Ecol 36:123130.[PubMed]
99. Oren A, Shilo M. 1981. Bacteriorhodopsin in a bloom of halobacteria in the Dead Sea. Arch Microbiol 130:185187.[CrossRef]
100. Stoeckenius W, Bivin D, McGinnis K,. 1985. Photoactive pigments in halobacteria from the Gavish Sabkha, p 288295. In Friedman GM, Krumbein WE (eds.), Hypersaline ecosystems. The Gavish Sabkha. Springer, Berlin.
101. Oren A, Dubinsky Z. 1994. On the red coloration of saltern crystallizer ponds. II. Additional evidence for the contribution of halobacterial pigments. Int J Salt Lake Res 3:913.[CrossRef]
102. Oren A,. 2009. Microbial diversity and microbial abundance in salt-saturated brines: why are the waters of hypersaline lakes red? p 247255. In Oren A, Naftz DL, Palacios P, Wurtsbaugh WA (eds.), Saline lakes around the world: unique systems with unique values. The S.J. and Jessie E. Quinney Natural Resources Research Library, College of Natural Resources, Utah State University, Salt Lake City.
103. Estrada M, Henriksen P, Gasol JM, Casamayor EO, Pedrós-Alió C. 2004. Diversity of planktonic photoautotrophic microorganisms along a salinity gradient as depicted by microscopy, flow cytometry, pigment analysis and DNA-based methods. FEMS Microbiol Ecol 49:281293.[PubMed][CrossRef]
104. Oren A. 2002. Molecular ecology of extremely halophilic archaea and bacteria. FEMS Microbiol Ecol 39:17.[PubMed][CrossRef]
105. Oren A,. 2012. Salt lakes, metagenomics of. In Nelson K (ed.), Encyclopedia of metagenomics. Springer, New York. Published online at http://www.springerreference.com/docs/edit/chapterdbid/303297.html
106. Benlloch S, Martínez-Murcia AJ, Rodríguez-Valera F. 1995. Sequencing of bacterial and archaeal 16S rRNA genes directly amplified from a hypersaline environment. Syst Appl Microbiol 18:574581.[CrossRef]
107. Benlloch S, Acinas SG, Martínez-Murcia AJ, Rodríguez-Valera F. 1996. Description of prokaryotic biodiversity along the salinity gradient of a multipond saltern by direct PCR amplification of 16S rDNA. Hydrobiologia 329:1931.[CrossRef]
108. Benlloch S, López-López A, Casamayor EO, Øvreås L, Goddard V, Dane FL, Smerdon G, Massana R, Joint I, Thingstad F, Pedrós-Alió C, Rodríguez-Valera F. 2002. Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ Microbiol 4:349360.[PubMed][CrossRef]
109. Antón J, Llobet-Brossa E, Rodríguez-Valera F, Amann R. 1999. Fluorescence in situ hybridization analysis of the prokaryotic community inhabiting crystallizer ponds. Environ Microbiol 1:517523.[CrossRef]
110. Antón J, Rosselló-Mora R, Rodríguez-Valera F, Amann R. 2000. Extremely halophilic Bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol 66:30523057.[CrossRef]
111. Maturrano L, Santos F, Rosselló-Mora R, Antón J. 2006. Microbial diversity in Maras salterns, a hypersaline environment in the Peruvian Andes. Appl Environ Microbiol 72:38873895.[PubMed][CrossRef]
112. Leuko S, Goh F, Ibáñez-Peral R, Burns BP, Walker MR, Neilan BA. 2008. Lysis efficiency of standard DNA extraction methods for Halococcus spp. in an organic rich environment. Extremophiles 12:301308.[PubMed][CrossRef]
113. Casamayor EO, Massana R, Benlloch S, Øvreås L, Díez B, Goddard VJ, Gasol JM, Joint I, Rodríguez-Valera F, Pedrós-Alió C. 2002. Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ Microbiol 4:338348.[PubMed][CrossRef]
114. Øvreås L, Daae FL, Torsvik T, Rodríguez-Valera F. 2003. Characterization of microbial diversity in hypersaline environments by melting profiles and reassociation kinetics in combination with terminal restriction fragment length polymorphism (T-RFLP). Microb Ecol 46:291301.[CrossRef]
115. Ochsenreiter T, Pfeifer F, Schleper C. 2002. Diversity of Archaea in hypersaline environments characterized by molecular-phylogenetic and cultivation studies. Extremophiles 6:267274.[PubMed][CrossRef]
116. Mouné S, Caumette P, Matheron R, Willison JC. 2002. Molecular sequence analysis of prokaryotic diversity in the anoxic sediments underlying cyanobacterial mats of two hypersaline ponds in Mediterranean salterns. FEMS Microbiol Ecol 44:117130.[CrossRef]
117. Pašić L, Galán Bartual S, Poklar Ulrih N, Grabnar M, Herzog Velikonja B. 2005. Diversity of halophilic archaea in the crystallizers of an Adriatic solar saltern. FEMS Microbiol Ecol 54:491498.[CrossRef]
118. Pašić L, Poklar Ulrih N, Črnigoj M, Grabnar M, Herzog Velikonja B. 2007. Haloarchaeal communities in the crystallizers of two Adriatic solar salterns. Can J Microbiol 53:818.[CrossRef]
119. Borsodi AK, Felfoldi T, Mathe I, Bognar V, Knab M, Krett G, Jurecska L, Toth EM, Marialigeti K. 2013. Phylogenetic diversity of bacterial and archaeal communities inhabiting the saline Lake Red located in Sovata, Romania. Extremophiles 17:8798.[PubMed][CrossRef]
120. Humayoun SB, Bano N, Hollibaugh JT. 2003. Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California. Appl Environ Microbiol 69:10301042.[PubMed][CrossRef]
121. Parnell JJ, Rompato G, Latta LCIV, Pfrender ME, Van Nostrand JD, He Z, Zhou J, Andersen G, Champine P, Ganesan B, Weimer BC. 2010. Functional biogeography as evidence of gene transfer in hypersaline microbial communities. PLoS One 5:e12919.[PubMed][CrossRef]
122. Parnell JJ, Rompato G, Crowl TA, Weimer BC, Pfrender ME. 2011. Phylogenetic distance in Great Salt Lake microbial communities. Aquat Microb Ecol 64:267273.[CrossRef]
123. Youssef NH, Ashlock-Savage KN, Elshahed M. 2012. Phylogenetic diversities and community structure of members of the extremely halophilic archaea (order Halobacteriales) in multiple saline sediment habitats. Appl Environ Microbiol 78:13321344.[PubMed][CrossRef]
124. Kim J-S, Makama M, Petito J, Park N-H, Cohan FM, Dungan RS. 2012. Diversity of bacteria and archaea in hypersaline sediment from Death Valley National Park, California. Microbiol Open 1:135148.[CrossRef]
125. Robertson CE, Spear JR, Harris JK, Pace NR. 2009. Diversity and stratification of archaea in a hypersaline microbial mat. Appl Environ Microbiol 75:18011810.[PubMed][CrossRef]
126. Valenzuela-Encinas C, Neria-González I, Alcántara-Hernández RJ, Enríquez-Aragón JA, Estrada-Alvarado I, Hernández-Rodríguez C, Dendooven L, Marsch R. 2008. Phylogenetic analysis of the archaeal community in an alkaline-saline soil of the former lake Texcoco (Mexico). Extremophiles 12:247254.[PubMed][CrossRef]
127. Demergasso C, Escudero L, Casamayor EO, Chong G, Balagué V, Pedrós-Alió C. 2008. Novelty and spatio-temporal heterogeneity in the bacterial diversity of hypersaline Lake Tebenquiche (Salar de Atacama). Extremophiles 12:491504.[PubMed][CrossRef]
128. Pagaling E, Wang H, Venables M, Wallace A, Grant WD, Cowan DA, Jones BE, Ma Y, Ventosa A, Heaphy S. 2009. Microbial biogeography of six salt lakes in Inner Mongolia, China, and a salt lake in Argentina. Appl Environ Microbiol 75:57505760.[PubMed][CrossRef]
129. Manikandan M, Kannan V, Pašić L. 2009. Diversity of microorganisms in solar salterns of Tamil Nadu, India. World J Microbiol Biotechnol 25:10071017.[CrossRef]
130. Wang C-Y, Ng C-C, Chen T-W, Wu S-J, Shyu Y-T. 2007. Microbial diversity analysis of former salterns in southern Taiwan by 16S rRNA-based methods. J Basic Microbiol 7:525533.[CrossRef]
131. Park S-J, Kang C-H, Rhee S-K. 2006. Characterization of the microbial diversity in a Korean solar saltern by 16S rRNA gene analysis. J Microbiol Biotechnol 16:16401645.
132. Sørensen KB, Canfield DE, Teske AP, Oren A. 2005. Community composition of a hypersaline endoevaporitic microbial mat. Appl Environ Microbiol 71:73527365.[CrossRef]
133. Ma Y, Zhang W, Xue Y, Zhou P, Ventosa A, Grant WD. 2004. Bacterial diversity of the Inner Mongolian Baer Soda Lake as revealed by 16S rRNA gene sequence analyses. Extremophiles 8:4551.[PubMed][CrossRef]
134. Baati H, Guermazi S, Amdouni R, Gharsallah N, Sghir A, Ammar E. 2008. Prokaryotic diversity of a Tunisian multipond solar saltern. Extremophiles 12:505518.[PubMed][CrossRef]
135. Baati H, Guermazi S, Gharsallah N, Sghir A, Ammar E. 2010. Novel prokaryotic diversity in sediments of Tunisian multipond solar saltern. Res Microbiol 161:573582.[PubMed][CrossRef]
136. Mwrichia R, Cousin S, Muigai AW, Boga HI, Stackebrandt E. 2010. Archaeal diversity in the haloalkaline Lake Elmenteita in Kenya. Curr Microbiol 60:4752.[CrossRef]
137. Rees HC, Grant WD, Jones BE, Heaphy S. 2004. Diversity of Kenyan soda lake alkaliphiles assessed by molecular methods. Extremophiles 8:6371.[PubMed][CrossRef]
138. Grant S, Grant WD, Jones BE, Kato C, Li L. 1999. Novel archaeal phylotypes from an East African alkaline saltern. Extremophiles 3:139145.[PubMed][CrossRef]
139. Mesbah NM, Abou-El-Ela SH, Wiegel J. 2007. Novel and unexpected prokaryotic diversity in water and sediments of the alkaline, hypersaline lakes of the Wadi An Natrun, Egypt. Microb Ecol 54:598617.[PubMed][CrossRef]
140. Gareeb AP, Setati ME. 2009. Assessment of alkaliphilic haloarchaeal diversity in Sua pan evaporator ponds in Botswana. Afr J Biotechnol 8:259267.
141. La Cono V, Smedile F, Bortoluzzi G, Arcadi E, Maimone G, Messina E, Borghini M, Oliveri E, Mazzola S, L'Haridon S, Toffin L, Genovese L, Ferrer M, Giuliano L, Golyshin PN, Yakimov MM. 2011. Unveiling microbial life in new deep-sea hypersaline Lake Thetis. Part I: prokaryotes and environmental settings. Environ Microbiol 13:22502268.[PubMed][CrossRef]
142. Daffonchio D, Borin S, Brusa T, Brusetti L, van der Wielen PWJJ, Bolhuis H, Yakimov MM, D'Auria G, Giuliano L, Marty D, Tamburini C, McGenity TJ, Hallsworth JE, Sass AM, Timmis KN, Tselepides A, de Lange GJ, Hübner A, Thomson J, Varnavas SP, Gasparoni F, Gerber HW, Malinverno E, Corselli C Biodeep Scientific Party. 2006. Stratified prokaryote network in the oxic-anoxic transition of a deep-sea halocline. Nature 440:203207.[PubMed][CrossRef]
143. Eder W, Ludwig W, Huber R. 1999. Novel 16S rRNA gene sequences retrieved from highly saline brine sediments of Kebrit Deep, Red Sea. Arch Microbiol 172:213218.[PubMed][CrossRef]
144. Eder W, Jahnke LL, Schmidt M, Huber R. 2001. Microbial diversity of the brine-seawater interface of the Kebrit Deep, Red Sea, studied via 16S rRNA gene sequences and cultivation methods. Appl Environ Microbiol 67:30773085.[PubMed][CrossRef]
145. Eder W, Schmidt M, Koch M, Garbe-Schönberg D, Huber R. 2002. Prokaryotic phylogenetic diversity and corresponding geochemical data of the brine-seawater interface of the Shaban Deep, Red Sea. Environ Microbiol 4:758763.[PubMed][CrossRef]
146. Leuko S, Goh F, Allen MA, Burns BP, Walter MR, Neilan BA. 2007. Analysis of intergenic spacer region length polymorphisms to investigate the halophilic archaeal diversity of stromatolites and microbial mats. Extremophiles 11:203210.[PubMed][CrossRef]
147. Giri BJ, Bano N, Hollibaugh JT. 2004. Distribution of RuBisCO genotypes along a redox gradient in Mono Lake, California. Appl Environ Microbiol 70:34433448.[PubMed][CrossRef]
148. Scholten JCM, Joye SB, Hollibaugh JT, Murrell JC. 2005. Molecular analysis of the sulfate reducing and archaeal community in a meromictic soda lake (Mono Lake, California) by targeting 16S rRNA, mcrA, apsA, and dsrAB genes. Microb Ecol 50:2939.[PubMed][CrossRef]
149. van der Wielen PWJJ, Heijs SK. 2007. Sulfate-reducing prokaryotic communities in two deep hypersaline anoxic basins in the Eastern Mediterranean deep sea. Environ Microbiol 9:13351340.[PubMed][CrossRef]
150. Joye SB, Samarkin VA, Orcutt BM, MacDonald IR, Hinrichs K-U, Elvert M, Teske AP, Lloyd KG, Lever MA, Montoya JP, Meile CD. 2009. Metabolic variability in seafloor brines revealed by carbon and sulphur dynamics. Nat Geosci 2:349354.[CrossRef]
151. Bodaker I, Sharon I, Suzuki MT, Feingersch R, Shmoish M, Andreishcheva E, Sogin ML, Rosenberg M, Maguire M, Belkin S, Oren A, Béjà O. 2010. Comparative community genomics in the Dead Sea: an increasingly extreme environment. ISME J 4:399407.[PubMed][CrossRef]
152. Ferrer M, Werner J, Chernikova TN, Bargiela R, Fernández L, La Cono V, Waldmann J, Teeling H, Golyshina OV, Glöckner FO, Yakimov MM, Golyshin PN the MAMBA Scientific Consortium. 2012. Unveiling microbial life in the new deep-sea hypersaline Lake Thetis. Part II: a metagenomic study. Environ Microbiol 14:268281.[PubMed][CrossRef]
153. Legault BA, Lopez-Lopez A, Alba-Casado JC, Doolittle WF, Bolhuis H, Rodríguez-Valera F, Papke RT. 2006. Environmental genomics of “Haloquadratum walsbyi” in a saltern crystallizer indicates a large pool of accessory genes in an otherwise coherent species. BMC Genomics 7:171.[CrossRef]
154. Sime-Ngando T, Lucas S, Robin A, Pause Tucker K, Colombet J, Forterre P, Breitbart M, Prangishvili D. 2011. Diversity of virus-host systems in hypersaline Lake Retba, Senegal. Environ Microbiol 13:19561972.[PubMed][CrossRef]
155. Sabet S,. 2012. Halophilic viruses, p 81116. In Vreeland RH (ed.), Advances in understanding of the biology of halophilic microorganisms. Springer, Dordrecht.
156. Sandaa R-A, Skjodal EF, Bratbak G. 2003. Virioplankton community structure along a salinity gradient in a solar saltern. Extremophiles 7:347351.[PubMed][CrossRef]
157. Guixa-Boixareu N, Calderón-Paz JI, Heldal M, Bratbak G, Pedrós-Alió C. 1996. Viral lysis and bacterivory as prokaryotic loss factors along a salinity gradient. Aquat Microb Ecol 11:215227.[CrossRef]
158. Jiang S, Steward G, Jellison R, Chu W, Choi S. 2004. Abundance, distribution, and diversity of viruses in alkaline, hypersaline Mono Lake, California. Microb Ecol 47:917.[PubMed][CrossRef]
159. Oren A, Bratbak G, Heldal M. 1997. Occurrence of virus-like particles in the Dead Sea. Extremophiles 1:143149.[PubMed][CrossRef]
160. Garcia-Heredia I, Martin-Cuadrado A-B, Mojica FJM, Santos F, Mira A, Antón J, Rodríguez-Valera F. 2012. Reconstructing viral genomes from the environment using fosmid clones: the case of haloviruses. PLoS One 7:e33802.[PubMed][CrossRef]
161. Rodriguez-Brito B, Li L, Wegley L, Furlam M, Angly F, Breitbart M, Buchanan J, Desnues C, Dinsdale E, Edwards R, Felts B, Haynes M, Liu H, Lipson D, Mahaffy J, Martin-Cuadrado AB, Mira A, Nulton J, Pašić L, Rayhawk S, Rodriguez-Mueller J, Rodriguez-Valera F, Salamon P, Srinagesh S, Thingstad TF, Tran T, Thurber RV, Willner D, Youle M, Rohwer F. 2010. Viral and microbial community dynamics in four aquatic environments. ISME J 4:739751.[PubMed][CrossRef]
162. Santos F, Yarza P, Parro V, Meseguer I, Rosselló-Mora R, Antón J. 2012. Culture-independent approaches for studying viruses from hypersaline environments. Appl Environ Microbiol 78:16351643.[PubMed][CrossRef]
163. Santos F, Meyerdierks A, Peña A, Rosselló-Mora R, Amann R, Antón J. 2007. Metagenomic approach to the study of halophages: the environmental halophage 1. Environ Microbiol 9:17111723.[PubMed][CrossRef]
164. Santos F, Moreno-Paz M, Meseguer I, López C, Rosselló-Mora R, Parro V, Antón J. 2011. Metatranscriptomic analysis of extremely halophilic viral communities. ISME J 5:16211633.[PubMed][CrossRef]
165. Ghai R, Fernández AB, Martin-Cuadrado A-B, Megumi Mizuno C, McMahon KD, Papke RT, Stepanauskas R, Rodriguez-Brito B, Rohwer F, Sánchez-Porro C, Ventosa A, Rodríguez-Valera F. 2011. New abundant microbial groups in aquatic hypersaline environments. Sci Rep 1:135.[PubMed][CrossRef]
166. Narasingarao P, Podell S, Ugalde JA, Brochier-Armanet C, Emerson JB, Brocks JJ, Heidelberg KB, Banfield JF, Allen EE. 2012. De novo assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities. ISME J 6:8193.[PubMed][CrossRef]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error