1887

Chapter 4.3.4 : Life in High-Temperature Environments

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Life in High-Temperature Environments, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch4.3.4-1.gif /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch4.3.4-2.gif

Abstract:

A variety of thermal systems exist on Earth, spanning wide ranges of temperature and other physicochemical parameters, including the deep continental and marine subsurface, terrestrial and marine geothermal systems at tectonic plate boundaries, spreading centers, and "hotspots", and a wide variety of natural and engineered systems. A variety of hyperthermophilic and thermophilic microorganisms inhabit many of these environments; however, microbial diversity is inversely proportional to temperature at temperatures inhabited by thermophiles. Above ~80 {degree sign}C, microbial communities are almost entirely composed of thermophilic specialists, including Archaea such as Thermoprotei (Crenarchaeota), Archaeoglobi (Euryarchaeota), Methanopyri (Euryarchaeota), Thermococci (Euryarchaeota); Bacteria such as Aquificae, Thermi, Thermotogae, Thermodesulfobacteria, and Dictyoglomi; and a variety of yet-uncultivated lineages that are abundant globally. The decrease in diversity and change in microbial community composition associated with high temperatures is driven by bioenergetic stresses associated with increased degradation and racemization rates at high temperature. One key molecular adaptation to life at high temperature is the tetraether membrane lipid. Biodiversity losses driven by high temperature lead to losses in ecosystem functions that impact key biochemical processes, such as the absence of photosynthesis above ~73 {degree sign}C. The impact of high temperature on other biogeochemical cycles is still poorly understood, but likely includes limitations on the oxidative nitrogen cycle. A significant recent advancement of the study of life at high temperature is the use of single-cell genomics and metagenomics approaches to probe yet-uncultivated lineages in high-temperature habitats; however, this progress must be matched with an equally vigorous program to test functions predicted from these genomes.

Citation: Hedlund B, Thomas S, Dodsworth J, Zhang C, Miller R. 2016. Life in High-Temperature Environments, p 4.3.4-1-4.3.4-15. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch4.3.4
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Generalized schematic of terrestrial geothermal systems such as those in Yellowstone National Park. Local or regional aquifers sourced by meteoric water follow fault lines or permeable layers and become heated by proximity to shallow magma bodies or heated rocks. Heated water may boil in the subsurface due to adiabatic decompression as fluids rise. Dissolved gases such as H, HS, and NH become enriched in vapor phases, which source either fumaroles (a) or acidic pools or mudpots (b). These so-called vapor-dominated systems become acidified to pH 1.5–3.5 by biotic and abiotic oxidation of HS to sulfuric acid at or near the surface; acid weathers the host rock and solubilizes clays. The liquid phase, typically with lower concentrations of volatiles, but enriched in soluble ions such as Na and Cl, is buffered to pH 7–9 by the carbonate buffering system and may source large, clear pools or streams with substantial discharge (c). doi:10.1128/9781555818821.ch4.3.4.f1

Citation: Hedlund B, Thomas S, Dodsworth J, Zhang C, Miller R. 2016. Life in High-Temperature Environments, p 4.3.4-1-4.3.4-15. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch4.3.4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Terrestrial geothermal systems at a variety of scales. (a–c) Abundant microbial growth in Octopus Spring, a high-temperature, alkaline spring in Yellowstone National Park's Lower Geyser Basin. (a) View of the source pool (∼92°C; pH ∼ 8.0) from above the “head” of the Octopus, with outflow streams (“tentacles”) flowing away and to the right (arrow, site of pink streamer community). (b) Pink streamer community in the outflow of Octopus Spring at ∼84 to 88°C, with abundant growth of and yet-uncultivated lineages ( ) (width of view, ∼0.3 m). (c) Scanning electron micrograph (SEM) of a pure culture of isolated from Octopus Spring showing flow-dependent filamentous morphology (bar, 2 µm; used with permission from [ ]). (d–f) Sharp transition of phototrophic biofilm growth in Mud Hot Spring (Sandy's Spring West) in the U.S. Great Basin. (d) View of the source pool (∼86°C; pH ∼ 7.2) with the upper temperature limit of photosynthesis clearly visible (arrow, ∼73°C). (e) Close up of the outflow channel showing the upper temperature limit of photosynthesis (arrow; width of view, ∼0.5 m). (f) SEM of a pure culture of , an abundant resident of sediments in Mud Hot Spring and nearby Great Boiling Spring ( ) (bar, arrow, ∼2 µm; arrows, septa between individual cells in filaments). (g–i) Diretiyanqu (“Experimental Site”), an acidic system in Tengchong, China, and abundant microorganisms. (g) Large, geothermally altered erosional feature typical of many acidic geothermal systems (arrow, area in focus in H). (h) One of several hot, acidic pools (∼86°C; pH ∼ 2.6) actively gassing and with thermoacidophilic algae () visible in vapor condensate (arrow; width of view, ∼0.5 m). (i) Transmission electron micrograph of , the dominant microorganism at this site ( ) with spindle-shaped virus (STSV1) (arrow; bar, 1 µm; used with permission from [ ]). doi:10.1128/9781555818821.ch4.3.4.f2

Citation: Hedlund B, Thomas S, Dodsworth J, Zhang C, Miller R. 2016. Life in High-Temperature Environments, p 4.3.4-1-4.3.4-15. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch4.3.4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Example core tetraether lipid structures. (a) Example isoprenoid dialkyl glycerol tetraethers (iGDGTs) found in thermophilic and ; increasing cyclization is associated with increased temperature and/or decreased pH (top to bottom). (b) Thaumarchaeol (formerly crenarchaeol), a distinctive lipid of both thermophilic and mesophilic . (c) Example branched GDGTs (bGDGTs) produced by mesophilic and likely produced by unknown moderate thermophiles; methylation is inversely proportional to temperature in terrestrial geothermal systems. Figure modified from ( ). doi:10.1128/9781555818821.ch4.3.4.f3

Citation: Hedlund B, Thomas S, Dodsworth J, Zhang C, Miller R. 2016. Life in High-Temperature Environments, p 4.3.4-1-4.3.4-15. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch4.3.4
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818821.ch4.3.4
1. Fournier RO. 1989. Geochemistry and dynamics of the Yellowstone National Park hydrothermal system. Annu Rev Earth Planet Sci 17:1353.[CrossRef]
2. Hou W, Wang S, Dong H, Jiang H, Briggs BR, Peacock JP, Huang Q, Huang L, Wu G, Zhi X, Li W, Dodsworth JA, Hedlund BP, Zhang C, Hartnett HE, Dijkstra P, Hungate BA. 2013. A comprehensive census of microbial diversity in hot spring of Tengchong, Yunnan Province China using 16S rRNA gene pyrosequencing. PLoS One 8:e53350.[PubMed][CrossRef]
3. Shock E, Holland M, Meyer-Dombard D, Amend J, Osburn G, Fischer T. 2010. Quantifying inorganic sources of geochemical energy in hydrothermal ecosystems, Yellowstone National Park, USA. Geochim Cosmochim Acta 74:40054043.[CrossRef]
4. Forterre P, Gribaldo S. 2007. The origin of modern terrestrial life. HFSP J 1:156168.[PubMed][CrossRef]
5. Levy M, Miller SL. 1998. The stability of the RNA bases: implications for the origin of life. Proc Natl Acad Sci 95:79337938.[PubMed][CrossRef]
6. Russell MJ, Hall AJ, Cairns-Smith AG, Braterman PS. 1988. Submarine hot springs and the origin of life. Nature 336:117.[CrossRef]
7. Schwartzman DW, Lineweaver CH. 2004. The hyperthermophilic origin of life revisited. Biochem Soc Trans 32:168171.[PubMed][CrossRef]
8. Wachtershauser G,. 1998. The case for a hyperthermophilic, chemo-lithoautotrophic origin of life in an iron-sulfur world. p 4757. In Wiegel J,, Adams M (eds), Thermophiles: The Keys to Molecular Evolution and the Origin of Life? Taylor and Francis, Philadelphia, PA.
9. Woese CR. 1987. Bacterial evolution. Microbiol Rev 51:221271.[PubMed]
10. Abramov O, Mojzsis SJ. 2009. Microbial habitability of the Hadean Earth during the late heavy bombardment. Nature 459:419422.[PubMed][CrossRef]
11. Bell EA, Boehnke P, Harrison MT, Mao WL. 2015. Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc Natl Acad Sci 122:1451814521.[CrossRef]
12. Knauth LP,, Lowe DR. 2003. High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. Bull Geol Soc Am 115:566580.[CrossRef]
13. Head IM, Gray ND, Larter SR. 2014. Life in the slow lane; biogeochemistry of biodegraded petroleum containing reservoirs and implications for energy recovery and carbon management. Front Microbiol 5:566.[PubMed][CrossRef]
14. Wilson ZE, Brimble MA. 2008. Molecules derived from the extremes of life. Nat Prod Rep 26:4471.[CrossRef]
15. Daniel RM, Toogood HS, Bergquist PL. 1996. Thermostable proteases. Biotechnol Genet Eng Rev 13:51100.[PubMed][CrossRef]
16. Ishino S, Ishino Y. 2014. DNA polymerases as useful reagents for biotechnology—the history of developmental research in the field. Front Microbiol 5:465.[PubMed][CrossRef]
17. Moser MJ, Difrancesco RA, Gowda K, Klingele AJ, Sugar DR, Stocki S, Mead DA, Schoenfeld TW. 2012. Thermostable DNA polymerase from a viral metagenome is a potent rt-PCR enzyme. PLoS One 7:e38371.[PubMed][CrossRef]
18. Vieille C, Zeikus GJ. 2001. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:143.[PubMed][CrossRef]
19. Lee KKM, Jeanloz R. 2003. High-pressure alloying of potassium and iron: radioactivity in the Earth's core? Geophys Res Lett 30:14.[CrossRef]
20. Chiodini G, Caliro S, Lowenstern JB, Evans WC, Bergfield D, Tassi F, Tedesco D. 2012. Insights from fumarole gas geochemistry on the origin of hydrothermal fluids on the Yellowstone Plateau. Geochim Cosmochim Acta 89:265278.[CrossRef]
21. McMahon S, Parnell J. 2014. Weighing the deep continental biosphere. FEMS Microbiol Ecol 87:113120.[PubMed][CrossRef]
22. Whitman WB, Coleman DC, Wiebe WJ. 1998. Prokaryotes: the unseen majority. Proc Natl Acad Sci 95:65786583.[PubMed][CrossRef]
23. Wilkins MJ, Daly RA, Mouser PJ, Trexler R, Sharma S, Cole DR, Wrighton KC, Biddle JF, Denis EH, Fredrickson JK, Kieft TL, Onstott TC, Peterson L, Pfiffner SM, Phelps TJ, Schrenk MO. 2014. Trends and future challenges in sampling the deep terrestrial biosphere. Front Microbiol 5:481.[PubMed]
24. Holland G, Sherwood Lollar B, Li L, Lacrampe-Couloume G, Slater GF, Ballentine CJ. 2013. Deep fracture fluids isolated in the crust since the Precambrian era. Nature 497:357360.[PubMed][CrossRef]
25. Lin LH, Hall JA, Lippmann J, Ward JA, Sherwood Lollar B, DeFlaun M, Rothmel R, Moser D, Gihring TM, Mislowack B, Onstott TC. 2005. Radiolytic H2 in the continental crust: nuclear power for deep subsurface microbial communities. Geochem Geophys Geosys 6:Q07003.
26. Sleep NH, Meibom A, Fridriksson T, Coleman RG, Bird DK. 2004. H2-rich fluids from serpentinization: geochemical and biotic implications. Proc Natl Acad Sci 101:1281812823.[PubMed][CrossRef]
27. Chapelle FH, O'Neill K, Bradley PM, Methé BA, Ciufo SA, Knobel LL, Lovley DR. 2002. A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415:312315.[PubMed][CrossRef]
28. Stevens TO, McKinley JP. 1995. Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270:450454.[CrossRef]
29. Lin LH, Wang PL, Rumble D, Lippmann-Pipke J, Boice E, Pratt LM, Sherwood Lollar B, Brodie EL, Hazen TC, Andersen GL, DeSantis TZ, Moser DP, Kershaw D, Onstott TC. 2006. Long term biosustainability in a high energy, low diversity crustal biome. Science 314:479482.[PubMed][CrossRef]
30. Nordstrom DK, Ball JW, McKleskey RB,. 2005. Ground water to surface water: chemistry of thermal outflows in Yellowstone National Park. p 7394 In Inskeep WP, McDermott TR (eds.), Geothermal Biology and Geochemistry in Yellowstone National Park, Montana State University Publications, Bozeman, MT.
31. Nordstrom DK, McCleskey RB, Ball JW. 2009. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: IV acid-sulfate waters. Appl. Geochem 24:191207.[CrossRef]
32. Brock TD. 1971. Bimodal distribution of pH values of thermal springs of the world. GeoScienceWorld 82:13931994.[CrossRef]
33. Reysenbach AL, Wickham GS, Pace NR. 1994. Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring, Yellowstone National Park. Appl Environ Microbiol 60:21132119.[PubMed]
34. Huber R, Eder W, Heldwein S, Wanner G, Huber H, Rachel R, Stetter KO. 1998. Thermocrinis ruber gen. nov., sp. nov., a pink-filament-forming hyperthermophilic bacterium isolated from Yellowstone National Park. Appl Environ Microbiol 64:35763583.[PubMed]
35. Hamilton TL, Koonce E, Howells A, Havig JR, Jewell T, de la Torre JR, Peters JW, Boyd ES. 2014. Competition for ammonia influences the structure of chemotrophic communities in geothermal springs. Appl Environ Microbiol 80:653661.[PubMed][CrossRef]
36. Costa KC, Navarro JB, Shock EL, Zhang CL, Soukup D, Hedlund BP. 2009. Microbiology and geochemistry of great boiling and mud hot springs in the United States Great Basin. Extremophiles 13:447459.[PubMed][CrossRef]
37. Xiang X, Chen L, Huang X, Luo Y, She Q, Huang L. 2005. Sulfolobus tengchongensis spindle-shaped virus STSV1: virus-host interactions and genomic features. J Virol 79:86778686.[PubMed][CrossRef]
38. Zhang Z, Liu S, Zhao F. 1987. Geochemistry of thermal waters in the Tengchong volcanic geothermal area, West Yunnan Province, China. Geothermics 16:169179.[CrossRef]
39. Holloway JM, Nordstrom DK, Böhlke JK, McCleskey RB, Ball JW. 2011. Ammonium in thermal waters of Yellowstone National Park: processes affecting speciation and isotope fractionation. Geochim Cosmochim Acta 75:46114636.[CrossRef]
40. Benson CA, Bizzoco RW, Lipson DA, Kelley ST. 2011. Microbial diversity in nonsulfur, sulfur and iron geothermal steam vents. FEMS Microbiol Ecol 76:7488.[PubMed][CrossRef]
41. Siering PL, Wolfe GV, Wilson MS, Yip AN, Carey CM, Wardman CD, Shapiro RS, Stedman KM, Kyle J, Yuan T, Van Nostrand JD, He Z, Zhou J. 2013. Microbial biogeochemistry of Boiling Springs Lake: a physically dynamic, oligotrophic, low-pH geothermal ecosystem. Geobiology 11:356376.[PubMed][CrossRef]
42. Faulds JE, Hinze N, Kreemer C, Coolbaugh M. 2012. Regional patterns of geothermal activity in the Great Basin Region, Western USA: correlation with strain rates. GRC Trans 36:897902.
43. German CR, Bowen A, Coleman ML, Hoing DL, Huber JA, Jakuba MV, Kinsey JC, Kurz MD, Leroy S, McDermott JM, Mercier de Lepinay B, Nakamura K, Seewald JS, Smith JL, Sylva SP, Van Dover CL, Whitcomb LL, Yoerger DR. 2010. Diverse styles of submarine venting on the ultraslow spreading Mid-Caymen Rise. Proc Natl Acad Sci 107:1402014025.[PubMed][CrossRef]
44. Kelley DS, Karson JA, Blackman DK, Früh-Green GL, Butterfield DA, Lilley MD, Olson EJ, Schrenk MO, Roe KK, Lebon GT, Rivizzigno P AT3-60 Shipboard Party. 2001. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30 degrees N. Nature 412:145149.[PubMed][CrossRef]
45. Ohara Y, Reagan MK, Fujikura K, Watanabe H, Michibayashi K, Ishii T, Stern RJ, Pujana I, Martinez F, Girard G, Ribeiro J, Brounce M, Komori N, Kino M. 2012. A serpentinite-hosted ecosystem in the Southern Mariana Forearc. Proc Natl Acad Sci 109:28312835.[PubMed][CrossRef]
46. Beaulieu SR, Baker ET, German CR. 2012. On the global distribution of hydrothermal vent fields: one decade later. Abstract OS2228-01. American Geophysical Union Fall Meeting, presented at 2012 Fall Meeting, AGU, San Francisco.
47. Dick GJ, Anantharaman K, Baker BJ, Li M, Reed DC, Sheik CS. 2013. The microbiology of deep-sea hydrothermal vent plumes: ecological and biogeographic linkages to seafloor and water column habitats. Front Microbiol 4:124.[PubMed][CrossRef]
48. Flores GE, Campbell JH, Kirshtein JD, Meneghin J, Podar M, Steinberg JI, Seewald JS, Tivey MK, Voytek MA, Yang ZK, Reysenbach AL. 2011. Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge. Environ Microbiol 13:21582171.[PubMed][CrossRef]
49. Flores GE, Shakya M, Meneghin J, Yang ZK, Seewald JS, Geoffwheat C, Podar M, Reysenbach AL. 2012. Inter-field variability in the microbial communities of hydrothermal vent deposits from a back-are basin. Geobiology 10:333346.[PubMed][CrossRef]
50. Beaulieu SE. 2013. InterRidge Global Database of Active Submarine Hydrothermal Vent Fields: prepared for InterRidge, Version 3.1. Electronic publication, version 3.3, accessed 12/10/2015, http://vents-data.interridge.org.
51. Maruyama A, Urabe T, Ishibashi J, Feely RA, Baker ET. 1998. Global hydrothermal primary production rate estimated from the southern East Pacific Rise. Cah Biol Mar 39:249252.
52. Hansenclever J, Theissen-Krah S, Rupke LH, Morgan JP, Iyer K, Petersen S, Devey CW. 2014. Hybrid shallow on-axis and deep off-axis hydrothermal circulation at fast-spreading ridges. Nature 508:508511.[PubMed][CrossRef]
53. Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K. 2008. Cell proliferation at 122 degrees C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci 105:1094910954.[PubMed][CrossRef]
54. Charlou JL, Donval JP, Fouquet Y, Jean-Baptiste P, Holm N. 2002. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36° 14′N, MAR). Chem Geol 242:121.
55. Mottl M, Seewald J, Wheat C, Tivey M, Michael P, Proskurowski G, McCollom TM, Reeves E, Sharkey J, You CF. 2011. Chemistry of hot springs along the Eastern Lau Spreading Center. Geochim Cosmochim Acta 75:10131038.[CrossRef]
56. Takai K, Toshitaka G, Tsunogai U, Nakayama N, Hirayama H, Nealson KH, Horikoshi K. 2004. Geochemical and microbiological evidence for a hydrogen-based, hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) beneath and active deep-sea hydrothermal field. Extremphiles 8:269282.[CrossRef]
57. Corliss JB, Dymond J, Gordon LI, Edmond JM, von Herzen RP, Ballard RD, Green K, Williams D, Bainbridge A, Crane K, van Andel TH. 1979. Submarine thermal springs on the Galapagos Rift. Science 203:10731082.[PubMed][CrossRef]
58. Kelley DS, Karson JA, Früh-Green GL, Yoerger DR, Shank TM, Butterfield DA, Hayes JM, Schrenk MO, Olson EJ, Proskurowski G, Jakuba M, Bradley A, Larson B, Ludwig K, Glickson D, Buckman K, Bradley AS, Brazelton WJ, Roe K, Elend MJ, Delacour A, Bernasconi SM, Lilley MD, Baross JA, Summons RE, Sylva SP. 2005. A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science 307:14281434.[PubMed][CrossRef]
59. McFadden L. 2005. Physical weathering in arid landscapes due to diurnal variation in the direction of solar heating. GSA Bulletin 117:161173.[CrossRef]
60. van Gestel NC, Reischke S, Bååth E. 2013. Temperature sensitivity of bacterial growth in a hot desert soil with large temperature fluctuations. Soil Biol Biochem 65:180185.[CrossRef]
61. Marchant R, Banat IM, Rahman TJ, Berzano M. 2002. The frequency and characteristics of highly thermophilic bacteria in cool soil environments. Environ Microbiol 4:595602.[PubMed][CrossRef]
62. Marchant R, Franzetti A, Pavlostathis SG, Tas DO, Erdbrügger I, Unyayar A, Mazmanci MA, Banat IM. 2008. Thermophilic bacteria in cool temperate soils: are they metabolically active or continually added by global atmospheric transport. Appl Microbiol Biotechnol 78:841852.[PubMed][CrossRef]
63. Brock TD, Boylen KL. 1973. Presence of thermophilic bacteria in laundry and domestic hot-water heaters. Appl Microbiol 25:7276.[PubMed]
64. Brock T D. 1978. Thermophilic Microorganisms and Life at High Temperatures. Springer-Verlag; New York, N.Y.
65. Stetter KO. 1996. Hyperthermophilic prokaryotes. FEMS Microbiol Rev 18:149158.[CrossRef]
66. Mesbah NM, Wiegel J. 2012. Life under multiple extreme conditions: diversity and physiology of the halophilic alkalithermophiles. Appl Environ Microbiol 78:40744082.[PubMed][CrossRef]
67. Kashefi K, Holmes DE, Reysenbach AL, Lovley DR. 2002. Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens gen. nov., sp. nov. Appl Environ Microbiol 68:17351742.[PubMed][CrossRef]
68. Singh S, Madlala AM, Prior BA. 2003. Thermomyces lanuginosus: properties of strains and their hemicellulases. FEMS Microbiol Rev 27:316.[PubMed][CrossRef]
69. Gupta RS,. 2014. The phylum Aquificae, p 417445. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds.), The Prokaryotes: Other Major Lineages of Bacteria and the Archaea, 4th ed., Springer, Berlin.
70. Bergquist PL, Morgan HW,. 2014. The phylum Dictyoglomi, p 627636. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds.), The Prokaryotes: Other Major Lineages of Bacteria and the Archaea, 4th ed., Springer, Berlin.
71. Albuquerque L, da Costa MS,. 2014. The family Thermaceae, p 955987. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds.), The Prokaryotes: Other Major Lineages of Bacteria and the Archaea, 4th ed., Springer, Berlin.
72. Da Costa MS, Rainey FA, Nobre MF,. 2006. The genus Thermus and relatives, p 797812. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds.), The Prokaryotes: Proteobacteria—Delta and Epsilon Subclasses, Deeply Rooting Bacteria, 3rd ed., vol 7. Springer, New York, NY.
73. Hamilton-Brehm SD, Gibson RA, Green SJ, Hopmans EC, Schouten S, van der Meer MTJ, Shields JP, Damsté JSS, Elkins JG. 2013. Thermodesulfobacterium geofontis sp. nov., a hyperthermophilic, sulfate-reducing bacterium isolated from Obsidian Pool, Yellowstone National Park. Extremophiles 17:251263.[PubMed][CrossRef]
74. Jeanthon C, L'Haridon S, Cueff V, Banta A, Reysenbach A-L, Prieur D. 2002. Thermodesulfobacterium hydrogeniphilum sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent at Guaymas Basin, and emendation of the genus Thermodesulfobacterium. Int J Syst Evol Microbiol 52:765772.[PubMed]
75. Miroshnichenko ML, Lebedinsky AV, Chernyh NA, Tourova TP, Kolganova TV, Spring S, Bonch-Osmolovskaya EA. 2009. Caldimicrobium rimae gen. nov., sp. nov., an extremely thermophilic, facultatively lithoautotrophic, anaerobic bacterium from the Uzon Caldera, Kamchatka. Int J Syst Evol Microbiol 59:10401044.[PubMed][CrossRef]
76. Cole JK, Peacock JP, Dodsworth JA, Williams AJ, Thompson DB, Dong H, Wu G, Hedlund BP. 2013. Sediment microbial communities in Great Boiling Spring are controlled by temperature and distinct from water communities. ISME J 7:718729.[PubMed][CrossRef]
77. Bhandari V, Gupta RS,. 2014. The phylum Thermotogae, p 9891015. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds.), The Prokaryotes: Other Major Lineages of Bacteria and the Archaea, 4th ed., Springer, Berlin.
78. Prokofeva MI, Kostrikina NA, Kolganova TV, Tourova TP, Lysenko AM, Lebedinsky AV, Bonch-Osmolovskaya EA. 2009. Isolation of the anaerobic thermoacidophilic crenarchaeote Acidilobus saccharovorans sp. nov. and proposal of Acidilobales ord. nov., including Acidilobaceae fam. nov. and Caldisphaeraceae fam. nov. Int J Syst Evol Microbiol 59:31163122.[PubMed][CrossRef]
79. Huber H, Stetter KO,. 2006. Desulfurococcales, p 5268. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds.), The Prokaryotes: Archaea. Bacteria: Firmicutes, Actinomycetes, 3rd ed., vol 7. Springer, New York, NY.
80. Perevalova AA, Bidzhieva SK, Kublanov IV, Hinrichs K-U, Liu XL, Mardanov AV, Lebedinsky AV, Bonch-Osmolovskaya EA. 2010. Fervidicoccus fontis gen. nov., sp. nov., an anaerobic, thermophilic crenarchaeote from terrestrial hot springs, and proposal of Fervidicoccaceae fam. nov. and Fervidicoccales ord. nov. Int J Syst Evol Microbiol 60:20822088.[PubMed][CrossRef]
81. Albers S-V, Siebers B,. 2014. The family Sulfolobaceae, p 323340. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds.), The Prokaryotes: Other Major Lineages of Bacteria and the Archaea, 4th ed.. Springer, Berlin.
82. Huber H, Prangishvili D,. 2006. Sulfolobales, p 3251. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (ed), The Prokaryotes: Archaea. Bacteria: Firmicutes, Actinomycetes, 3rd ed., vol 7. Springer, New York, NY.
83. Huber H, Huber R, Stetter KO,. 2006. Thermoproteales, p 1022. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds.), The Prokaryotes: Archaea. Bacteria: Firmicutes, Actinomycetes, 3rd ed., vol 7. Springer, New York, NY.
84. Itoh T,. 2014. The family Thermoproteaceae, p 389401. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds.), The Prokaryotes: Other Major Lineages of Bacteria and the Archaea, 4th ed., Springer, Berlin.
85. Brileya K, Reysenbach A-L,. 2014. The class Archaeoglobi, p 1523. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds.), The Prokaryotes: Other Major Lineages of Bacteria and the Archaea, 4th ed, Springer, Berlin.
86. Kurr M, Huber R, König H, Jannasch HW, Fricke H, Trincone A, Kristjannson JK, Stetter KO. 1991. Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110°C. Arch Microbiol 156:239247.[CrossRef]
87. Schut GJ, Lipscomb GL, Han Y, Notey JS, Kelly RM, Adams MMW,. 2014. The Order Thermococcales and the Family Thermococcaceae, p 363383. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds.), The Prokaryotes: Other Major LIneages of Bacteria and the Archaea, 4th ed., Springer, Berlin.
88. Berg IA. 2011. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol 77:1925:1936.[CrossRef]
89. Hedlund BP, Murugapiran S, Alba T, Levy A, Dodsworth J, Goertz G, Ivanova N, Woyke T. 2015. Uncultivated thermophiles: current status and spotlight on “Aigarchaeota”. Curr Opin Microbiol 25:136145.[PubMed][CrossRef]
90. de la Torre JR, Walker CB, Ingalls AE, Könneke M, Stahl DA. 2008. Cultivation of a thermophilic ammonia-oxidizing archaeon synthesizing crenarchaeol. Environ Microbiol 10:810818.[PubMed][CrossRef]
91. Li H, Yang Q, Li J, Gao H, Li P, Zhou H. 2015. The impact of temperature on microbial diversity and AOA activity in the Tengchong Geothermal Field, China. Sci Rep 5:17056.[PubMed][CrossRef]
92. Dodsworth JA, Hungate BA, Hedlund BP. 2011. Ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium in two US Great Basin hot springs with abundant ammonia-oxidizing archaea. Environ Microbiol 8:23712386.[CrossRef]
93. Dodsworth JA, Gevorkian J, Despujos F, Cole JK, Murugapiran SK, Ming H, Li WJ, Zhang G, Dohnalkova A, Hedlund BP. 2014. Thermoflexus hugenholtzii gen. nov., sp. nov., a thermophilic, microaerophilic, filamentous bacterium representing a novel class in the Chloroflexi, Thermoflexia classis nov., and description of Thermoflexaceae fam. nov. and Thermoflexales ord. nov. Int J System Evol Microbiol 64:21192127.[CrossRef]
94. Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM. 2002. Thermotolerance conferred to plant host and fungal endophyte during mutualistic symbiosis. Science 298:1581.[PubMed][CrossRef]
95. Amend JP, Shock EL. 2001. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol Rev 25:175243.[PubMed][CrossRef]
96. Dodsworth JA, McDonald AI, Hedlund BP. 2012. Calculation of total free energy yield as an alternative approach for predicting the importance of potential chemolithotrophic reactions in geothermal springs. FEMS Microbiol Ecol 81:446454.[PubMed][CrossRef]
97. Boyd ES, Fecteau K, Havig JR, Shock EL, Peters JW. 2012. Modeling the habitat range of phototrophic microorganisms in Yellowstone National Park: toward the development of a comprehensive fitness landscape. Front Microbiol Chem 3:221.
98. Cox A, Shock E, Havig J. 2011. The transition to microbial photosynthesis in hot spring ecosystems. Chem Geol 280:344351.[CrossRef]
99. Spear JR, Walker JJ, McCollom TM, Pace NR. 2005. Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. Proc Natl Acad Sci 102:25552560.[PubMed][CrossRef]
100. D'Imperio SC, Lehr R, Oduro H, Druschel G, Kuhl M, McDermott TR. 2008. The relative importance of H2 and H2S as energy sources for primary production in geothermal springs. Appl Environ Microbiol 74:58025808.[PubMed][CrossRef]
101. Murphy CN, Dodsworth JA, Babbitt AB, Hedlund BP. 2013. Community microrespirometry reveals a diverse energy economy in Great Boiling Spring and Sandy's Spring West in the U.S. Great Basin. Appl Environ Microbiol 79:33063310.[PubMed][CrossRef]
102. Briggs BR, Brodie EL, Tom LM, Dong H, Jiang H, Huang Q, Wang S, Hou W, Wu G, Huang L, Hedlund BP, Zhang C, Dijkstra P, Hungate BA. 2013. Seasonal patterns in microbial communities inhabiting the hot springs of Tengchong, Yunnan Province, China. Environ Microbiol 16:15791591.[PubMed][CrossRef]
103. Huber H, Stetter KO. 2015. Desulfurococcales ord. nov. Bergey's Manual of Systematics of Archaea and Bacteria. 12. John Wiley & Sons, Inc., in association with Bergey's Manual Trust.
104. Barns SM, Fundyga RE, Jeffries MW, Pace NR. 1994. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci 91:16091613.[PubMed][CrossRef]
105. Barns SM, Delwiche CF, Palmer JD, Pace NR. 1996. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc Natl Acad Sci 93:91889193.[PubMed][CrossRef]
106. Miller-Coleman RL, Dodsworth JA, Ross CA, Shock EL, Williams AJ, Hartnett HE, McDonald AI, Havig JR, Hedlund BP. 2013. Korarchaeota diversity, biogeography, and abundance in Yellowstone and Great Basin hot springs and ecological niche modeling based on machine learning. PLoS One 7:e35964.[CrossRef]
107. Schrodinger E. 1944. What Is Life? The Physical Aspect of the Living Cell. Cambridge University Press, Cambridge, UK.
108. Hoehler TM, Jørgensen BB. 2013. Microbial life under extreme energy limitation. Nature Rev Microbiol 11:8394.[CrossRef]
109. LaRowe DE, Amend JP. 2015. Catabolic rates, population sizes and doubling/replacement times of microorganisms in natural settings. Am J Sci 315:167203.[CrossRef]
110. Muga A, Moro F. 2008. Thermal adaptation of heat shock proteins. Curr Protein Pept Sci 9:552566.[PubMed][CrossRef]
111. Price PB, Sowers T. 2004. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci 101:46314636.[PubMed][CrossRef]
112. Tijhuis L, van Loosdrecht MCM, Heijnen JJ. 1993. A thermodynamically based correlation for maintenance Gibbs energy requirements in aerobic and anaerobic chemotrophic growth. Biotechnol Bioeng 42:509519.[PubMed][CrossRef]
113. Bains W, Xiao Y, Yu C. 2015. Prediction of the maximum temperature for life based on the stability of metabolites to decomposition in water. Life 5:10541100.[PubMed][CrossRef]
114. Hoehler TM. 2007. An energy balance concept for habitability. Astrobiology 7:824838.[PubMed][CrossRef]
115. Sharp CE, Brady AL, Sharp GH, Grasby SE, Stott MB, Dunfield PF. 2014. Humboldt's spa: microbial diversity is controlled by temperature in geothermal environments. ISME J 8:11661174.[PubMed][CrossRef]
116. Valentine DL. 2007. Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nature Rev Microbiol 5:316323.[CrossRef]
117. Clarke A. 2014. The thermal limits to life on Earth. Int J Astrobiol 13:141154.[CrossRef]
118. Pirt SJ. 1965. The maintenance energy of bacteria in growing cultures. Proc R Soc Lond B Biol Sci 163:224231.[PubMed][CrossRef]
119. Sabath N, Ferrada E, Barve A, Wagner A. 2013. Growth temperature and genome size in bacteria are negatively correlated, suggesting genomic streamlining during thermal adaptation. Genome Biol Evol 5:966977.[PubMed][CrossRef]
120. Russell B, Cook GM. 1995. Energetics of bacterial growth: balance of anabolic and catabolic reactions. Microbiol Rev 59:4862.[PubMed]
121. van Bodegom P. 2007. Microbial maintenance: a critical review on its quantification. Microb Ecol 53:513523.[PubMed][CrossRef]
122. Peterse F, Schouten S, van der Meer J, van der Meer MTJ, Sinninghe Damsté JS. 2009. Distribution of branched tetraether lipids in geothermally heated soils: implications for the MBT/CBT temperature proxy. Org Geochem 40:201205.[CrossRef]
123. Elferink MGL, de Wit JG, Driessen AJM, Konings WN. 1994. Stability and proton-permeability of liposomes composed of archaeal tetraether lipids. Biochim Biophys Acta 1193:247254.[PubMed][CrossRef]
124. Chappe B, Michaelis W, Albrecht P, Ourisson G. 1979. Fossil evidence for a novel series of archaeabacterial lipids. Naturwissenschaften 66:522523.[CrossRef]
125. Schouten S, Forster A, Panoto FE, Sinninghe Damsté JS. 2007. Towards calibration of the TEX86 palaeothermometer for tropical sea surface temperatures in ancient greenhouse worlds. Org Geochem 38:15371546.[CrossRef]
126. Zhang YG, Zhang CL, Liu XL, Li L, Hinrichs KU, Noakes JE. 2011. Methane index: a tetraether archaeal lipid biomarker indicator for detecting the instability of marine gas hydrates. Earth Planet Sci Lett 307:525534.[CrossRef]
127. Schouten S, Hopmans EC, Sinninghe Damsté JS. 2013. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review. Org Nat Geochem 54:1961.[CrossRef]
128. Lai D, Springstead JR, Monbouquette HG. 2008. Effect of growth temperature on ether lipid biochemistry in Archaeoglobus fulgidus. Extremophiles 12:271278.[PubMed][CrossRef]
129. Macalady JL, Vestling MM, Baumler D, Boekeldeide N, Kaspar CW, Banfield JF. 2004. Tetraether-linked membrane monolayers in Ferroplasma spp.: a key to survival in acid. Extremophiles 8:411419.[PubMed][CrossRef]
130. Sprott GD, Meloche M, Richards JC. 1991. Proportions of diether, macrocyclic diether, and tetraether lipids in Methanococcus jannaschii grown at different temperatures. J Bacteriol 173:39073910.[PubMed]
131. Uda I, Sugai A, Itoh YH, Itoh T. 2004. Variation in molecular species of core lipids from the order Thermoplasmales strains depends on growth temperature. J Oleo Sci 53:399404.[CrossRef]
132. Chong PLG. 2010. Archaebacterial bipolar tetraether lipids: physico-chemical and membrane properties. Chem Phys Lipids 163:253265.[PubMed][CrossRef]
133. Gliozzi A, Paoli G, De Rosa M, Gambacorta A. 1983. Effect of isoprenoid cyclization on the transition temperature of lipids in thermophilic archaebacteria. Biochim Biophys Acta 735:234242.[CrossRef]
134. Paraiso JJ, Williams AJ, Huang Q, Wei Y, Dijkstra P, Hungate BA, Dong H, Hedlund BP, Zhang CL. 2013. The distribution and abundance of archaeal tetraether lipids in U.S. Great Basin hot springs. Front Microbiol 4:247.[PubMed][CrossRef]
135. Hedlund BP, Paraiso JJ, Williams MJ, Huang Q, Wei Y, Dijkstra P, Hungate BA, Dong H, Zhang CL. 2013. Wide distribution and abundance of branched glycerol dialkyl glycerol tetraethers (bGDGTs) in U.S. Great Basin hot springs. Front Microbiol 4:222.[PubMed][CrossRef]
136. Schouten S, van der Meer MTJ, Hopmans EC, Rijpstra IC, Reysenbach AL, Ward DM, Sinninghe Damsté JS. 2007. Archaeal and bacterial glycerol dialkyl glycerol tetraether lipids in hot springs of Yellowstone National Park. Appl. Environ. Microbiol 73:61816191.[PubMed][CrossRef]
137. Zhang CL, Wang J, Dodsworth JA, Williams AJ, Zhu C, Hinrichs KU, Zheng F, Hedlund BP. 2013. In situ production of branched glycerol dialkyl glycerol tetraethers in a Great Basin hot spring. Front Microbiol 4:181.[PubMed]
138. Sinninghe Damsté JS, Rijpstra WIC, Hopmans EC, Weijers JWH, Foesel BU, Overmann J, Dedysh SN. 2011. 13,16-Dimethyl octacosanedioic acid (iso-diabolic acid): a common membrane-spanning lipid of Acidobacteria subdivisions 1 and 3. Appl Environ Microbiol 77:41474154.[PubMed][CrossRef]
139. Weijers JWH, Schouten S, Hopmans EC, Geenevasen JAJ, David ORP, Coleman JM, Pancost RD, Sinninghe Damsté JS. 2006. Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits. Appl Environ Microbiol 8:648657.[CrossRef]
140. Blumer-Schuette SE, Kataeva I, Westpheling J, Adams MW, Kelly RM. 2008. Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr Opin Biotechnol 19:210217.[PubMed][CrossRef]
141. Perevalova AA, Svetlichny VA, Kublanov IV, Chernyh NA, Kostrikina NA, Tourova TP, Kuznetsov BB, Bonch-Osmolovskaya EA. 2005. Desulfurococcus fermentans sp. nov., a novel hyperthermophilic archaeon from a Kamchatka hot spring, and emended description of the genus Desulfurococcus. Int J Syst Evol Microbiol 55:995999.[PubMed][CrossRef]
142. Bredholt S, Sonne-Hansen J, Nielsen P, Mathrani IM, Ahring BK. 1999. Caldicellulosiruptor kristjanssonii sp. nov., a cellulolytic, extremely thermophilic, anaerobic bacterium. Int J Syst Bacteriol 49:991996.[PubMed][CrossRef]
143. Yang SJ, Kataeva I, Wiegel J, Yin Y, Dam P, Xu Y, Westpheling J, Adams MW. 2010. Classification of “Anaerocellum thermophilum” strain DSM 6725 as Caldicellulosiruptor bescii sp. nov. Int J Syst Evol Microbiol 60:20112015.[PubMed][CrossRef]
144. Freier D, Mothershed CP, Wiegel J. 1988. Characterization of Clostridium thermocellum JW20. Appl Environ Microbiol 54:204211.[PubMed]
145. Cole JK, Gieler BA, Heisler DL, Palisoc MM, Williams AJ, Dohnalkova AC, Ming H, Yu TT, Dodsworth JA, Li WJ, Hedlund BP. 2013. Kallotenue papyrolyticum gen. nov., sp. nov., a cellulolytic and filamentous thermophile that represents a novel lineage (Kallotenuales ord. nov., Kallotenuaceae fam. nov.) within the class Chloroflexia. Int J System Evol Microbiol 63:46754682.[CrossRef]
146. Hedlund BP, Murugapiran SK, Huntemann M, Clum A, Pillay M, Palaniappan K, Varghese N, Mikhailova N, Stamatis D, Reddy TB, Ngan CY, Daum C, Duffy K, Shapiro N, Markowitz V, Ivanova N, Kyrpides N, Williams AJ, Cole JK, Dodsworth JA, Woyke T. 2015. High-quality draft genome sequence of Kallotenue papyrolyticum JKG1T reveals broad heterotrophic capacity focused on carbohydrate and amino acid metabolism. Genome A 3:e01410e01415.[PubMed]
147. Susanti D, Johnson EF, Rodriguez JR, Anderson I, Perevalova AA, Kyrpides N, Lucas S, Han J, Lapidus A, Cheng JF, Goodwin L, Pitluck S, Mavrommatis K, Peters L, Land ML, Hauser L, Gopalan V, Chan PP, Lowe TM, Atomi H, Bonch-Osmolovskaya EA, Woyke T, Mukhopadhyay B. 2012. Complete genome sequence of Desulfurococcus fermentans, a hyperthermophilic cellulolytic crenarchaeon isolated from a freshwater hot spring in Kamchatka, Russia. J Bacteriol 194:57035704.[PubMed][CrossRef]
148. Graham JE, Clark ME, Nadler DC, Huffer S, Chokhawala HA, Rowland SE, Blanch HW, Clark DS, Robb FT. 2011. Identification and characterization of a multidomain hyperthermophilic cellulase from an archaeal enrichment. Nat Commun 2:375.[PubMed][CrossRef]
149. Peacock JP, Cole JK, Murugapiran SK, Dodsworth JA, Fisher JC, Moser DP, Hedlund BP. 2013. Pyrosequencing reveals high-temperature cellulolytic microbial consortia in Great Boiling Spring after in situ lignocellulose enrichment. PLoS One 8:e59927.[PubMed][CrossRef]
150. Sandbeck KA, Ward DM. 1982. Temperature adaptations in the terminal processes of anaerobic decomposition of Yellowstone National Park and Icelandic hot spring microbial mats. Appl Environ Microbiol 44:844851.[PubMed]
151. Zeikus JG, Ben-Bassat A, Hegge PW. 1980. Microbiology of methanogenesis in thermal, volcanic environments. J. Bacteriol 143:432440.[PubMed]
152. Zinder SH, Anguish T, Cardwell SC. 1984. Effects of temperature on methanogenesis in a thermophilic (58 degrees C) anaerobic digestor. Appl Environ Microbiol 47:808813.[PubMed]
153. Bodrossy L, Kovács KL, McDonald IR, Murrell JC. 1999. A novel thermophilic methane-oxidising γ-proteobacterium. FEMS Microbiol Lett 170:335341.[CrossRef]
154. Hamilton TL, Lange RK, Boyd ES, Peters JW. 2011. Biological nitrogen fixation in acidic high-temperature geothermal springs in Yellowstone National Park, Wyoming. Environ Microbiol 13:22042215.[PubMed][CrossRef]
155. Mehta MP, Baross JA. 2006. Nitrogen fixation at 92 degrees C by a hydrothermal vent archaeon. Science 314:17831786.[PubMed][CrossRef]
156. Pearson A, Huang Z, Ingalls AE, Romanek CS, Wiegel J, Freeman KH, Smittenberg RH, Zhang CL. 2004. Nonmarine crenarchaeol in Nevada hot springs. Appl Environ Microbiol 70:52295237.[PubMed][CrossRef]
157. Jiang H, Huang Q, Dong H, Wang P, Wang F, Li W, Zhang C. 2010. RNA-based investigation of ammonia-oxidizing archaea in hot springs of Yunnan Province, China. Appl Environ Microb 76:45384541.[CrossRef]
158. Reigstad LJ, Richter A, Daims H, Urich T, Schwark L, Schleper C. 2008. Nitrification in terrestrial hot springs of Iceland and Kamchatka. FEMS Microbiol Ecol 64:167174.[PubMed][CrossRef]
159. Zhang CL, Ye Q, Huang Z, Li W, Chen J, Song Z, Zhao W, Bagwell C, Inskeep WP, Ross C, Gao L, Wiegel J, Romanek CS, Shock EL, Hedlund BP. 2008. Global occurrence of archaeal amoA genes in terrestrial hot springs. Appl Environ Microbiol 74:64176426.[PubMed][CrossRef]
160. Sorokin DY, Lücker S, Vejmelkova D, Kostrikina NA, Kleerebezem R, Rijpstra WI, Damsté JS, Le Paslier D, Muyzer G, Wagner M, van Loosdrecht MC, Daims H. 2012. Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi. ISME J 6:22452256.[PubMed][CrossRef]
161. Edwards TA, Calica NA, Huang DA, Manoharan N, Hou W, Huang L, Panosyan H, Dong H, Hedlund BP. 2013. Cultivation and characterization of thermophilic Nitrospira species from geothermal springs in the U.S. Great Basin, China, and Armenia. FEMS Microbiol Ecol 85:283292.[PubMed][CrossRef]
162. Lebedeva EV, Alawi M, Fiencke C, Namsaraev B, Bock E, Spieck E. 2005. Moderately thermophilic nitrifying bacteria from a hot spring of the Baikal rift zone. FEMS Microbiol Ecol 54:297306.[PubMed][CrossRef]
163. Blöchl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO. 1997. Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 degrees C. Extremophiles 1:1421.[PubMed][CrossRef]
164. Völkl P, Huber R, Drobner E, Rachel R, Burggraf S, Trincone A, Stetter KO. 1993. Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl Environ Microbiol 59:29182926.[PubMed]
165. Byrne N, Strous M, Crépeau