1887

Chapter 4.4.3 : Animal Gut Microbiomes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Animal Gut Microbiomes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch4.4.3-1.gif /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch4.4.3-2.gif

Abstract:

Any organism with a gut system will make use of microbes to enable the most efficient digestion of food that it ingests. The gut microbiota is a complex community of many different bacteria, archaea, viruses and lower eukaryotes that are required to act in unison to break down a wide variety of foodstuffs and even associated toxins (see below) to maintain the health of their host. The structure of this microbial community is influenced by many factors, including host (immune) response to the non-host cells, food intake and interactions between and competition within the members of the microbiota themselves. Understanding these interactions and the processes that lead to the establishment of a stable gut microbiota is a rapidly expanding area of microbial ecology. Whilst initially focused on understanding the human gut microbiota, researchers are now turning to the study of animal gut microbiota, and in particular those animals that we rely on for food, such as ruminant livestock (cattle and sheep) and poultry.

Citation: Ellis R, McSweeney C. 2016. Animal Gut Microbiomes, p 4.4.3-1-4.4.3-7. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch4.4.3
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555818821.ch4.4.3
1. Stanley D, Denman S, Hughes R, Geier M, Crowley T, Chen H, Haring V, Moore R. 2012. Intestinal microbiota associated with differential feed conversion efficiency in chickens. Appl Microbiol Biotechnol 96:13611369.[PubMed][CrossRef]
2. Thorpe A. 2009. Enteric fermentation and ruminant eructation: the role (and control?) of methane in the climate change debate. Climatic Change 93:407431.[CrossRef]
3. McSweeney CS, Mackie RI,. 1996. Gastrointestinal detoxification in foregut fermentors, p 583634. In Mackie RI, White BI, Isaacson RE (eds), Gastrointestinal Microbiology, vol 1. Chapman and Hall, New York.
4. McSweeney CS, Collins EMC, Blackall LL, Seawright AA. 2008. Potential use of Acacia angustissima as an alternative feed source for ruminants. Anim Feed Sci Technol 147:158171.[CrossRef]
5. Smith DJ, Anderson RC. 2013. Toxicity and metabolism of nitroalkanes and substituted nitroalkanes. J Agric Food Chem 61:763779.[PubMed][CrossRef]
6. Davis CK, Webb R, Sly LI, Denman SE, McSweeney CS. 2012. Isolation and survey of novel fluoroacetate-degrading bacteria belonging to the phylum Synergistetes. FEMS Microbiol Ecol 80:671684.[PubMed][CrossRef]
7. Allison MJ, Hammond AC, Jones RJ. 1990. Detection of rumen bacteria that degrade toxic dihydroxypyridine compounds produced from mimosine. Appl Environ Microbiol 56:590594.[PubMed]
8. Graham SR, Dalzell SA, Nguyen TN, Davis CK, Greenway D, McSweeney CS, Shelton HM. 2013. Efficacy, persistence and presence of Synergistes jonesii in cattle grazing leucaena in Queensland: on-farm observations pre- and post-inoculation. Anim Prod Sci 53:10651074.[CrossRef]
9. Gregg K. 1995. Engineering gut flora of ruminant livestock to reduce forage toxicity: progress and problems. Trends Biotechnol 13:418421.[PubMed][CrossRef]
10. Mobashar M, Hummel J, Blank R, Südekum K-H. 2010. Ochratoxin A in ruminants—a review on its degradation by gut microbes and effects on animals. Toxins 2:809839.[PubMed][CrossRef]
11. Allison MJ, Mayberry WR, McSweeney CS, Stahl DA. 1992. Synergistes jonesii, gen. nov., sp.nov. Pyridiniacum jonesii, gen. nov., sp. nov.: a rumen bacterium that degrades toxic pyridinediols. Syst Appl Microbiol 15:522529.[CrossRef]
12. Krause DO, Smith WJM, Brooker JD, McSweeney CS. 2005. Tolerance mechanisms of streptococci to hydrolysable and condensed tannins. Anim Feed Sci Technol 121:5975.[CrossRef]
13. Rincon MT, Allison MJ, Michelangeli F, De Sanctis Y, Dominguez-Bello MG. 1998. Anaerobic degradation of mimosine-derived hydroxypyridines by cell free extracts of the rumen bacterium Synergistes jonesii. FEMS Microbiol Ecol 27:127132.[CrossRef]
14. Moss AR, Jouany J-P, Newbold J. 2000. Methane production by ruminants: its contribution to global warming. Ann Zootech 49:231253.[CrossRef]
15. Thauer RK, Hedderich R, Fischer R,. 1993. Reactions and enzymes involved in methanogenesis from CO2 and H2. In Ferry JG (ed.) Methanogenesis: Ecology, Physiology, Biochemistry and Genetics. Chapman and Hall, London.
16. Blaxter KL, Clapperton JL. 1965. Prediction of the amount of methane produced by ruminants. Br J Nutr 19:511522.[PubMed][CrossRef]
17. Johnson KA, Johnson DE. 1995. Methane emissions from cattle. J Anim Sci 73:24832492.[PubMed]
18. Wolin MJ, Miller TL, Stewart CS,. 1997. Microbe-microbe interactions, p 467491. In Hobson PN, Stewart CS (eds), The Rumen Microbial Ecosystem. Chapman and Hall, London.
19. Janssen PH, Kirs M. 2008. Structure of the archaeal community of the rumen. Appl Environ Microbiol 74:36193625.[PubMed][CrossRef]
20. Kim M, Morrison M, Yu Z. 2011. Status of the phylogenetic diversity census of ruminal microbiomes. FEMS Microbiol Ecol 76:4963.[PubMed][CrossRef]
21. Denman SE, Tomkins N, McSweeney CS. 2007. Quantitation and diversity analysis of ruminal methanogenic populations in response to the anti-methanogenic compound bromochloromethane. FEMS Microb Ecol 62:313322.[CrossRef]
22. Popova M, Morgavi DP, Martin C. 2012. Methanogens and methanogenesis in the cecum of lambs fed two different high-grain-content diets. Appl Environ Microbiol 79:17771786.[PubMed][CrossRef]
23. Joblin KN,. 2005. Methanogenic archaea, p 4753. In Makkar HPS, McSweeney CS (eds) Methods in Gut Microbial Ecology for Ruminants. Springer, Netherlands.
24. Poulsen M, Schwab C, Jensen BB, Engberg RM, Spang A, Canibe N, Højberg O, Milinovich G, Fragner L, Schleper C, Weckwerth W, Lund P, Schramm A, Urich T. 2013. Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nat Commun 4:1428. doi: 10.1038/ncomms2432.[PubMed][CrossRef] http://dx.doi.org/10.1038/ncomms2432
25. St-Pierre B, Wright A-DG. 2012. Diversity of gut methanogens in herbivorous animals. Animal 7:4956.[PubMed][CrossRef]
26. McSweeney CS, Kang S, Gagen E, Davis C, Morrison M, Denman SE. 2009. Recent developments in nucleic acid based techniques for use in rumen manipulation. Braz J Anim Sci 38:341351.[CrossRef]
27. Zhou M, Chung Y-H, Beauchemin KA, Holtshausen L, Oba M, McAllister TA, Guan LL. 2011. Relationship between rumen methanogens and methane production in dairy cows fed diets supplemented with a feed enzyme additive. J Appl Microbiol 111:11481158.[PubMed][CrossRef]
28. Zhou M, Hernandez-Sanabria E, Guan LL. 2010. Characterisation of variation in rumen methanogenic communities under different dietary and host feed efficiency conditions, as cetermined by PCR-denaturing gradient gel electrophoresis analysis. Appl Environ Microbiol 76:37763786.[PubMed][CrossRef]
29. Cottle DJ, Nolan JV, Wiedemann SG. 2011. Ruminant enteric methane mitigation: a review. Anim Prod Sci 51:491514.[CrossRef]
30. Guan LL, Nkrumah JD, Basarab JA, Moore SS. 2008. Linkage of microbial ecology to phenotype: correlation of rumen microbial ecology to cattle's feed efficiency. FEMS Microbiol Lett 288:8591.[PubMed][CrossRef]
31. Bera-Maillet C, Mosoni P, Kwasiborski A, Suau F, Ribot Y, Forano E. 2009. Development of a RT-qPCR method for the quantification of Fibrobacter succinogenes S85 glycoside hydrolase transcripts in the rumen content of gnotobiotic and conventional sheep. J Microbiol Meth 77:816.[CrossRef]
32. Fonty G, Joblin KN, Chavarot M, Roux R, Naylor GE, Michallon F. 2007. Methanogen-free lambs: establishment and development of ruminal hydrogenotrophs. Appl Environ Microbiol 73:63916403.[PubMed][CrossRef]
33. Gagen EJ, Mosoni P, Denman SE, Al Jassim R, McSweeney CS, Forano E. 2012. Methanogen colonisation does not significantly alter acetogen diversity in lambs isolated 17 hours after birth and raised aseptically. Microbial Ecol 64:628640.[CrossRef]
34. Morvan B, Dore J, Rieu-Lesme F, Foucat L, Fonty G, Gouet P. 1994. Establishment of hydrogen-utilising bacteria in the rumen of the newborn lamb. FEMS Microbiol Lett 117:249256.[PubMed][CrossRef]
35. Anderson KL, Nagaraja TG, Morrill JL, Avery TB, Galitzer SJ, Boyer JE, Attwood G, McSweeney C. 1987. Ruminal microbial development in conventionally or early-weaned calves. J Anim Sci 64:12151226.[PubMed]
36. Fonty G, Gouet P, Jouany J-P, Senaud J. 1987. Establishment of the microflora and anaerobic fungi in the rumen of lambs. J Gen Microbiol 133:18351843.[CrossRef]
37. Mitsumori M, Shinkai T, Takenaka A, Enishi O, Higuchi H, Kobayashi Y, Nonaka I, Asanuma N, Denman SE, McSweeney CS. 2011. Responses in digestion, rumen fermentation and microbial populations to inhibition of methane formation by a halogenated methane analogue. Br J Nutr 108:482491.[PubMed][CrossRef]
38. Ungerfeld EM, Kohn RA,. 2006. The role of thermodynamics in the control of ruminal fermentation, p 5585. In Sejrsen K, Hvelplund T, Nielsen MO (eds), Ruminant Physiology. Wageningen Academic Publishers, Wageningen, The Netherlands.
39. Attwood G, McSweeney C. 2008. Methanogen genomics to discover targets for methane mitigation technologies and options for alternative H2 utilisation in the rumen. Anim Prod Sci 48:2837.[CrossRef]
40. Gagen EJ, Denman SE, Padmanabha J, Zadbuke S, Al Jassim R, Morrison M, McSweeney CS. 2010. Functional gene analysis suggests different acetogen populations in the bovine rumen and tammar wallaby forestomach. Appl Environ Microbiol 76:77857795.[PubMed][CrossRef]
41. Strugnell BW, Ellis RJ, Thompson JR, Steventon A, Teale CJ, Williamson SM, Clarke H, Goodyear KL, Wall L. 2013. Preliminary findings on the use of multi-locus sequence typing (MLST) to investigate outbreaks of swine dysentery in northern England. Pig J 68:8287.
42. Allen HK, Levine UY, Looft T, Bandrick M, Casey TA. 2013. Treatment, promotion, commotion: antibiotic alternatives in food-producing animals. Trends in Microbiol 21:114119.[CrossRef]
43. Reti KL, Thomas MC, Yanke LJ, Selinger LB, Inglis GD. 2013. Effect of antimicrobial growth promoter administration on the intestinal microbiota of beef cattle. Gut Path 5:8.[CrossRef]
44. Mackie RI, Cann IKO, Zoetendal E, Forano E,. 2007. Molecular approaches to study bacterial diversity and function in the intestinal tract, p 75107. In Meng Q, Ren L, Cao Pp Z (eds), Proceedings of the 7th International Symposium on the Nutrition of Herbivores. China Agricultural University Press, Beijing.
45. Mayes RW, Pagella JH, Ørskov ER. 2010. Development of an intra-ruminal nylon bag technique for feed evaluation which does not require the use of fistulated animals. Adv Anim Biosci 1:2626.[CrossRef]
46. Hess M, Sczyrba A, Egan R, Kim T-W, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T, Mackie RI, Pennacchio LA, Tringe SG, Visel A, Woyke T, Wang Z, Rubin EM. 2011. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331:463467.[PubMed][CrossRef]
47. Feehery GR, Yigit E, Oyola SO, Langhorst BW, Schmidt VT, Stewart FJ, Dimalanta ET, Amaral-Zettler LA, Davis T, Quail MA, Pradhan S. 2013. A method for selectively enriching microbial DNA from contaminating vertebrate host DNA. PLoS One 8:e76096.[PubMed][CrossRef]
48. Goodman AL, Kallstrom G, Faith JJ, Reyes A, Moore A, Dantas G, Gordon JI. 2011. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc Natl Acad Sci USA 108:62526257.[PubMed][CrossRef]
49. Kenters N, Henderson G, Jeyanathan J, Kittelmann S, Janssen PH. 2011. Isolation of previously uncultured rumen bacteria by dilution to extinction using a new liquid culture medium. J Microbiol Meth 84:5260.[CrossRef]
50. Whitman WB, Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Ludwig W, Suzuki K-i, Parte A. 2012. Bergey's Manual of Systematic Bacteriology, vol. 5. Springer-Verlag, New York.
51. Tymensen LD, McAllister TA. 2012. Community structure analysis of methanogens associated with rumen protozoa reveals bias in universal archaeal primers. Appl Environ Microbiol 78:40514056.[PubMed][CrossRef]
52. Morgavi DP, Kelly WJ, Janssen PH, Attwood GT. 2012. Rumen microbial (meta)genomics and its application to ruminant production. Animal 1:118.[CrossRef]
53. Zoetendal EG, Collier CT, Koike S, Mackie RI, Gaskins HR. 2004. Molecular ecological analysis of the gastrointestinal microbiota: a review. J Nutr 134:465472.[PubMed]
54. Zoetendal EG, Rajilic-Stojanovic M, de Vos WM. 2008. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 11:16051615.[CrossRef]
55. Ellis RJ, Bruce KD, Jenkins C, Stothard JR, Ajarova L, Mugisha L, Viney ME. 2013. Comparison of the distal gut microbiota from people and animals in Africa. PLoS One 8:e54783.[PubMed][CrossRef]
56. Dowd S, Callaway T, Wolcott R, Sun Y, McKeehan T, Hagevoort R, Edrington T. 2008. Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol 8:125.[PubMed][CrossRef]
57. Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, Fontana L, Henrissat B, Knight R, Gordon JI. 2011. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332:970974.[PubMed][CrossRef]
58. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI. 2008. Evolution of mammals and their gut microbes. Science 320:16471651.[PubMed][CrossRef]
59. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Meth 7:335336.[CrossRef]
60. Singh KM, Jakhesara SJ, Koringa PG, Rank DN, Joshi CG. 2012. Metagenomic analysis of virulence-associated and antibiotic resistance genes of microbes in rumen of Indian buffalo (Bubalus bubalis). Gene 507:146151.[PubMed][CrossRef]
61. Durso LM, Harhay GP, Bono JL, Smith TPL. 2011. Virulence-associated and antibiotic resistance genes of microbial populations in cattle feces analyzed using a metagenomic approach. J Microbiol Meth 84:278282.[CrossRef]
62. Markowitz VM, Ivanova NN, Szeto E, Palaniappan K, Chu K, Dalevi D, Chen I-MA, Grechkin Y, Dubchak I, Anderson I, Lykidis A, Mavromatis K, Hugenholtz P, Kyrpides NC. 2008. IMG/M: a data management and analysis system for metagenomes. Nucleic Acids Res 36:D534D538.[PubMed][CrossRef]
63. Meyer F, Paarmann D, D'Souza M, Olson R, Glass E, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards R. 2008. The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinform 9:386.[CrossRef]
64. Hunter S, Corbett M, Denise H, Fraser M, Gonzalez-Beltran A, Hunter C, Jones P, Leinonen R, McAnulla C, Maguire E, Maslen J, Mitchell A, Nuka G, Oisel A, Pesseat S, Radhakrishnan R, Rocca-Serra P, Scheremetjew M, Sterk P, Vaughan D, Cochrane G, Field D, Sansone S-A. 2013. EBI metagenomics - a new resource for the analysis and archiving of metagenomic data. Nucleic Acids Res 42:D600D606.[PubMed][CrossRef]
65. Field D, Amaral-Zettler L, Cochrane G, Cole JR, Dawyndt P, Garrity GM, Gilbert J, Glöckner FO, Hirschman L, Karsch-Mizrachi I, Klenk H-P, Knight R, Kottmann R, Kyrpides N, Meyer F, San Gil I, Sansone S-A, Schriml LM, Sterk P, Tatusova T, Ussery DW, White O, Wooley J. 2011. The Genomic Standards Consortium. PLoS Biol 9:e1001088.[PubMed][CrossRef]
66. Yilmaz P, Kottmann R, Field D, Knight R, Cole JR, Amaral-Zettler L, Gilbert JA, Karsch-Mizrachi I, Johnston A, Cochrane G, Vaughan R, Hunter C, Park J, Morrison N, Rocca-Serra P, Sterk P, Arumugam M, Bailey M, Baumgartner L, Birren BW, Blaser MJ, Bonazzi V, Booth T, Bork P, Bushman FD, Buttigieg PL, Chain PSG, Charlson E, Costello EK, Huot-Creasy H, Dawyndt P, DeSantis T, Fierer N, Fuhrman JA, Gallery RE, Gevers D, Gibbs RA, Gil IS, Gonzalez A, Gordon JI, Guralnick R, Hankeln W, Highlander S, Hugenholtz P, Jansson J, Kau AL, Kelley ST, Kennedy J, Knights D, Koren O, et al. 2011. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nat Biotech 29:415420.[CrossRef]
67. Rocca-Serra P, Brandizi M, Maguire E, Sklyar N, Taylor C, Begley K, Field D, Harris S, Hide W, Hofmann O, Neumann S, Sterk P, Tong W, Sansone S-A. 2010. ISA software suite: supporting standards-compliant experimental annotation and enabling curation at the community level. Bioinformatics 26:23542356.[PubMed][CrossRef]
68. Scholz MB, Lo C-C, Chain PSG. 2012. Next generation sequencing and bioinformatic bottlenecks: the current state of metagenomic data analysis. Curr Opin Biotechnol 23:915.[PubMed][CrossRef]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error