1887

Chapter 4.4.2 : Studying the Mammalian Intestinal Microbiome Using Animal Models

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Studying the Mammalian Intestinal Microbiome Using Animal Models, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch4.4.2-1.gif /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch4.4.2-2.gif

Abstract:

The gastrointestinal (GI) tract of humans and animals is colonized by microorganisms immediately after birth. The composition of the GI tract microbiota undergoes remarkable alterations during early age, reaches a relative stable status in adulthood, and is driven by external factors such as habitual diet, location along the intestine, antibiotic therapy and maternal microbiota, and intrinsic factors such as host species and genotype. Whereas usually faecal samples are used for assessing the impact on the microbiota in human intervention studies, in vitro and animal models provide an easier way to collect many (invasive) samples, have multiple comparisons and regulating the genotype background. Animal models, and in particular mammalian models, provide an alternative way to study the in vivo responses to beneficial, commensal and pathogenic microorganisms in the GI tract, including studies that aim to see the impact of the host system as well. The main animals used to study the mammalian GI tract are rodents (mainly mice and rats) and pigs. Rodent and pig models, including gnotobiotic and humanized rodents and pigs and minipigs, have been extensively employed in gut microbiota studies, and especially the piglet model has been suggested as an appropriate model for human infant studies. With pig models, several intestinal sampling techniques can be applied in kinetic microbiota studies, including small intestinal segment perfusion and cannulation. In many cases, to test a certain treatment, a tiered approach consisting of complementary methods is employed, comprising in vitro, in vivo animal models, eventually leading towards human intervention studies.

Citation: Hugenholtz F, Zhang J, O'Toole P, Smidt H. 2016. Studying the Mammalian Intestinal Microbiome Using Animal Models, p 4.4.2-1-4.4.2-10. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch4.4.2
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Gross anatomy of the human GI tract. doi:10.1128/9781555818821.ch4.4.2.f1

Citation: Hugenholtz F, Zhang J, O'Toole P, Smidt H. 2016. Studying the Mammalian Intestinal Microbiome Using Animal Models, p 4.4.2-1-4.4.2-10. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch4.4.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Gross anatomy of the rat GI tract. doi:10.1128/9781555818821.ch4.4.2.f2

Citation: Hugenholtz F, Zhang J, O'Toole P, Smidt H. 2016. Studying the Mammalian Intestinal Microbiome Using Animal Models, p 4.4.2-1-4.4.2-10. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch4.4.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Gross anatomy of the pig GI tract. doi:10.1128/9781555818821.ch4.4.2.f3

Citation: Hugenholtz F, Zhang J, O'Toole P, Smidt H. 2016. Studying the Mammalian Intestinal Microbiome Using Animal Models, p 4.4.2-1-4.4.2-10. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch4.4.2
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818821.ch4.4.2
1. Rajilic-Stojanovic M, Smidt H, de Vos WM. 2007. Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol 9:21252136.[PubMed][CrossRef]
2. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Jian M, Zhou Y, Li Y, Zhang X, Qin N, Yang H, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Bork P, Ehrlich SD. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:5965.[PubMed][CrossRef]
3. Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, Clemente JC, Knight R, Heath AC, Leibel RL, Rosenbaum M, Gordon JI. 2013. The long-term stability of the human gut microbiota. Science 341:1237439.[PubMed][CrossRef]
4. Walter J, Ley R. 2011. The human gut microbiome: ecology and recent evolutionary changes. Ann Rev Microbiol 65:411429.[CrossRef]
5. Booijink CC, Zoetendal EG, Kleerebezem M, de Vos WM. 2007. Microbial communities in the human small intestine: coupling diversity to metagenomics. Future Microbiol 2:285295.[PubMed][CrossRef]
6. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. 2005. Host-bacterial mutualism in the human intestine. Science 307:19151920.[PubMed][CrossRef]
7. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. 2012. Diversity, stability and resilience of the human gut microbiota. Nature 489:220230.[PubMed][CrossRef]
8. Van den Bogert B, de Vos WM, Zoetendal EG, Kleerebezem M. 2011. Microarray analysis and barcoded pyrosequencing provide consistent microbial profiles depending on the source of human intestinal samples. Appl Environ Microbiol 77:20712080.[PubMed][CrossRef]
9. Van den Bogert B, Leimena MM, de Vos WM, Zoetendal EG, Kleerebezem M,. 2011. Functional intestinal metagenomics. In De Bruin FJ (ed), Handbook of Molecular Microbial Ecology, vol II. Metagenomics in Different Habitats, Wiley-Blackwell, New york.
10. Fraher MH, O'Toole PW, Quigley EM. 2012. Techniques used to characterize the gut microbiota: a guide for the clinician. Nat Rev Gastroenterol Hepatol 9:312322.[PubMed][CrossRef]
11. Hoskins LC, Boulding ET. 1976. Degradation of blood group antigens in human colon ecosystems I. In vitro production of ABO blood group-degrading enzymes by enteric bacteria. J Clin Invest 57:6373.[PubMed]
12. Makivuokko H, Lahtinen S, Wacklin P, Tuovinen E, Tenkanen H, Nikkila J, Bjorklund M, Aranko K, Ouwehand A, Matto J. 2012. Association between the ABO blood group and the human intestinal microbiota composition. BMC Microbiol 12:94.[PubMed][CrossRef]
13. Martin F-PJ, Wang Y, Sprenger N, Yap IKS, Lundstedt T, Lek P, Rezzi S, Ramadan Z, van Bladeren P, Fay LB, Kochhar S, Lindon JC, Holmes E, Nicholson JK. 2008. Probiotic modulation of symbiotic gut microbial-host metabolic interactions in a humanized microbiome mouse model. Mol Syst Biol 4:157.[PubMed]
14. Thompson-Chagoyán O, Maldonado J, Gil A. 2007. Colonization and impact of disease and other factors on intestinal microbiota. Dig Dis Sci 52:20692077.[PubMed][CrossRef]
15. Lozupone C, Faust K, Raes J, Faith JJ, Frank DN, Zaneveld J, Gordon JI, Knight R. 2012. Identifying genomic and metabolic features that can underlie early successional and opportunistic lifestyles of human gut symbionts. Genome Res 22:19741984.[PubMed][CrossRef]
16. Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM, Cusack S, Harris HM, Coakley M, Lakshminarayanan B, O'Sullivan O, Fitzgerald GF, Deane J, O'Connor M, Harnedy N, O'Connor K, O'Mahony D, van Sinderen D, Wallace M, Brennan L, Stanton C, Marchesi JR, Fitzgerald AP, Shanahan F, Hill C, Ross RP, O'Toole PW. 2012. Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178184.[PubMed][CrossRef]
17. Round JL, Mazmanian SK. 2009. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313323.[PubMed][CrossRef]
18. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. 2005. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43:57215732.[PubMed][CrossRef]
19. Kolenbrander PE. 2000. Oral microbial communities: biofilms, interactions, and genetic systems. Ann Rev Microbiol 54:413437.[CrossRef]
20. Smoot LM, Smoot JC, Smidt H, Noble PA, Konneke M, McMurry ZA, Stahl DA. 2005. DNA microarrays as salivary diagnostic tools for characterizing the oral cavity's microbial community. Adv Den Res 18:611.[CrossRef]
21. Bik EM, Eckburg PB, Gill SR, Nelson KE, Purdom EA, Francois F, Perez-Perez G, Blaser MJ, Relman DA. 2006. Molecular analysis of the bacterial microbiota in the human stomach. Proc Natl Acad Sci USA 103:732737.[PubMed][CrossRef]
22. Savage DC. 1977. Microbial ecology of the gastrointestinal tract. Ann Rev Microbiol 31:107133.[CrossRef]
23. Warren, JR, Barry M. 1983. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. The Lancet 321.8336: 12731275.
24. Leser TD, Molbak L. 2009. Better living through microbial action: the benefits of the mammalian gastrointestinal microbiota on the host. Environ Microbiol 11:21942206.[PubMed][CrossRef]
25. Zoetendal EG, Raes J, van den Bogert B, Arumugam M, Booijink CC, Troost FJ, Bork P, Wels M, de Vos WM, Kleerebezem M. 2012. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J 6:14151426.[PubMed][CrossRef]
26. van den Bogert B, Erkus O, Boekhorst J, de Goffau M, Smid EJ, Zoetendal EG, Kleerebezem M. 2013. Diversity of human small intestinal Streptococcus and Veillonella populations. FEMS Microbiol Ecol 85:376388.[PubMed][CrossRef]
27. Booijink CC, El-Aidy S, Rajilic-Stojanovic M, Heilig HG, Troost FJ, Smidt H, Kleerebezem M, De Vos WM, Zoetendal EG. 2010. High temporal and inter-individual variation detected in the human ileal microbiota. Environ Microbiol 12:32133227.[PubMed][CrossRef]
28. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. 2005. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102:1107011075.[PubMed][CrossRef]
29. Jeffery IB, Claesson MJ, O'Toole PW, Shanahan F. 2012. Categorization of the gut microbiota: enterotypes or gradients? Nat Rev Microbiol 10:591592.[PubMed][CrossRef]
30. O'Brien CL, Allison GE, Grimpen F, Pavli P. 2013. Impact of colonoscopy bowel preparation on intestinal microbiota. PLoS ONE 8:e62815.[PubMed][CrossRef]
31. Kerckhoffs AP, Samson M, van Berge Henegouwen GP, Akkermans LM, Nieuwenhuijs VB, Visser MR,. 2006. Sampling microbiota in the human gastrointestinal tract, pp. 25–40. In Ouwehand AC, Vaughan DE (eds), Gastrointestinal Microbiology. Informa; Taylos & Francis Group, New York.
32. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR, Muehlbauer MJ, Ilkayeva O, Semenkovich CF, Funai K, Hayashi DK, Lyle BJ, Martini MC, Ursell LK, Clemente JC, Van Treuren W, Walters WA, Knight R, Newgard CB, Heath AC, Gordon JI. 2013. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341:1241214.[PubMed][CrossRef]
33. Mäkivuokko H, Nurminen P,. 2006. In vitro methods to model the gastrointestinal tract, pp. 237–250. In Ouwehand AC, Vaughan DE (eds), Gastrointestinal Microbiology. Informa; Taylos & Francis Group, New York.
34. Kovatcheva-Datchary P, Egert M, Maathuis A, Rajilic-Stojanovic M, de Graaf AA, Smidt H, de Vos WM, Venema K. 2009. Linking phylogenetic identities of bacteria to starch fermentation in an in vitro model of the large intestine by RNA-based stable isotope probing. Environ Microbiol 11:914926.[PubMed][CrossRef]
35. Van den Abbeele P, Grootaert C, Marzorati M, Possemiers S, Verstraete W, Gerard P, Rabot S, Bruneau A, El Aidy S, Derrien M, Zoetendal E, Kleerebezem M, Smidt H, Van de Wiele T. 2010. Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for Bacteroidetes and Clostridium cluster IX. Appl Environ Microbiol 76:52375246.[PubMed][CrossRef]
36. Martinez RC, Aynaou AE, Albrecht S, Schols HA, De Martinis EC, Zoetendal EG, Venema K, Saad SM, Smidt H. 2011. In vitro evaluation of gastrointestinal survival of Lactobacillus amylovorus DSM 16698 alone and combined with galactooligosaccharides, milk and/or Bifidobacterium animalis subsp. lactis Bb-12. Int J Food Microbiol 149:152158.[PubMed]
37. Martinez RC, Cardarelli HR, Borst W, Albrecht S, Schols H, Gutierrez OP, Maathuis AJ, de Melo Franco BD, De Martinis EC, Zoetendal EG, Venema K, Saad SM, Smidt H. 2013. Effect of galactooligosaccharides and Bifidobacterium animalis Bb-12 on growth of Lactobacillus amylovorus DSM 16698, microbial community structure, and metabolite production in an in vitro colonic model set up with human or pig microbiota. FEMS Microbiol Ecol 84:110123.[PubMed][CrossRef]
38. Van den Abbeele P, Roos S, Eeckhaut V, MacKenzie DA, Derde M, Verstraete W, Marzorati M, Possemiers S, Vanhoecke B, Van Immerseel F, Van de Wiele T. 2012. Incorporating a mucosal environment in a dynamic gut model results in a more representative colonization by lactobacilli. Microb Biotechnol 5:106115.[PubMed][CrossRef]
39. Rodewald R. 1976. pH-dependent binding of immunoglobulins to intestinal cells of the neonatal rat. J Cell Biol 71:666669.[PubMed][CrossRef]
40. Stevens CE,. 1977. Comparative physiology of the digestive system. In Swenson MJ (ed), Dukes Physiology of Domestic Animals, 9th ed, Comstock, Ithaca, NY.
41. Frese SA, Benson AK, Tannock GW, Loach DM, Kim J, Zhang M, Oh PL, Heng NCK, Patil PB, Juge N, MacKenzie DA, Pearson BM, Lapidus A, Dalin E, Tice H, Goltsman E, Land M, Hauser L, Ivanova N, Kyrpides NC, Walter J. 2011. The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri. PLoS Genet 7:e1001314.[PubMed][CrossRef]
42. Suzuki K, Meek B, Doi Y, Muramatsu M, Chiba T, Honjo T, Fagarasan S. 2004. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc Natl Acad Sci USA 101:19811986.[PubMed][CrossRef]
43. Gaboriau-Routhiau V, Rakotobe S, Lécuyer E, Mulder I, Lan A, Bridonneau C, Rochet V, Pisi A, De Paepe M, Brandi G, Eberl G, Snel J, Kelly D, Cerf-Bensussan N. 2009. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31:677689.[PubMed][CrossRef]
44. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, Tanoue T, Imaoka A, Itoh K, Takeda K, Umesaki Y, Honda K, Littman DR. 2009. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:485498.[PubMed][CrossRef]
45. Yin Y, Wang Y, Zhu L, Liu W, Liao N, Jiang M, Zhu B, Yu HD, Xiang C, Wang X. 2013. Comparative analysis of the distribution of segmented filamentous bacteria in humans, mice and chickens. ISME J 7:615621.[PubMed][CrossRef]
46. Geurts L, Lazarevic V, Derrien M, Everard A, Van Roye M, Knauf C, Valet P, Girard M, Muccioli GG, Francois P, de Vos WM, Schrenzel J, Delzenne NM, Cani PD. 2011. Altered gut microbiota and endocannabinoid system tone in obese and diabetic leptin-resistant mice: impact on apelin regulation in adipose tissue. Front Microbiol 2:149.[PubMed][CrossRef]
47. Turnbaugh PJ, Backhed F, Fulton L, Gordon JI. 2008. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3:213223.[PubMed][CrossRef]
48. Hildebrand F, Nguyen TL, Brinkman B, Yunta RG, Cauwe B, Vandenabeele P, Liston A, Raes J. 2013. Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice. Genome Biol 14:R4.[PubMed][CrossRef]
49. Sukemori S, Ikeda S, Kurihara Y, Ito S. 2003. Amino acid, mineral and vitamin levels in hydrous faeces obtained from coprophagy-prevented rats. J Anim Physiol Anim Nutr (Berl) 87:213220.[PubMed][CrossRef]
50. Kenagy GJ, Hoyt DF. 1980. Reingestion of Feces in Rodents and Its Daily Rhythmicity. Oecologia 44:403409.[CrossRef]
51. El Aidy S, Derrien M, Merrifield CA, Levenez F, Dore J, Boekschoten MV, Dekker J, Holmes E, Zoetendal EG, van Baarlen P, Claus SP, Kleerebezem M. 2013. Gut bacteria-host metabolic interplay during conventionalisation of the mouse germfree colon. ISME J.7:743755.[PubMed][CrossRef]
52. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:10271131.[PubMed][CrossRef]
53. Markle JG, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, Rolle-Kampczyk U, von Bergen M, McCoy KD, Macpherson AJ, Danska JS. 2013. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339:10841088.[PubMed][CrossRef]
54. Mallett A, Bearne C, Rowland I, Farthing M, Cole C, Fuller R. 1987. The use of rats associated with a human faecal flora as a model for studying the effects of diet on the human gut microflora. J Appl Microbiol 63:3945.
55. Van den Abbeele P, Gérard P, Rabot S, Bruneau A, El Aidy S, Derrien M, Kleerebezem M, Zoetendal EG, Smidt H, Verstraete W. 2011. Arabinoxylans and inulin differentially modulate the mucosal and luminal gut microbiota and mucin-degradation in humanized rats. Environ Microbiol 13:26672680.[PubMed][CrossRef]
56. Guilloteau P, Zabielski R, Hammon HM, Metges CC. 2010. Nutritional programming of gastrointestinal tract development. Is the pig a good model for man? Nutr Res Rev 23:422.[PubMed][CrossRef]
57. Miller E, Ullrey D. 1987. The pig as a model for human nutrition. Annu Rev Nutr 7:361382.[PubMed][CrossRef]
58. Douglas WR. 1972. Of pigs and men and research. Space Life Sci 3:226234.[PubMed]
59. Pang X, Hua X, Yang Q, Ding D, Che C, Cui L, Jia W, Bucheli P, Zhao L. 2007. Inter-species transplantation of gut microbiota from human to pigs. ISME J 1:156162.[PubMed][CrossRef]
60. Shen J, Zhang B, Wei H, Che C, Ding D, Hua X, Bucheli P, Wang L, Li Y, Pang X. 2010. Assessment of the modulating effects of fructo-oligosaccharides on fecal microbiota using human flora–associated piglets. Arch Microbiol 192:959968.[PubMed][CrossRef]
61. Nedrud JG. 2006. Animal models for gastric Helicobacter immunology and vaccine studies. FEMS Immunol Med Microbiol 24:243250.[CrossRef]
62. Laycock G, Sait L, Inman C, Lewis M, Smidt H, van Diemen P, Jorgenson F, Stevens M, Bailey M. 2012. A defined intestinal colonization microbiota for gnotobiotic pigs. Vet Immunol Immunopathol 149:216224.[PubMed][CrossRef]
63. Larsen MO, Rolin B, Wilken M, Carr RD, Svendsen O. 2002. High-fat high-energy feeding impairs fasting glucose and increases fasting insulin levels in the Göttingen Minipig. Ann NY Acad Sci 967:414423.[PubMed][CrossRef]
64. Larsen M, Juhl C, Pørksen N, Gotfredsen C, Carr R, Ribel U, Wilken M, Rolin B. 2005. β-Cell function and islet morphology in normal, obese, and obese β-cell mass-reduced Göttingen minipigs. Am J Physiol Endocrinol Metab 288:E412E421.[PubMed][CrossRef]
65. Johansen T, Hansen HS, Richelsen B, Malmlof K. 2001. The obese Gottingen minipig as a model of the metabolic syndrome: dietary effects on obesity, insulin sensitivity, and growth hormone profile. Comp Med 51:150155.[PubMed]
66. Pedersen R, Ingerslev H-C, Sturek M, Alloosh M, Cirera S, Christoffersen , Moesgaard SG, Larsen N, Boye M. 2013. Characterisation of gut microbiota in Ossabaw and Göttingen minipigs as models of obesity and metabolic syndrome. PloS One 8:e56612.[PubMed][CrossRef]
67. Darragh AJ, Moughan PJ. 1995. The three-week-old piglet as a model animal for studying protein digestion in human infants. J Pediatr Gastroenterol Nutr 21:387393.[PubMed][CrossRef]
68. Burrin DG, Stoll B, Jiang R, Chang X, Hartmann B, Holst JJ, Greeley GH, Reeds PJ. 2000. Minimal enteral nutrient requirements for intestinal growth in neonatal piglets: how much is enough? Am J Clin Nutr 71:16031610.[PubMed]
69. Puiman P, Stoll B. 2008. Animal models to study neonatal nutrition in humans. Curr Opin Clin Nutr Metab Care 11:601606. 610.1097/MCO.1090b1013e32830b32835b32815.[PubMed][CrossRef] http://dx.doi.org/610.1097/MCO.1090b1013e32830b32835b32815
70. Shulman RJ, Henning SJ, Nichols BL. 1988. The miniature pig as an animal model for the study of intestinal enzyme development. Pediatr Res 23:311315.[PubMed][CrossRef]
71. Matamoros S, Gras-Leguen C, Le Vacon F, Potel G, de La Cochetiere M-F. 2013. Development of intestinal microbiota in infants and its impact on health. Trends Microbiol 21:167173.[PubMed][CrossRef]
72. Jansman A, Zhang J, Koopmans S, Dekker R, Smidt H. 2012. Effects of a simple or a complex starter microbiota on intestinal microbiota composition in caesarean derived piglets. J Anim Sci 90:433435.[PubMed][CrossRef]
73. Thompson CL, Wang B, Holmes AJ. 2008. The immediate environment during postnatal development has long-term impact on gut community structure in pigs. ISME J 2:739748.[PubMed][CrossRef]
74. Mulder I, Schmidt B, Stokes C, Lewis M, Bailey M, Aminov R, Prosser J, Gill B, Pluske J, Mayer C-D. 2009. Environmentally-acquired bacteria influence microbial diversity and natural innate immune responses at gut surfaces. BMC Biol 7:79.[PubMed][CrossRef]
75. Schmidt B, Mulder IE, Musk CC, Aminov RI, Lewis M, Stokes CR, Bailey M, Prosser JI, Gill BP, Pluske JR. 2011. Establishment of normal gut microbiota is compromised under excessive hygiene conditions. PLoS One 6:e28284.[PubMed][CrossRef]
76. Siggers RH, Siggers J, Thymann T, Boye M, Sangild PT. 2011. Nutritional modulation of the gut microbiota and immune system in preterm neonates susceptible to necrotizing enterocolitis. J Nutr Biochem 22:511521.[PubMed][CrossRef]
77. Sangild PT, Siggers RH, Schmidt M, Elnif J, Bjornvad CR, Thymann T, Grondahl ML, Hansen AK, Jensen SK, Boye M. 2006. Diet-and colonization-dependent intestinal dysfunction predisposes to necrotizing enterocolitis in preterm pigs. Gastroenterology 130:17761792.[PubMed][CrossRef]
78. Cilieborg MS, Boye M, Molbak L, Thymann T, Sangild PT. 2011. Preterm birth and necrotizing enterocolitis alter gut colonization in pigs. Pediatr Res 69:1016.[PubMed][CrossRef]
79. Azcarate-Peril MA, Foster DM, Cadenas MB, Stone MR, Jacobi SK, Stauffer SH, Pease A, Gookin JL. 2011. Acute necrotizing enterocolitis of preterm piglets is characterized by dysbiosis of ileal mucosa-associated bacteria. Gut Microbes 2:234243.[PubMed][CrossRef]
80. Lapthorne S, Pereira-Fantini PM, Fouhy F, Wilson G, Thomas SL, Dellios NL, Scurr M, O'Sullivan O, Ross RP, Stanton C. 2013. Gut microbial diversity is reduced and is associated with colonic inflammation in a piglet model of short bowel syndrome. Gut Microbes 4:212221.[PubMed][CrossRef]
81. Nabuurs M, Hoogendoorn A, Van Zijderveld F, Van der Klis J. 1993. A long-term perfusion test to measure net absorption in the small intestine of weaned pigs. Res Vet Sci 55:108114.[PubMed][CrossRef]
82. Niewold TA, Kerstens HHD, van der Meulen J, Smits MA, Hulst MM. 2005. Development of a porcine small intestinal cDNA micro-array: characterization and functional analysis of the response to enterotoxigenic E. coli. Vet Immunol Immunopathol 105:317329.[PubMed][CrossRef]
83. Niewold TA, Van der Meulen J, Kerstens HH, Smits MA, Hulst MM. 2010. Transcriptomics of enterotoxigenic Escherichia coli infection. Individual variation in intestinal gene expression correlates with intestinal function. Vet Microbiol 141:110114.[PubMed][CrossRef]
84. Niewold TA, Veldhuizen EJA, van der Meulen J, Haagsman HP, de Wit AAC, Smits MA, Tersteeg MHG, Hulst MM. 2007. The early transcriptional response of pig small intestinal mucosa to invasion by Salmonella enterica serovar typhimurium DT104. Mol Immunol 44:13161322.[PubMed][CrossRef]
85. Veldhuizen EJA, van Dijk A, Tersteeg MHG, Kalkhove SIC, van der Meulen J, Niewold TA, Haagsman HP. 2007. Expression of β-defensins pBD-1 and pBD-2 along the small intestinal tract of the pig: lack of upregulation in vivo upon Salmonella typhimurium infection. Mol Immunol 44:276283.[PubMed][CrossRef]
86. Gross G, Van Der Meulen J, Snel J, Van Der Meer R, Kleerebezem M, Niewold TA, Hulst MM, Smits MA. 2008. Mannose-specific interaction of Lactobacillus plantarum with porcine jejunal epithelium. FEMS Immunol Med Microbiol 54:215223.[PubMed][CrossRef]
87. Van der Meulen J, Hulst M, Smits M, Schuurman T. 2010. Small intestinal segment perfusion test in piglets: future applications in studying probiotics-gut crosstalk in infectious diarrhoea? Bene Microbes 1:439445.[CrossRef]
88. Sauer W, De Lange K,. 1992. Novel methods for determining protein and amino acid digestibilities in feedstuffs, pp. 87–120. In Nissen S (ed), Modern Methods in Protein Nutrition and Metabolism. Academic Press, San Diego, CA.
89. Walker W, Morgan G, Maxwell C. 1986. Ileal cannulation in baby pigs with a simple T-cannula. J Anim Sci 62:407411.
90. Li S, Sauer W, Fan M. 1993. The effect of dietary crude protein level on amino acid digestibility in early-weaned pigs. J Anim Physiol Anim Nutr (Berl) 70:2637.[CrossRef]
91. Decuypere J, Vervaeke I, Henderickx H, Dierick N. 1977. Gastrointestinal cannulation in pigs: a simple technique allowing multiple replacements. J Ani Sci 45.
92. Gargallo J, Zimmerman D. 1980. A simple intestinal cannula for swine. Am J Vet Res 41:618.[PubMed]
93. Stein H, Shipley C, Easter R. 1998. Technical note: a technique for inserting a T-cannula into the distal ileum of pregnant sows. J Anim Sci 76:14331436.[PubMed]

Tables

Generic image for table
TABLE 1

pH of the GI tract of humans, pigs, and rodents ( )

Citation: Hugenholtz F, Zhang J, O'Toole P, Smidt H. 2016. Studying the Mammalian Intestinal Microbiome Using Animal Models, p 4.4.2-1-4.4.2-10. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch4.4.2

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error