Chapter 5.1.4 : Microbial Electrochemical Technologies Producing Electricity and Valuable Chemicals from Biodegradation of Waste Organic Matters

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Microbial Electrochemical Technologies Producing Electricity and Valuable Chemicals from Biodegradation of Waste Organic Matters, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch5.1.4-1.gif /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch5.1.4-2.gif


Waste organic matters such as organic compounds in wastewater and waste biomass from agricultural practices contain tremendous amount of energy. Recently microbial electrochemical technology (MET) receives great attention as promising technology to harvest energy from waste organics and produce directly electricity and valuable chemicals. MET use the bioelectrochemical system (BES) where microorganisms are used as catalyst for various electrochemical reactions. Two main mechanisms of extracellular electron transfer (EET), i.e. direct EET and indirectly mediated EET, from bacteria into anode or from cathode to bacteria have been reported. Microorganisms, which can transfer electrons into anode or receive electrons from cathode, are designated as electron transfer microorganisms (ETMs). The activity of ETMs directly and substantially affects the BES performance to produce electricity in MFCs and valuable products in MECs. Tremendous variety of ETMs has been reported and the variety seems to be depending on substrate types, substrate concentrations, poised electrode potentials, and electron acceptors. Most progress of MET in BES has been achieved from researches on application for wastewater treatment to produce electricity. MET is also used for biosensors, bioremediation, producing biofuels and industrial chemicals, and reverse electrodialysis. The present chapter will summarize recent reports of MET focusing on the developments of microbial aspects such as detailed EET mechanisms and diversity of ETMs. In addition, the newest various applications of MET will be briefly introduced.

Citation: Lee T, Okamoto A, Jung S, Nakamura R, Rae Kim J, Watanabe K, Hashimoto K. 2016. Microbial Electrochemical Technologies Producing Electricity and Valuable Chemicals from Biodegradation of Waste Organic Matters, p 5.1.4-1-5.1.4-14. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch5.1.4
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Conceptual diagram of a bioelectrochemical system (BES) showing electron transfer microorganisms (ETMs) and overall reactions in anode and cathode chamber. While waste organics are anaerobically oxidized in the anode chamber, various (bio)chemical reactions occur at the cathode chamber to produce electricity, fuels, and valuable chemicals and to reduce oxidized chemicals such as oxygen, nitrite/nitrate, metals, and chlorinated compounds. doi:10.1128/9781555818821.ch5.1.4.f1

Citation: Lee T, Okamoto A, Jung S, Nakamura R, Rae Kim J, Watanabe K, Hashimoto K. 2016. Microbial Electrochemical Technologies Producing Electricity and Valuable Chemicals from Biodegradation of Waste Organic Matters, p 5.1.4-1-5.1.4-14. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch5.1.4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Schematic illustration of metal-reducing (Mtr) pathway of MR-1 though inner membrane (IM) and outer membrane (OM). Metabolically generated electrons are transferred from the nicotinamide adenine dinucleotide dehydrogenase (NADH-DH) to an electrode or FeO surface through menaquinone (MQ), CymA, and the OmcA-MtrCAB protein complex. The cell surface is covered with capsular polysaccharide (CPS). doi:10.1128/9781555818821.ch5.1.4.f2

Citation: Lee T, Okamoto A, Jung S, Nakamura R, Rae Kim J, Watanabe K, Hashimoto K. 2016. Microbial Electrochemical Technologies Producing Electricity and Valuable Chemicals from Biodegradation of Waste Organic Matters, p 5.1.4-1-5.1.4-14. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch5.1.4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Schematic illustration of microbial electron transport models of MR-1 to extracellular electrode system to its Mtr pathway. A heme center in -Cyts located at OM (a) and bacterial filament (b) directly transport electrons to electrodes. (c) Cell-secreted flavin molecules enhance the rate of the direct extracellular electron transfer (EET) via a one-electron redox reaction as a redox cofactor in OM c-Cyts (FMN + e + H ↔ FMNH). (c) For indirect EET process, a soluble organic molecules, for example, anthraquinone-2,6-disulfonate (AQDS) and/or riboflavin, deliver electrons by shuttling between electrodes and bacterial cells via a two-electron redox process (Q + 2e + 2H ↔ QH). doi:10.1128/9781555818821.ch5.1.4.f3

Citation: Lee T, Okamoto A, Jung S, Nakamura R, Rae Kim J, Watanabe K, Hashimoto K. 2016. Microbial Electrochemical Technologies Producing Electricity and Valuable Chemicals from Biodegradation of Waste Organic Matters, p 5.1.4-1-5.1.4-14. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch5.1.4
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Logan BE, Rabaey K. 2012. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337:686690.[PubMed][CrossRef]
2. Oh ST, Kim JR, Premier GC, Lee T, Kim C, Sloan WT. 2011. Sustainable wastewater treatment: how might microbial fuel cells contribute. Biotechnol Adv 28:871881.[CrossRef]
3. McCarty PL, Bae J, Kim J. 2011. Domestic wastewater treatment as a net energy producer—can this be achieved? Environ Sci Technol 45:71007106.[PubMed][CrossRef]
4. MOE 2010. Policies for zero energy WWTP construction. Ministry of Environment, Korea.
5. Huang L, Regan JM, Quan X. 2011. Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresource Technol 102:316323.[CrossRef]
6. Lovley DR. 2008. The microbe electric: conversion of organic matter to electricity. Curr Opin Biotechnol 19:564571.[PubMed][CrossRef]
7. Lovley DR. 2011. Powering microbes with electricity: direct electron transfer from electrodes to microbes. Environ Microbiol Rep 3:2735.[PubMed][CrossRef]
8. Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan BE, Nealson KH, Fredrickson JK. 2006. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA 103:1135863.[PubMed][CrossRef]
9. Thrash JC, Van Trump IV, Weber KA, Miller E, Achenbach LA, Coates JD. 2007. Electrochemical stimulation of microbial perchlorate reduction. Environ Sci Technol 41:17401746.[PubMed][CrossRef]
10. Aulenta F, Catervi A, Majone M, Panero S, Reale P, Rossetti S. 2007. Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE. Environ Sci Technol 41:25542559.[PubMed][CrossRef]
11. Debabov VG. 2008. Electricity from microorganisms. Microbiology 77:123131.[CrossRef]
12. Lovley DR, Nevin KP,. 2008. Electricity production with electricigens, p 295306. In Wall JD, Harwood CS, Demain AL (eds), Bioenergy. ASM Press, Washington, DC.
13. Chang IS, Moon H, Bretschger O, Jang JK, Park HI, Nealson KH, Kim BH. 2006. Electrochemically active bacteria (EAB) and mediatorless microbial fuel cells. J Microbiol Biotechnol 16:163177.
14. Logan BE, Regan JM. 2006. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14:512518.[PubMed][CrossRef]
15. Chae K, Choi M, Lee J, Kim K, Kim I. 2009. Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Biores Technol 100:35183525.[CrossRef]
16. Yu JC, Park YH, Cho HI, Chun JE, Seon JY, Cho SJ, Lee TH. 2012b. Variations of electron flux and microbial community in aircathode microbial fuel cells fed with different substrates. Water Sci Technol 66:748753.[CrossRef]
17. Shimoyama T, Komukai S, Yamazawa A, Ueno Y, Logan BE, Watanabe K. 2008. Electricity generation from model organic wastewater in a cassette-electrode microbial fuel cell. Appl Microbiol Biotechnol 79:325330.[CrossRef]
18. Torres CI, Krajmalnik-Brown R, Parameswaran P, Marcus AK, Wanger G, Gorby YA, Rittmann BE. 2009. Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization. Environ Sci Technol 43:95199524.[PubMed][CrossRef]
19. Du Z, Li H, Gu T. 2007. A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464482.[PubMed][CrossRef]
20. Sun Y, Wei J, Liang P, Huang X. 2012. Microbial community analysis in biocathode microbial fuel cells packed with different materials. AMB Express 2:21.[PubMed][CrossRef]
21. Yates MD, Kiely PD, Call DF, Rismani-Yazdi H, Bibby K, Peccia J, Regan JM, Logan BE. 2012. Convergent development of anodic bacterial communities in microbial fuel cells. ISME J 6:20022013.[PubMed][CrossRef]
22. Lefebvre O, Uzabiaga A, Chang IS, Kim BH, Ng HY. 2011. Microbial fuel cells for energy self-sufficient domestic wastewater treatment–a review and discussion from energetic consideration. Appl Microbiol Biotechnol 89:259270.[PubMed][CrossRef]
23. Yu JC, Park YH, Cho HI, Chun JE, Seon JY, Cho SJ, Lee TH. 2012a. Electricity generation and microbial community in a submerged-exchangeable microbial fuel cell system for low-strength domestic wastewater treatment. Biores Technol 117:172179.[CrossRef]
24. Kim JR, Zou Y, Regan JM, Logan BE. 2008. Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater. Biotechnol Bioeng 99:11201127.[PubMed][CrossRef]
25. Wen Q, Wu Y, Zhao L, Sun Q. 2010. Production of electricity from the treatment of continuous brewery wastewater using a microbial fuel cell. Fuel 89:13811385.[CrossRef]
26. Oh S, Logan BE. 2005. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res 39:46734682.[PubMed][CrossRef]
27. Lefebvre O, Al-Mamun A, Ng HY. 2008. A microbial fuel cell equipped with a biocathode for organic removal and denitrification. Water Sci Technol 58:881885.[PubMed][CrossRef]
28. Steinbusch KJJ, Hamelers HVM, Schaap JD, Kampman C, Buisman CJN. 2009. Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. Environ Sci Technol 44:513517.[CrossRef]
29. Nealson KH, Saffarini D. 1994. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu Rev Microbiol 48:311343.[PubMed][CrossRef]
30. Myers CR, Nealson KH. 1988. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:13191321.[PubMed][CrossRef]
31. Shi LA, Richardson DJ, Wang ZM, Kerisit SN, Rosso KM, Zachara JM, Fredrickson JK. 2009. The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer. Environ Microbiol Rep 1:220227.[PubMed][CrossRef]
32. Clarke TA, Edwards MJ, Gates AJ, Hall A, White GF, Bradley J, Reardon CL, Shi L, Beliaev AS, Marshall MJ, Wang ZM, Watmough NJ, Fredrickson JK, Zachara JM, Butt JN, Richardson DJ. 2011. Structure of a bacterial cell surface decaheme electron conduit. Proc Natl Acad Sci USA 108:93849389.[PubMed][CrossRef]
33. Hartshorne RS, Jepson BN, Clarke TA, Field SJ, Fredrickson J, Zachara J, Shi L, Butt JN, Richardson DJ. 2007. Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors. J Biol Inorg Chem 12:10831094.[PubMed][CrossRef]
34. Hartshorne RS, Reardon CL, Ross D, Nuester J, Clarke TA, Gates AJ, Mills PC, Fredrickson JK, Zachara JM, Shi L, Beliaev AS, Marshall MJ, Tien M, Brantley S, Butt JN, Richardson DJ. 2009. Characterization of an electron conduit between bacteria and the extracellular environment. Proc Natl Acad Sci USA 106:2216922174.[PubMed][CrossRef]
35. Firer-Sherwood M, Pulcu GS, Elliott SJ. 2008. Electrochemical interrogations of the Mtr cytochromes from Shewanella: opening a potential window. J Biol Inorg Chem 13:849854.[PubMed][CrossRef]
36. Okamoto A, Nakamura R, Hashimoto K. 2011. In-vivo identification of direct electron transfer from Shewanella oneidensis MR-1 to electrodes via outer-membrane OmcA-MtrCAB protein complexes. Electrochim Acta 56:55265531.[CrossRef]
37. Okamoto A, Nakamura R, Ishii K, Hashimoto K. 2009. In vivo electrochemistry of C-type cytochrome-mediated electron-transfer with chemical marking. ChemBiochem 10:23292332.[PubMed][CrossRef]
38. von Canstein H, Ogawa J, Shimizu S, Lloyd JR. 2008. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 74:615623.[PubMed][CrossRef]
39. Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR. 2008. Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA 105:39683973.[PubMed][CrossRef]
40. Bard AJ, Faulkner LR. 1980. Electrochemical methods: fundamentals and applications. Wiley, New York.
41. Adachi M, Shimomura T, Komatsu M, Yakuwa H, Miya A. 2008. A novel mediator-polymer-modified anode for microbial fuel cells. Chem Commun (Camb) 20:20552057.[CrossRef]
42. Ringeisen BR, Henderson E, Wu PK, Pietron J, Ray R, Little B, Biffinger JC, Jones-Meehan JM. 2006. High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol 40:26292634.[PubMed][CrossRef]
43. Newman DK, Kolter R. 2000. A role for excreted quinones in extracellular electron transfer. Nature 405:9497.[PubMed][CrossRef]
44. Zhao Y, Watanabe K, Nakamura R, Mori S, Liu H, Ishii K, Hashimoto K. 2010. Three-dimensional conductive nanowire networks for maximizing anode performance in microbial fuel cells. Chem Eur J 16:49824985.[PubMed][CrossRef]
45. Gralnick JA, Coursolle D, Baron DB, Bond DR. 2010. The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. J Bacteriol 192:467474.[PubMed][CrossRef]
46. Ross DE, Flynn JM, Baron DB, Gralnick JA, Bond DR. 2011. Towards electrosynthesis in Shewanella: energetics of reversing the mtr pathway for reductive metabolism. PLoS One 6:e16649.[PubMed][CrossRef]
47. Breuer M, Zarzycki P, Blumberger J, Rosso KM. 2012. Thermodynamics of electron flow in the bacterial deca-heme cytochrome MtrF. J Am Chem Soc 134:98689871.[PubMed][CrossRef]
48. Strycharz SM, Glaven RH, Coppi MV, Gannon SM, Perpetua LA, Liu A, Nevin KP, Lovley DR. 2011. Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens. BioElectrochem 80:142150.[CrossRef]
49. Watanabe K. 2008. Recent developments of microbial fuel cell technologies for sustainable bioenergy. J Biosci Bioeng 106:528536.[PubMed][CrossRef]
50. Liu H, Cheng S, Logan BE. 2005. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39:658662.[PubMed][CrossRef]
51. Bond DR, Lovley DR. 2003. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:15481555.[PubMed][CrossRef]
52. Jung S, Regan JM. 2007. Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Appl Microbiol Biotechnol 77:393402.[PubMed][CrossRef]
53. Freguia S, Rabaey K, Yuan Z, Keller J. 2008. Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes. Environ Sci Technol 42:79377943.[PubMed][CrossRef]
54. Ishii S, Hotta Y, Watanabe K. 2008. Methanogenesis versus electrogenesis: morphological and phylogenetic comparisons of microbial communities. Biosci Biotechnol Biochem 72:286294.[PubMed][CrossRef]
55. Ishii S, Shimoyama T, Hotta Y, Watanabe K. 2008. Characterization of a filamentous biofilm community established in a cellulose-fed microbial fuel cell. BMC Microbiol 8:6.[PubMed][CrossRef]
56. Kodama Y, Watanabe K. 2008. An electricity-generating prosthecate bacterium strain Mfc52 isolated from a microbial fuel cell. FEMS Microbiol Lett 288:5561.[PubMed][CrossRef]
57. Kodama Y, Watanabe K. 2011. Rhizomicrobium electricum sp. nov., a facultatively anaerobic, fermentative, prosthecate bacterium isolated from a cellulose-fed microbial fuel cell. Int J Syst Evol Microbiol 61:17811785.[PubMed][CrossRef]
58. Ueki A, Kodama Y, Kaku N, Shiromura T, Satoh A, Watanabe K, Ueki K. 2010. Rhizomicrobium palustre gen. nov., sp. nov., a facultatively anaerobic, fermentative stalked bacterium in the class Alphaproteobacteria isolated from rice plant roots. J Gen Appl Microbiol 56:193203.[PubMed][CrossRef]
59. Wrighton KC, Agbo P, Warnecke F, Weber KA, Brodie EL, DeSantis TZ, Hugenholtz P, Andersen GL, Coates JD. 2008. A novel ecological role of the firmicutes identified in thermophilic microbial fuel cells. ISME J 2:11461156.[PubMed][CrossRef]
60. Carlson HK, Iavarone AT, Gorur A, Yeo BS, Tran R, Melnyk RA, Mathies RA, Auer M, Coates JD. 2012. Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram-positive bacteria. Proc Natl Acad Sci USA 109:17021707.[PubMed][CrossRef]
61. Malki M, De Lacey AL, Rodriguez N, Amils R, Fernandez VM. 2008. Preferential use of an anode as an electron acceptor by an acidophilic bacterium in the presence of oxygen. Appl Environ Microbiol 74:44724476.[PubMed][CrossRef]
62. Miyahara M, Hashimoto K, Watanabe K. 2013. Use of cassette-electrode microbial fuel cell for wastewater treatment. J Biosci Bioeng 115:176181.[PubMed][CrossRef]
63. Shimoyama T, Yamazawa A, Ueno Y, Watanabe K. 2009. Phylogenetic analyses of microbial communities developed in a cassette-electrode microbial fuel cell. Microbes Environ 24:188192.[PubMed][CrossRef]
64. Watanabe K, Miyahara M, Shimoyama T, Hashimoto K. 2011. Population dynamics and current-generation mechanisms in cassette-electrode microbial fuel cells. Appl Microbiol Biotechnol 92:13071314.[PubMed][CrossRef]
65. Logan BE, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S. 2006. Microbial fuel cells: methodology and technology. Environ Sci Technol 40:51815192.[PubMed][CrossRef]
66. Park DH, Zeikus JG. 1999. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J Bacteriol 181:24032410.[PubMed]
67. Gregory KB, Bond DR, Lovley DR. 2004. Graphite electrodes as electron donors for anaerobic respiration. Environ Microbiol 6:596604.[PubMed][CrossRef]
68. Clauwaert P, Rabaey K, Aelterman P, DeSchamphelaire L, Pham TH, Boeckx P. 2007. Biological denitrification in microbial fuel cells. Environ Sci Technol 41:33543360.[PubMed][CrossRef]
69. Clauwaert P, van der Ha D, Boon N, Verbeken K, Verhaege M, Rabaey K. 2007. Open air biocathode enables effective electricity generation with microbial fuel cells. Environ Sci Technol 41:75647569.[PubMed][CrossRef]
70. Cao X, Huang X, Liang P, Boon N, Fan M, Zhang L. 2009. A completely anoxic microbial fuel cell using a photo-biocathode for cathodic carbon dioxide reduction. Energy Environ Sci 2:498501.[CrossRef]
71. Gregory KB, Lovley DR. 2005. Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ Sci Technol 39:89438947.[PubMed][CrossRef]
72. Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M. 2010. Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresource Technol 101:30853090.[CrossRef]
73. Flynn JM, Ross DE, Hunt KA, Bond DR, Gralnick JA. 2010. Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria. mBio 1:e0019010.[PubMed][CrossRef]
74. Cheng S, Logan BE. 2007. Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc Natl Acad Sci USA 104:1887118873.[PubMed][CrossRef]
75. Freguia S, Tsujimura S, Kano K. 2010. Electron transfer pathways in microbial oxygen biocathodes. Electrochim Acta 55:813818.[CrossRef]
76. Erable B, Vandecandelaere I, Faimali M, Delia M-L, Etcheverry L, Vandamme P. 2010. Marine aerobic biofilm as biocathode catalyst. BioElectrochem 78:5156.[CrossRef]
77. Cournet A, Délia M-L, Bergel A, Roques C, Bergé M. 2010. Electrochemical reduction of oxygen catalyzed by a wide range of bacteria including Gram-positive. Electrochem Commun 12:505508.[CrossRef]
78. Rabaey K, Read ST, Clauwaert P, Freguia S, Bond PL, Blackall LL. 2008. Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells. ISME J 2:519527.[PubMed][CrossRef]
79. Lojou E, Durand MC, Dolla A, Bianco P. 2002. Hydrogenase activity control at Desulfovibrio vulgaris cell-coated carbon electrodes: biochemical and chemical factors influencing the mediated bioelectrocatalysis. Electroanalysis 14:913922.[CrossRef]
80. Strycharz SM, Woodard TL, Johnson JP, Nevin KP, Sanford RA, Löffler FE. 2008. Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi. Appl Environ Microbiol 74:59435947.[PubMed][CrossRef]
81. Dumas C, Basseguy R, Bergel A. 2008. Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes. Electrochimica Acta 53:24942500.[CrossRef]
82. Nguyen TA, Lu Y, Yang X, Shi X. 2007. Carbon and steel surfaces modified by Leptothrix discophora SP-6: characterization and implications. Environ Sci Technol 41:79877996.[PubMed][CrossRef]
83. Powell EE, Mapiour ML, Evitts RW, Hill GA. 2009. Growth kinetics of Chlorella vulgaris and its use as a cathodic half cell. Bioresource Technology 100:269274.[PubMed][CrossRef]
84. Cheng KY, Ho G, Cord-Ruwisch R. 2009. Anodophilic biofilm catalyzes cathodic oxygen reduction. Environ Sci Technol 44:518525.[CrossRef]
85. Logan BE. 2008. Microbial fuel cells. Wiley-Interscience, Hoboken, NJ.
86. Hawkes FR, Kim JR, Kyazze G, Premier GC,. 2009. Feedstocks for BES conversions. In Rabaey K, Korneel R (eds), Bioelectrochemical systems: from extracellular electron transfer to biotechnological application. IWA Publishing, London, 369392.
87. Kim JR, Premier GC, Hawkes FR, Rodríguez J, Dinsdale RM, Guwy AJ. 2010. Modular tubular microbial fuel cells for energy recovery during sucrose wastewater treatment at low organic loading rate. Biores Technol 101:11901198.[CrossRef]
88. Kim JR, Rodríguez J, Hawkes FR, Dinsdale RM, Guwy AJ, Premier GC. 2011. Increasing power recovery and organic removal efficiency using extended longitudinal tubular microbial fuel cell (MFC) reactors. Energy Environ Sci 4:459465.[CrossRef]
89. Kyazze G, Dinsdale R, Guwy AJ, Hawkes FR, Premier GC, Hawkes DL. 2007. Performance characteristics of a two-stage dark fermentative system producing hydrogen and methane continuously. Biotechnol Bioeng 97:759770.[PubMed][CrossRef]
90. Hallenbeck PC, Ghosh D. 2009. Advances in fermentative biohydrogen production: the way forward. Trends Biotechnol 27:287297.[PubMed][CrossRef]
91. Wang X, Zhao YC. 2009. A bench scale study of fermentative hydrogen and methane production from food waste in integrated two-stage process. Int J Hydrogen Energy 34:245254.[CrossRef]
92. Park MJ, Jo JH, Park D, Lee DS, Park JM. 2010. Comprehensive study on a two-stage anaerobic digestion process for the sequential production of hydrogen and methane from cost-effective molasses. Int J Hydrogen Energy 35:61946202.[CrossRef]
93. Kannaiah Goud R, Venkata Mohan S. 2011. Pre-fermentation of waste as a strategy to enhance the performance of single chambered microbial fuel cell (MFC). Int J Hydrogen Energy 36:1375313762.[CrossRef]
94. Mohanakrishna G, Mohan SV, Sarma PN. 2010. Utilizing acid-rich effluents of fermentative hydrogen production process as substrate for harnessing bioelectricity: an integrative approach. Int J Hydrogen Energy 35:34403449.[CrossRef]
95. Yan H, Saito T, Regan JM. 2012. Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode. Water Res 46:22152224.[PubMed][CrossRef]
96. Rozendal RA, Hamelers HVM, Buisman CJN. 2006. Effects of membrane cation transport on pH and microbial fuel cell performance. Environ Sci Technol 40:52065211.[PubMed][CrossRef]
97. Kim JR, Cheng S, Oh SE, Logan BE. 2007. Power generation using different cation, anion and ultrafiltration membranes in microbial fuel cells. Environ Sci Technol 41:10041009.[PubMed][CrossRef]
98. Cord-Ruwisch R, Law Y, Cheng KY. 2011. Ammonium as a sustainable proton shuttle in bioelectrochemical systems. Biores Technol 102:96919696.[CrossRef]
99. Kuntke P, Geleji M, Bruning H, Zeeman G, Hamelers HVM, Buisman CJN. 2011. Effects of ammonium concentration and charge exchange on ammonium recovery from high strength wastewater using a microbial fuel cell. Biores Technol 102:43764382.[CrossRef]
100. Kalathil S, Lee J, Cho MH. 2011. Granular activated carbon based microbial fuel cell for simultaneous decolorization of real dye wastewater and electricity generation. New Biotechnol 29:3237.[CrossRef]
101. Kalathil S, Lee J, Cho MH. 2012. Efficient decolorization of real dye wastewater and bioelectricity generation using a novel single chamber biocathode-microbial fuel cell. Bioresource Technol 119:2227.[CrossRef]
102. Chun CL, Payne RB, Sowers KR, May HD. 2013. Electrical stimulation of microbial PCB degradation in sediment. Water Res 47:141152.[PubMed][CrossRef]
103. Huang L, Gan L, Zhao Q, Logan BE, Lu H, Chen G. 2011. Degradation of pentachlorophenol with the presence of fermentable and non-fermentable co-substrates in a microbial fuel cell. Biores Technol 102:87628768.[CrossRef]
104. Jang JK, Chang IS, Moon H, Kang KH, Kim BH. 2006. Nitrilotriacetic acid degradation under microbial fuel cell environment. Biotechnol Bioeng 95:772774.[PubMed][CrossRef]
105. Kim B, Chang I, Gadd G. 2007. Challenges in microbial fuel cell development and operation. Appl Microbiol Biotechnol 76:485494.[PubMed][CrossRef]
106. Tront JM, Fortner JD, Plotze M, Hughes JB, Puzrin AM. 2008. Microbial fuel cell biosensor for in situ assessment of microbial activity. Biosen Bioelectron 24:586590.[CrossRef]
107. Chang IS, Jang JK, Gil GC, Kim M, Kim KJ, Cho BW, Kim BH. 2004. Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens Bioelectron 19(6):607613.[PubMed][CrossRef]
108. Hawkes FR, Hussy I, Kyazze G, Dinsdale R, Hawkes DL. 2007. Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress. Int J Hydrogen Energy 32:172184.[CrossRef]
109. Kaur A, Kim JR, Dinsdale RM, Guwy AJ, Premier GC. 2013. Microbial fuel cell type biosensor for specific volatile fatty acids using acclimated bacterial communities. Biosen Bioelectron 47:5055[CrossRef]
110. Dong H, Lu A. 2012. Mineral, microbes, and remedation: Mineral-microbe interactions and implications for remediation. Elements 8:95100.[CrossRef]
111. Lovley DR. 1997. Microbial Fe(III) reduction in subsurface environments. FEMS Microbiol Rev 20:305313.[CrossRef]
112. Lovley DR,. 2000. Chapter 1: Fe(III) and Mn(IV) reduction, p. 330. In Lovley DR (ed), In environmental microbe-metal interactions. ASM Press, Washington, DC.
113. Nevin KP, Richter H, Covalla SF, Johnson JP, Woodard TL, Orloff AL, Jia H, Zhang M, Lovley DR. 2008. Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environ Microbiol 10:25052514.[PubMed][CrossRef]
114. Rabaey K, Rozendal RA. 2010. Microbial electrosynthesis—revisiting the electrical route for microbial production. Nature 8:706716.
115. Chen M, Zhang F, Zhang Y, Zeng RJ. 2013. Alkali production from bipolar membrane electrodialysis powered by microbial fuel cell and application for biogas upgrading. Appl Energy 103:428434.[CrossRef]
116. Marshall CW, Ross DE, Fichot EB, Norman RS, May HD. 2012. Electrosynthesis of commodity chemicals by an autotrophic microbial community. Appl Environ Microbiol 78:84128420[PubMed][CrossRef]
117. Kim Y, Logan BE. 2011. Series assembly of microbial desalination cells containing stacked electrodialysis cells for partial or complete seawater desalination. Environ Sci Tech 45:58405845.[CrossRef]
118. Mehanna M, Saito T, Yan JL, Hickner M, Cao XX, Huang X, Logan BE. 2010. Using microbial desalination cells to reduce water salinity prior to reverse osmosis. Energy Environ Sci 3:11141120.[CrossRef]
119. Logan BE. 2010. Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 85:16651671.[PubMed][CrossRef]
120. Pant D, Bogaert GV, Diels L, Vanbroekhoven K. 2010. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Biores Technol 101:15331543.[CrossRef]
121. Aelterman P, Freguia S, Keller J, Verstraete W, Rabaey K. 2008. The anode potential regulates bacterial activity in microbial fuel cells. Appl Microbiol Biotechnol 78:409418.[PubMed][CrossRef]


Generic image for table

Pure cultures of ETM used in various biocathodes

Citation: Lee T, Okamoto A, Jung S, Nakamura R, Rae Kim J, Watanabe K, Hashimoto K. 2016. Microbial Electrochemical Technologies Producing Electricity and Valuable Chemicals from Biodegradation of Waste Organic Matters, p 5.1.4-1-5.1.4-14. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch5.1.4

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error