1887

Chapter 5.1.5 : A Basic Introduction to Aerobic Biodegradation of Petroleum Aromatic Compounds

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

A Basic Introduction to Aerobic Biodegradation of Petroleum Aromatic Compounds, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch5.1.5-1.gif /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch5.1.5-2.gif

Abstract:

The aim of this chapter is to give an overview of aerobic biodegradation of petroleum aromatic compounds. Among the wide variety of petroleum aromatic compounds that occur, BTEX, PAHs, and HACs are the principal components of petroleum and their toxicities are relatively higher than other components, such as alkanes. This chapter will focus on degradation pathways and enzymes used by microorganisms capable of metabolizing BTEX, four representative PAHs, naphthalene, phenanthrene, fluorene, and pyrene and three HACs, carbazole, dibenzothiophene and dibenzofuran.

Citation: Inoue K, Pinyakong O, Kasuga K, Nojiri H. 2016. A Basic Introduction to Aerobic Biodegradation of Petroleum Aromatic Compounds, p 5.1.5-1-5.1.5-18. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch5.1.5
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Degradation pathways of BTEX. In parentheses are strain names that possess the enzyme. doi:10.1128/9781555818821.ch5.1.5.f1

Citation: Inoue K, Pinyakong O, Kasuga K, Nojiri H. 2016. A Basic Introduction to Aerobic Biodegradation of Petroleum Aromatic Compounds, p 5.1.5-1-5.1.5-18. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch5.1.5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Degradation pathways of naphthalene (a), phenanthrene (b), fluorene (c), and pyrene (d). doi:10.1128/9781555818821.ch5.1.5.f2

Citation: Inoue K, Pinyakong O, Kasuga K, Nojiri H. 2016. A Basic Introduction to Aerobic Biodegradation of Petroleum Aromatic Compounds, p 5.1.5-1-5.1.5-18. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch5.1.5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Degradation pathways of carbazole (a), dibenzothiophene (b), and dibenzofuran (c). doi:10.1128/9781555818821.ch5.1.5.f3

Citation: Inoue K, Pinyakong O, Kasuga K, Nojiri H. 2016. A Basic Introduction to Aerobic Biodegradation of Petroleum Aromatic Compounds, p 5.1.5-1-5.1.5-18. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch5.1.5
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818821.ch5.1.5
1. Marshall AG. 2008. Petroleomics: chemistry of the underworld. Proc Natl Acad Sci USA 105 : 18090 18095.[PubMed][CrossRef]
2. Mascarelli A. 2010. After the oil. Nature 467 : 22 24.[PubMed][CrossRef]
3. Meckenstock RU, Safinowski M, Griebler C. 2004. Anaerobic degradation of polycyclic aromatic hydrocarbons. FEMS Microbiol Ecol 49 : 27 36.[PubMed][CrossRef]
4. Cao B, Nagarajan K, Loh K-C. 2009. Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl Microbiol Biotechnol 85 : 207 228.[PubMed][CrossRef]
5. Carmona M, Zamarro MT, Blázquez B, Durante-Rodríguez G, Juárez JF, Valderrama JA, Barragán MJL, García JL, Díaz E. 2009. Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiol Mol Biol Rev 73 : 71 133.[PubMed][CrossRef]
6. Meckenstock RU, Mouttaki H. 2011. Anaerobic degradation of non-substituted aromatic hydrocarbons. Curr Opin Biotechnol 22 : 406 414.[PubMed][CrossRef]
7. Aivalioti M, Vamvasakis I, Gidarakos E. 2010. BTEX and MTBE adsorption onto raw and thermally modified diatomite. J Haz Mater 178 : 136 143.[CrossRef]
8. U.S. EPA 2002. Permeation and Leaching, Office of Ground Water and Drinking Water, Standards and Risk Management Division, Washington DC.
9. Agency for Toxic Substances & Disease Registry. http://www.atsdr.cdc.gov/spl/.
10. Reddy CM, Arey JS, Seewald JS, Sylva SP, Lemkau KL, Nelson RK, Carmichael CA, McIntyre CP, Fenwick J, Ventura GT, Van Mooy BAS, Camillic R. 2012. Composition and fate of gas and oil released to the water column during the Deepwater Horizon oil spill. Proc Natl Acad Sci USA 109 : 20229 20234.[PubMed][CrossRef]
11. Dawson JJC, Iroegbu CO, Maciel H, Paton GI. 2008. Application of luminescent biosensors for monitoring the degradation and toxicity of BTEX compounds in soils. J Appl Microbiol 104 : 141 151.[PubMed]
12. Dalvi S, Azetsu S, Patrauchan MA, Aktas DF, Fathepure BZ. 2012. Proteogenomic elucidation of the initial steps in the benzene degradation pathway of a novel halophile, Arhodomonas sp. strain Rozel, isolated from a hypersaline environment. Appl Environ Microbiol 78 : 7309 7316.[PubMed][CrossRef]
13. Alvarez PJ, Vogel TM. 1991. Substrate interactions of benzene, toluene, and paraxylene during microbial degradation by pure cultures and mixed culture aquifer slurries. Appl Environ Microbiol 57 : 2981 2985.[PubMed]
14. Shields MS, Montgomery SO, Chapman PJ, Cuskey SM, Pritchard PH. 1989. Novel pathway of toluene catabolism in the trichloroethylene-degrading bacterium G4. Appl Environ Microbiol 55 : 1624 1629.[PubMed]
15. Shields MS, Reagin MJ, Gerger RR, Campbell R, Somerville C. 1995. TOM, a new aromatic degradative plasmid from Burkholderia ( Pseudomonas) cepacia G4. Appl Environ Microbiol 61 : 1352 1356.[PubMed]
16. Jin HM, Choi EJ, Jeon CO. 2013. Isolation of a BTEX-degrading bacterium, Janibacter sp. SB2, from a sea-tidal flat and optimization of biodegradation conditions. Biores Technol 145 : 57 64.[CrossRef]
17. Zhang L, Zhang C, Cheng Z, Yao Y, Chen J. 2013. Biodegradation of benzene, toluene, ethylbenzene, and o-xylene by the bacterium Mycobacterium cosmeticum byf-4. Chemosphere 90 : 1340 1347.[PubMed][CrossRef]
18. Yadav JS, Reddy CA. 1993. Degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 59 : 756 762.[PubMed]
19. Kitayama A, Achioku T, Yanagawa T, Kanou K, Kikuchi M, Ueda H, Suzuki E, Nishimura H, Nagamune T, Kawakami Y. 1996. Cloning and characterization of extradiol aromatic ring-cleavage dioxygenases of Pseudomonas aeruginosa JI104. J Ferment Bioeng 82 : 217 223.[CrossRef]
20. Whited GM, Gibson DT. 1991. Toluene-4-monooxygenase, a threecomponent enzyme system that catalyzes the oxidation of toluene to p-cresol in Pseudomonas mendocina KR1. J Bacteriol 173 : 3010 3016.[PubMed]
21. Gibson DT, Mahadevan V, Davey JF. 1974. Bacterial metabolism of para- and meta-xylene: oxidation of the aromatic ring. J Bacteriol 119 : 930 936.[PubMed]
22. Zylstra GJ, Gibson DT. 1989. Toluene degradation by Pseudomonas putida F1: nucleotide sequence of the todC1C2BADE genes and their expression in E. coli. J Biol Chem 264 : 14940 14946.[PubMed]
23. Nakazawa T. 2002. Travels of Pseudomonas, from Japan around the world. Environ Microbiol 4 : 782 786.[PubMed][CrossRef]
24. Chang M, Voice T, Criddle C. 1993. Kinetics of competitive inhibition and cometabolism in the biodegradation of benzene, toluene, and p-xylene by two Pseudomonas isolates. Biotechnol Bioeng 41 : 1057 1065.[PubMed][CrossRef]
25. Haigler BE, Pettigrew CA, Spain JC. 1992. Biodegradation of mixtures of substituted benzenes by Pseudomonas sp. strain JS150. Appl Environ Microbiol 58 : 2237 2244.[PubMed]
26. Johnson GR, Olsen RH. 1995. Nucleotide sequence analysis of genes encoding a toluene/benzene-2-monooxygenase from Pseudomonas sp. strain JS150. Appl Environ Microbiol 61 : 3336 3346.[PubMed]
27. Lee K, Gibson DT. 1996. Toluene and ethylbenzene oxidation by purified naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4. Appl Environ Microbiol 62 : 3101 3106.[PubMed]
28. Byrne AM, Kukor KK, Olsen RH. 1995. Sequence analysis of the gene cluster encoding toluene 3-monooxygenase from Pseudomonas pickettii PKO1. Gene 154 : 65 70.[PubMed][CrossRef]
29. Oh Y, Sharafdeen Z, Baltizs B, Bartha R. 1994. Interactions between benzene, toluene, and p-xylene (BTX) during their biodegradation. Biotechnol Bioeng 44 : 533 538.[PubMed][CrossRef]
30. Davey JF, Gibson DT. 1974. Bacterial metabolism of para- and meta-xylene: oxidation of a methyl substituent. J Bacteriol 119 : 923 929.[PubMed]
31. Baggi G, Parbieri P, Galli E, Tollari S. 1987. Isolation of a Pseudomonas stutzeri strain that degrades o-xylene. Appl Environ Microbiol 53 : 2129 2132.[PubMed]
32. Bertoni G, Martino M, Galli E, Barbieri P. 1998. Analysis of the gene cluster encoding toluene/ o-xylene monooxygenase from Pseudomonas stutzeri OX1. Appl Environ Microbiol 64 : 3626 3632.[PubMed]
33. Kim JM, Le NT, Chung BS, Park JH, Bae JW, Madsen EL, Jeon CO. 2008. Influence of soil components on the biodegradation of benzene, toluene, ethylbenzene, and o-, m-, and p-xylenes by the newly isolated bacterium Pseudoxanthomonas spadix BD-a59. Appl Environ Microbiol 74 : 7313 7320.[PubMed][CrossRef]
34. Choi EJ, Jin HM, Lee SH, Math RK, , Madsen EL, Jeona CO. 2013. Comparative genomic analysis and benzene, toluene, ethylbenzene, and o-, m-, and p-xylene (BTEX) degradation pathways of Pseudoxanthomonas spadix BD-a59. Appl Environ Microbiol 79 : 663 671.[PubMed][CrossRef]
35. Bickerdike SR, Holt RA, Stephens GM. 1997. Evidence formetabolism of o-xylene by simultaneous ring and methyl group oxidation in a new soil isolate. Microbiology 143 : 2321 2329.[CrossRef]
36. Seto M, Kimbara K, Shimura M, Hatta T, Fukuda M, Yano K. 1995. Novel transformation of polychlorinated biphenyls by Rhodococcus sp. strain RHA1. Appl Environ Microbiol 61 : 3353 3358.[PubMed]
37. Patrauchan MA, Florizone C, Eapen S, Gómez-Gil L, Sethuraman B, Fukuda M, Davies J, Mohn WW, Eltis LD. 2008. Roles of ring-hydroxylating dioxygenases in styrene and benzene catabolism in Rhodococcus jostii RHA1. J Bacteriol 190 : 37 47.[PubMed][CrossRef]
38. Jung I-G, Park C-H. 2004. Characteristics of Rhodococcus pyridinovorans PYJ-1 for the biodegradation of benzene, toluene, m-xylene (BTX), and their mixtures. J Biosci Bioeng 97 : 429 431.[PubMed][CrossRef]
39. Kim D, Chae J-C, Zylstra GJ, Kim Y-S, Kim K-S, Nam MH, Kim YM, Kim E. 2004. Identification of a novel dioxygenase involved in metabolism of o-xylene, toluene, and ethylbenzene by Rhodococcus sp. strain DK17. Appl Environ Microbiol 70 : 7086 7092.[PubMed][CrossRef]
40. Kim D, Kim YS, Kim S-K, Kim SW, Zylstra GJ, Kim YM, Kim E. 2002. Monocyclic aromatic hydrocarbon degradation by Rhodococcus sp. strain DK17. Appl Environ Microbiol 68 : 3270 3278.[PubMed][CrossRef]
41. Gibson D, Mahadevan V, Jerina D, Yagi H, Yeh H. 1975. Oxidation of the carcinogens benzo [a] pyrene and benzo [a] anthracene to dihydrodiols by a bacterium. Science 189 : 295 297.[PubMed][CrossRef]
42. Kim E, Zylstra GJ. 1999. Functional analysis of genes involved in biphenyl, naphthalene, phenanthrene, and m-xylene degradation by Sphingomonas yanoikuyae B1. J Ind Microbiol Biotechnol 23 : 294 302.[PubMed][CrossRef]
43. Lee EY, Jun YS, Cho K-S, Ryu HW. 2002. Degradation characteristics of toluene, benzene, ethylbenzene, and xylene by Stenotrophomonas maltophilia T3-c. J Air Waste Manage Assoc 52 : 400 406.[CrossRef]
44. Tao Y, Fishman A, Bentley WE, Wood TK. 2004. Oxidation of benzene to phenol, catechol, and 1,2,3-trihydroxybenzene by toluene 4-monooxygenase of Pseudomonas mendocina KR1 and toluene 3-monooxygenase of Ralstonia pickettii PKO1. Appl Environ Microbiol 70 : 3814 3820.[PubMed][CrossRef]
45. Worsey MJ, Williams PA. 1975. Metabolism of toluene and xylene by Pseudomonas putida ( arvilla) mt-2: evidence for a new function of the TOL plasmid. J Bacteriol 124 : 7 13.[PubMed]
46. Olsen RH, Kukor JJ, Kaphammer B. 1994. A novel toluene-3-monooxygenase pathway cloned from Pseudomonas pickettii PKO1. J Bacteriol 176 : 3749 3756.[PubMed]
47. Seto M, Masai E, Ida M, Hatta T, Kimbara K, Fukuda M, Yano K. 1995. Multiple polychlorinated biphenyl transformation systems in the Gram-positive bacterium Rhodococcus sp. strain RHA1. Appl Environ Microbiol 61 : 4510 4513.[PubMed]
48. Robrock KR, Mohn WW, Lindsay DE, Alvarez-Cohen L. 2011. Biphenyl and ethylbenzene dioxygenases of Rhodococcus jostii RHA1 transform PBDEs. Biotechnol Bioeng 108 : 313 312.[PubMed][CrossRef]
49. Haritash AK, Kaushik CP. 2009. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Haz Mater 169 : 1 15.[CrossRef]
50. Menzie CA, Potocki BB, Santodonato J. 1992. Exposure to carcinogenic PAHs in the environment. Environ Sci Technol 26 : 1278 1284.[CrossRef]
51. Kiyohara H, Nagao K, Kouno K, Yano K. 1982. Phenanthrene-degrading phenotype of Alcaligenes faecalis AFK2. Appl Environ Microbiol 43 : 458 461.[PubMed]
52. Laurie AD, Lloyd-Jones G. 1999. The phn genes of Burkholderia sp. strain RP007 constitute a divergent gene cluster for polycyclic aromatic hydrocarbon catabolism. J Bacteriol 181 : 531 540.[PubMed]
53. Goyal AK, Zylstra GJ. 1996. Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Comamonas testosteroni GZ39. Appl Environ Microbiol 62 : 230 236.[PubMed]
54. Kasai Y, Shindo K, Harayama S, Misawa N. 2003. Molecular molecular characterization and substrate preference of a polycyclic aromatic hydrocarbon dioxygenase from Cycloclasticus sp. strain A5. Appl Environ Microbiol 69 : 6688 6697.[PubMed][CrossRef]
55. Hickey WJ, Chen S, Zhao J. 2012. The phn island: a new genomic island encoding catabolism of polynuclear aromatic hydrocarbons. Front Microbiol 3 : 1 15.[PubMed][CrossRef]
56. Badejo AC, Badejo AO, Shin KH, Chai YG. 2013. A gene expression study of the activities of aromatic ring-cleavage dioxygenases in Mycobacterium gilvum PYR-GCK to changes in salinity and pH during pyrene degradation. PLoS One. 8 : e58066.[PubMed][CrossRef]
57. Krivobok S, Kuony S, Meyer C, Louwagie M, Willison JC, Juoanneau Y. 2003. Identification of pyrene-induced proteins in Mycobacterium sp. strain 6PY1: evidence for two ring-hydroxylating dioxygenases. J Bacteriol 185 : 3828 3841.[PubMed][CrossRef]
58. Kim S-J, Kweon O, Jones RC, Edmondson RD, Cerniglia CE. 2008. Genomic analysis of polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1. Biodegradation 19 : 859 881.[PubMed][CrossRef]
59. Saito A, Iwabuchi T, Harayama S. 1999. Characterization of genes for enzymes involved in the phenanthrene degradation in Nocardioides sp. KP7. Chemosphere 38 : 1331 1337.[PubMed][CrossRef]
60. Fredrickson JK, Balkwill DL, Drake GR, Romine MF, Ringelberg DB, White DC. 1995. Aromatic-degrading Sphingomonas isolates from the deep subsurface. Appl Environ Microbiol 61 : 1917 1922.[PubMed]
61. Yun SH, Choi C-W, Lee S-Y, Lee YG, Kwon J, Leem SH, Chung YH, Kahng H-Y, Kim SJ, Kwon KK, Kim SI. 2014. Proteomic characterization of plasmid pLA1 for biodegradation of polycyclic aromatic hydrocarbons in the marine bacterium, Novosphingobium pentaromativorans US6-1. PLoS One 9 : e90812.[PubMed][CrossRef]
62. Jeon CO, Park M, Ro H-S, Park W, Madsen EL. 2006. The naphthalene catabolic ( nag) genes of Polaromonas naphthalenivorans CJ2: evolutionary implications for two gene clusters and novel regulatory control. Appl Environ Microbiol 72 : 1086 1095.[PubMed][CrossRef]
63. Takizawa N, Iida T, Sawada T, Yamauchi K, Wang Y-W, Fukuda M, Kiyohara H. 1999. Nucleotide sequences and characterization of genes encoding naphthalene upper pathway of Pseudomonas aeruginosa PaK1 and Pseudomonas putida OUS82. J Biosci Bioeng 87 : 723 731.[CrossRef]
64. Denome SA, Stanley DC, Olson ES, Young KD. 1993. Metabolism of dibenzothiophene and naphthalene in Pseudomonas strains: complete DNA sequence of an upper naphthalene catabolic pathway. J Bacteriol 175 : 6890 6901.[PubMed]
65. Simon MJ, Osslund TD, Saunders R, Ensley BD, Suggs S, Harcourt A, Suen W, Cruden DL, Gibson DT, Zylstra GJ. 1993. Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB9816-4. Gene 127 : 31 37.[PubMed][CrossRef]
66. Kurkela S, Lehvaäslaiho H, Palva ET, Teeri TH. 1988. Cloning, nucleotide sequence and characterization of genes encoding naphthalene dioxygenase of Pseudomonas putida strain NCIB9816. Gene 73 : 355 362.[PubMed][CrossRef]
67. Kiyohara H, Torigoe S, Kaida N, Asaki T, Iida T, Hayashi H, Takizawa N. 1994. Cloning and characterization of a chromosomal gene cluster, pah, that encodes the upper pathway for phenanthrene and naphthalene utilization by Pseudomonas putida OUS82. J Bacteriol 175 : 2439 2443.
68. Davies JI, Evans WC. 1964. Oxidative metabolism of naphthalene by soil pseudomonads. Biochem J 91 : 251 261.[PubMed][CrossRef]
69. Rosselló-Mora RA, Lalucat J, García-Valdés E. 1994. Comparative biochemical and genetic analysis of naphthalene degradation among Pseudomonas stutzeri strains. Appl Environ Microbiol 60 : 966 972.
70. Fuenmayor SL, Wild M, Boyes AL, Williams PA. 1998. A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2. J Bacteriol 180 : 2522 2530.[PubMed]
71. Larkin MJ, Allen CCR, Kulakov LA, Lipscomb DA. 1999. Purification and characterization of a novel naphthalene dioxygenase from Rhodococcus sp. strain NCIMB12038. J Bacteriol 181 : 6200 6204.[PubMed]
72. Schuler L, Jouanneau Y, Chadhian SMN, Meyer C, Pouli M, Zylstra GJ, Hols P, Agathos SN. 2009. Characterization of a ring-hydroxylating dioxygenase from phenanthrene-degrading Sphingomonas sp. strain LH128 able to oxidize benz[a]anthracene. Appl Microbiol Biotechnol 83 : 465 475.[PubMed][CrossRef]
73. Pinyakong O, Habe H, Omori T. 2003. The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs). J Gen Appl Microbiol 49 : 1 19.[PubMed][CrossRef]
74. Khara P, Roy M, Chakraborty J, Ghosal D, Dutta TK. 2014. Functional characterization of diverse ring-hydroxylating oxygenases and induction of complex aromatic catabolic gene clusters in Sphingobium sp. PNB. FEBS Open Bio 4 : 290 300.[CrossRef]
75. Story SP, Parker SH, Kline JD, Tzeng T–RJ, Mueller JG, Kline EL. 2000. Identification of four structural genes and two putative promoters necessary for utilization of naphthalene, phenanthrene, and fluoranthene by Sphingomonas paucimobilis var. EPA505. Gene 2000 : 155 169.[CrossRef]
76. Demanèche S, Meyer C, Micoud J, Louwagie M, Willison JC, Jouanneau Y. 2004. Identification and functional analysis of two aromatic-ring-hydroxylating dioxygenases from a Sphingomonas strain that degrades various polycyclic aromatic hydrocarbons. Appl Environ Microbiol 70 : 6714 6725.[CrossRef]
77. Chadhain SMN, Moritz EM, Kim E, Zylstra GJ. 2007. Identification, cloning, and characterization of a multicomponent biphenyl dioxygenase from Sphingobium yanoikuyae B1. J Ind Microbiol Biotechnol 34 : 605 613.[PubMed][CrossRef]
78. Habe H, Miyakoshi M, Chung J, Kasuga K, Yoshida T, Nojiri H, Omori T. 2003. Phthalate catabolic gene cluster is linked to the angular dioxygenase gene in Terrabacter sp. strain DBF63. Appl Microbiol Biotechnol 61 : 44 54.[PubMed][CrossRef]
79. DeBruyn JM, Mead TJ, Sayley GS. 2012. Horizontal transfer of PAH catabolism genes in Mycobacterium; evidence from comparative genomics and isolated pyrene-degrading bacteria. Environ Sci Technol 46 : 99 106.[PubMed][CrossRef]
80. Gan HM, Hudson AO, Rahman AYA, Chan KG, Savka MA. 2013. Comparative genomic analysis of six bacteria belonging to the genus Novosphingobium: insights into marine adaptation, cell-cell signaling and bioremediation. BMC Genomics 14 : 431.[PubMed][CrossRef]
81. Kweon O, Kim S-J, Blom J, Kim S-K, Kim B-S, Baek D-H, Park SI, Sutherland JB, Cerniglia CE. 2015. Comparative functional pan-genome analyses to build connections between genomic dynamics and phenotypic evolution in polycyclic aromatic hydrocarbon metabolism in the genus Mycobacterium. BMC Evol Biol 15 : 21.[PubMed][CrossRef]
82. D'Argenio Y, Notomista E, Petrillo M, Cantiello P, Cafaro V, Izzo V, Naso B, Cozzuto L, Durante L, Troncone L, Paolella G, Salvatore F, Di Donato A. 2015. Complete sequencing of Novosphingobium sp. PP1Y reveals a biotechnologically meaningful metabolic pattern. BMC Genomics 15 : 384.[CrossRef]
83. Stingley RL, Khan AA, Cerniglia CE. 2004. Molecular characterization of a phenanthrene degradation pathway in Mycobacterium vanbaalenii PYR-1. Biochem Biophys Res Commun 322 : 133 146.[PubMed][CrossRef]
84. Casellas M, Grifoll M, Bayona JM, Solanas AM. 1997. New metabolites in the degradation of fluorene by Arthrobacter sp. strain F101. Appl Environ Microbiol 63 : 819 826.[PubMed]
85. Engesser KH, Strubel V, Christoglou K, Fischer P, Rast HG. 1989. Dioxygenolytic cleavage of aryl ether bonds: 1,10-dihydro-1, 10-dihydroxyfluoren-9-one, a novel arene dihydrodiol as evidence for angular dioxygenation of dibenzofuran. FEMS Microbiol Lett 65 : 205 209.[CrossRef]
86. Monna L, Omori T, Kodama T. 1993. Microbial degradation of dibenzofuran, fluorene, and dibenzo- p-dioxin by Staphylococcus auriculans DBF63. Appl Environ Microbiol 59 : 285 289.[PubMed]
87. Habe H, Chung J-S, Kato H, Ayabe Y, Kasuga K, Yoshida T, Nojiri H, Yamane H, Omori T. 2004. Characterization of the upper pathway genes for fluorene metabolism in Terrabacter sp. strain DBF63. J Bacteriol 186 : 5938 5944.[PubMed][CrossRef]
88. Habe H, Chung J-S, Ishida A, Kasuga K, Ide K, Takemura T, Nojiri H, Yamane H, Omori T. 2005. The fluorene catabolic linear plasmid in Terrabacter sp. strain DBF63 carries the β-ketoadipate pathway genes, pcaRHGBDCFIJ, also found in proteobacteria. Microbiology 151 : 3713 3722.[PubMed][CrossRef]
89. Kanaly RA, Harayama S. 2010. Advances in the field of high-molecular weight polycyclic aromatic hydrocarbon biodegradation by bacteria. Micro Biotechnol 3 : 136 164.[CrossRef]
90. Kim S-J, Jones RC, Cha C-J, Kweon O, Edmondson RD, Cerniglia CE. 2004. Identification of proteins induced by polycyclic aromatic hydrocarbon in Mycobacterium vanbaalenii PYR-1 using two-dimensional polyacrylamide gel electrophoresis and de novo sequencing method. Proteomics 4 : 3899 3909.[PubMed][CrossRef]
91. Kim S-J, Kweon O, Jones RC, Freeman JP, Edmondson RD, Cerniglia CE. 2007. Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology. J Bacteriol 189 : 464 472.[PubMed][CrossRef]
92. Kweon O, Kim S-J, Freeman JP, Song J, Baek S, Cerniglia CE. 2010. Substrate specificity and structural characteristics of the novel Rieske nonheme iron aromatic ring-hydroxylating oxygenase NidAB and NidA3B3 from Mycobacterium vanbaalenii PYR-1. mBio 1 : e00135.[PubMed][CrossRef]
93. Kweon O, Kim S-J, Holland RD, Chen H, Kim D-W, Gao Y, Yu L-R, Baek S, Baek D-H, Ahn H, Cerniglia CE. 2011. Polycyclic aromatic hydrocarbon metabolic network in Mycobacterium vanbaalenii PYR-1. J Bacteriol 193 : 4326 4337.[PubMed][CrossRef]
94. Vila J, López Z, Sabaté J, Minguillón C, Solanas AM, Grifoll M. 2001. Identification of a novel metabolite in the degradation of pyrene by Mycobacterium sp. strain AP1: actions of the isolate on two- and three-ring polycyclic aromatic hydrocarbons. Appl Environ Microbiol 67 : 5497 5505.[PubMed][CrossRef]
95. Sohn JH, Kwon KK, Kang J-H, Jung H-B, Kim S-J. 2004. Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. Int J Syst Evol Microbiol 54 : 1483 1487.[PubMed][CrossRef]
96. Lou YR, Kang SG, Kim S-J, Kim M-R, Li N, Lee J-H, Kwon KK. 2012. Genome sequence of benzo(a)pyrene-degrading bacterium Novosphingobium pentaromativorans US6-1. J Bacteriol 194 : 907.[PubMed][CrossRef]
97. Lyu Y, Zheng W, Zheng T, Tian Y. 2014. Biodegradation of polycyclic aromatic hydrocarbons by Novosphingobium pentaromativorans US6-1. PLoS One 9 : e101438.[PubMed][CrossRef]
98. Licht D, Ahring BK, Arvin E. 1996. Effects of electron acceptors, reducing agents, and toxic metabolites on anaerobic degradation of heterocyclic compounds. Biodegradation 7 : 83 90.[CrossRef]
99. Blum P, Sagner A, Tiehm A, Martus P, Wendel T, Grathwohl P. 2011. Importance of heterocyclic aromatic compounds in monitored natural attenuation for coal tar contaminated aquifers: a review, J Contam Hydrol 126 : 181 194.[PubMed][CrossRef]
100. WHO 2013. International Agency for Research in Cancer. IARC monograph on the evaluation of carcinogenic risks to humans. http://monographs.iarc.fr/ENG/Monographs/vol103/index.php.
101. Ouchiyama N, Zhang Y, Omori T, Kodama T. 1993. Biodegradation of carbazole by Pseudomonas spp. CA06 and CA10. Biosci Biotech Biochem 57 : 455 460.[CrossRef]
102. Omori T, Monna L, Saiki Y, Kodama T. 1992. Desulphurization of dibenzothiophene by Corynebacterium sp. strain SY1. Appl Environ Microbiol 58 : 911 915.[PubMed]
103. Claus G, Kutzner HJ. 1983. Degradation of indole by Alcaligenes spec. Sys Appl Microbiol 4 : 169 180.[CrossRef]
104. Tuo BH, Yan JB, Fan BA, Yang ZH, Liu JZ. 2012. Biodegradation characteristics and bioaugmentation potential of a novel quinoline-degrading strain of Bacillus sp. isolated from petroleum-contaminated soil. Biores Technol 107 : 55 60.[CrossRef]
105. Fuse H, Takimura O, Murakami K, Inoue H, Yamaoka Y. 2003. Degradation of chlorinated biphenyl, dibenzofuran, and dibenzo- p-dioxin by marine bacteria that degrade biphenyl, carbazole, or dibenzofuran. Biosci Biotechnol Biochem 67 : 1121 1125.[PubMed][CrossRef]
106. Gilbert SC, Morton J, Buchanan S, Oldfield C, McRoberts A. 1998. Isolation of a unique benzothiophene desulphurizing bacterium, Gordona sp. strain 213E (NCIMB 40816), and characterization of the desulphurization pathway. Microbiology 144 : 2545 2553.[PubMed][CrossRef]
107. Rhee S-K, Chang JH, Chang YK, Chang HN. 1998. Desulfurization of dibenzothiophene and diesel oils by a newly isolated Gordona strain, CYKS1. Appl Environ Microbiol 64 : 2327 2331.[PubMed]
108. Alves L, Melo M, Mendonça D, Simões F, Matos J, Tenreiro R, Gírio FM. 2007. Sequencing, cloning and expression of the dsz genes required for dibenzothiophene sulfone desulfurization from Gordonia alkanivorans strain 1B. Enz Microb Technol 40 : 1598 1603.[CrossRef]
109. Alves L, Salgueiro R, Rodrigues C, Mesquita E, Matos J, Gírio FM. 2005. Desulfurization of dibenzothiophene, benzothiophene, and other thiophene analogs by a newly isolated bacterium, Gordonia alkanivorans strain 1B. Appl Biochem Biotechnol 120 : 199 208.[PubMed][CrossRef]
110. Wang W, Ma T, Lian K, Zhang Y, Tian H, Ji K, Li G. 2013. Genetic analysis of benzothiophene biodesulfurization pathway of Gordonia terrae strain C-6. PLoS One 8 : e84386.[PubMed][CrossRef]
111. Yamazoe A, Yagi O, Oyaizu H. 2004. Degradation of polycyclic aromatic hydrocarbons by a newly isolated dibenzofuran-utilizing Janibacter sp. strain YY-1. Appl Microbiol Biotechnol 65 : 211 218.[PubMed][CrossRef]
112. Inoue K, Widada J, Nakai S, Endoh T, Urata M, Ashikawa Y, Shintani M, Saiki Y, Yoshida T, Habe H, Omori T, Nojiri H. 2004. Divergent structures of carbazole degradative car operons isolated from Gram-negative bacteria. Biosci Biotechnol Biochem 68 : 1467 1480.[PubMed][CrossRef]
113. Maeda R, Nagashima H, Widada J, Iwata K, Omori T. 2009. Novel marine carbazole-degrading bacteria. FEMS Microbiol Lett 292 : 203 209.[PubMed][CrossRef]
114. Maeda R, Ishii T, Ito Y, Zulkharnain AB, Iwata K, Omori T. 2010. Isolation and characterization of the gene encoding the chloroplast-type ferredoxin component of carbazole 1,9a-dioxygenase from Kordiimonas sp. Biotechnol Lett 32 : 1725 1731.[PubMed][CrossRef]
115. Maeda R, Nagashima H, Zulkharnain AB, Iwata K, Omori T. 2009. Isolation and characterization of a car gene cluster from the naphthalene, phenanthrene, and carbazole-degrading marine isolate Lysobacter sp. strain OC7. Curr Microbiol 59 : 154 159.[PubMed][CrossRef]
116. Yu B, Tao F, Li F, Hou J, Tang H, Ma C, Xu P. 2015. Complete genome sequence of Mycobacterium goodie X7B, a facultative thermophilic biodesulfurizing bacterium with industrial potential. J Biotechnol 212 : 56 57.[PubMed][CrossRef]
117. Kayser KJ, Cleveland L, Park H-S, Kwak J-H, Kolhatkar A, Kilbane JJ II. 2002. Isolation and characterization of a moderate thermophile, Mycobacterium phlei GTIS10 capable of dibenzothiophene desulfurization. Appl Microbiol Biotechnol 59 : 737 745.[PubMed][CrossRef]
118. Nekozuka S, Nakajima-Kambe T, Nomura N, Jie L, Nakahara T. 1997. Specific desulphurization of dibenzothiophene by Mycobacterium sp. G3. Biocatal Biotransfor 15 : 17 27.[CrossRef]
119. Nomura N, Takada M, Okada H, Shinohara Y, Nakajima-Kambe T, Nakahara T, Uchiyama H. 2005. Identification and functional analysis of genes required for desulfurization of alkyl dibenzothiophenes of Mycobacterium sp. G3. J Biosci Bioeng 100 : 398 402.[PubMed][CrossRef]
120. Nagashima H, Zulkharnain AB, Maeda R, Fuse H, Iwata K, Omori T. 2010. Cloning and nucleotide sequences of carbazole degradation genes from marine bacterium Neptuniibacter sp. strain CAR-SF. Curr Microbiol 61 : 50 56.[PubMed][CrossRef]
121. Inoue K, Habe H, Yamane H, Omori T, Nojiri H. 2005. Diversity of carbazole-degrading bacteria having the car gene cluster: Isolation of a novel gram-positive carbazole-degrading bacterium. FEMS Microbiol Lett 245 : 145 153.[PubMed][CrossRef]
122. Inoue K, Habe H, Yamane H, Nojiri H. 2007. Characterization of novel carbazole catabolism genes from Gram-positive carbazole degrader Nocardioides aromaticivorans IC177. Appl Environ Microbiol 72 : 3321 3329.[CrossRef]
123. Miyauchi K, Sukda P, Nishida T, Ito E, Matsumoto Y, Masai E, Fukuda M. 2008. Isolation of dibenzofuran-degrading dacterium, Nocardioides sp. DF412, and characterization of its dibenzofuran degradation genes. J Biosci Bioeng 105 : 628 635.[PubMed][CrossRef]
124. Konishi J, Ishii Y, Onaka T, Okumura K. 1997. Thermophilic carbon-sulfur-bond-targeted biodesulfurization. Appl Environ Microbiol 63 : 3164 3169.[PubMed]
125. Konishi J, Onaka T, Ishii Y, Suzuki M. 2000. Demonstration of the carbon-sulfur bond targeted desulfurization of benzothiophene by thermophilic Paenibacillus sp. strain A11-2 capable of desulfurizing dibenzothiophene. FEMS Microbiol Lett 187 : 151 154.[PubMed][CrossRef]
126. Yin B, Gu J–D, Wan N. 2005. Degradation of indole by enrichment culture and Pseudomonas aeruginosa Gs isolated from mangrove sediment. Int Biodeter Biodegr 56 : 243 348.[CrossRef]
127. Kilbane JJ II, Ranganathan R, Cleveland L, Kayser KJ, Ribiero C, Linhare MM. 2000. Selective removal of nitrogen from quinoline and petroleum by Pseudomonas ayucida IGTN9 m. Appl Environ Microbiol 6 : 688 693.[CrossRef]
128. Bläse M, Bruntner C, Tshisuaka B, Fetzner S, Lingens F. 1996. Cloning, expression, and sequence analysis of the three genes encoding quinoline 2-oxidoreductase, a molybdenum-containing hydroxylase from Pseudomonas putida 86. J Biol Chem 271 : 23068 23079.[CrossRef]
129. Carl B, Arnold A, Hauer B, Fetzner S. 2004. Sequence and transcriptional analysis of a gene cluster of Pseudomonas putida 86 involved in quinoline degradation. Gene 331 : 177 188.[PubMed][CrossRef]
130. Sun QH, Bai YH, Zhao C, Xiao YN, Wen DH, Tang XY. 2009. Aerobic biodegradation characteristics and metabolic products of quinoline by a Pseudomonas strain. Biores Technol 100 : 5030 5036.[CrossRef]
131. Fortnagel P, Harms H, Wittich R-M, Krohn S, Meyer H, Sinnwell V, Wilkes H, Francke W. 1990. Metabolism of dibenzofuran by Pseudomonas sp. strain HH69 and the mixed culture HH27. Appl Environ Microbiol 56 : 1148 1156.[PubMed]
132. Gieg LM, Otter A, Fedorak PM. 1996. Carbazole degradation by Pseudomonas sp. LD2: Metabolic characterization and the identification of some metabolites. Environ Sci Technol 30 : 575 585.[CrossRef]
133. Izumi Y, Ohshiro T, Ogino H, Hine Y, Shimao M. 1994. Selective desulfurization of dibenzothiophene by Rhodococcus erythropolis D-1. Appl Environ Microbiol 60 : 223 226.[PubMed]
134. Gallahger JR, Olson ES, Stanley DC. 1993, Microbial desulfurization of dibenzothiophene: a sulfur-specific pathway. FEMS Microbiol Lett 107 : 31 36.[PubMed][CrossRef]
135. Kobayashi M, Onaka T, Ishii Y, Konishi J, Takaki M, Okada H, Ohta Y, Koizumi K, Suzuki M. 2000. Desulfurization of alkylated forms of both dibenzothiophene and benzothiophene by a single bacterial strain. FEMS Microbiol Lett 187 : 123 126.[PubMed][CrossRef]
136. Kimura N, Urushigawa Y. 2001. Metabolism of dibenzo- p-dioxin and chlorinated dibenzo- p-dioxin by a Gram-positive bacterium, Rhodococcus opacus SAO101. J Biosci Bioeng 92 : 138 143.[PubMed][CrossRef]
137. Iida T, Mukouzaka Y, Nakamura K, Yamaguchi I, Kudo T. 2002. Isolation and characterization of dibenzofuran-degrading Actinomycetes: analysis of multiple extradiol dioxygenase genes in dibenzofuran-degrading Rhodococcus species. Biosci Biotechnol Biochem 66 : 1462 1472.[PubMed][CrossRef]
138. Kilbane JJ II, Daram A, Abbasian J, Kayser KJ. 2002. Isolation and characterization of Sphingomonas sp. GTIN11 capable of carbazole metabolism in petroleum. Biochem Biophys Res Commun 297 : 242 248.[PubMed][CrossRef]
139. Habe H, Ashikawa Y, Saiki Y, Yoshida T, Nojiri H, Omori T. 2002. Sphingomonas sp. strain KA1, carrying a carbazole dioxygenase gene homologue, degrades chlorinated dibenzo- p-dioxins in soil. FEMS Microbiol Lett 211 : 43 49.[PubMed][CrossRef]
140. Urata M, Uchimura H, Noguchi H, Sakaguchi T, Takemura T, Eto K, Habe H, Omori T, Yamane H, Nojiri H. 2006. Plasmid pCAR3 contains multiple gene sets involved in the conversion of carbazole to anthranilate. Appl Environ Microbiol 72 : 3198 3205.[PubMed][CrossRef]
141. Wittich RM, Wilkes H, Sinnwell V, Francke W, Fortnagel P. 1992. Metabolism of dibenzo- p-dioxin by Sphingomonas sp. strain RW1. Appl Environ Microbiol 58 : 1005 1010.[PubMed]
142. Takagi T, Habe H, Yoshida T, Yamane H, Omori T, Nojiri H. 2005. Characterization of [3Fe-4S] ferredoxin DbfA3, which functions in the angular dioxygenase system of Terrabacter sp. strain DBF63. Appl Microbiol Biotechnol 68 : 336 345.[PubMed][CrossRef]
143. Schmid A, Rothe B, Altenbuchner J, Ludwig W, Engesser KH. 1997. Characterization of three distinct extradiol dioxygenases involved in mineralization of dibenzofuran by Terrabacter sp. strain DPO360. J Bacteriol 179 : 53 62.[PubMed]
144. Sato S, Nam J-W, Kasuga K, Nojiri H, Yamane H, Omori T. 1997. Identification and characterization of genes encoding carbazole 1,9a-dioxygenase in Pseudomonas sp. strain CA10. J Bacteriol 179 : 4850 4858.[PubMed]
145. Sato S, Oouchiyama N, Kimura T, Nojiri H, Yamane H, Omori T. 1997. Cloning of genes involved in carbazole degradation of Pseudomonas sp. strain CA10: nucleotide sequences of genes and characterization of meta-cleavage enzymes and hydrolase. J Bacteriol 179 : 4841 4849.[PubMed]
146. Nojiri H. 2012. Structural and molecular genetic analyses of the bacterial carbazole degradation system. Biosci Biotechnol Biochem 76 : 1 18.[PubMed][CrossRef]
147. Benedik MJ, Gibbs PR, Riddle RR, Willson RC. 1998. Microbial denitrogenation of fossil fuels. Trends Biotechnol 16 : 390 395.[PubMed][CrossRef]
148. Kodama K, Umehara K, Shimizu K, Nakatani S, Minoda Y, Yamada K. 1973. Identification of microbial products from dibenzothiophene and its proposed oxidation pathway. Agric Biol Chem 37 : 45 50.[CrossRef]
149. Strubel V, Rast HG, Fietz W, Knackmuss H-J, Engesser KH. 1989. Enrichment of dibenzofuran utilizing bacteria with high co-metabolic potential towards dibenzodioxin and other anellated aromatics. FEMS Microbiol Lett 58 : 233 238.[CrossRef]
150. Stope MB, Becher D, Hammer E, Schauer F. 2002. Cometabolic ring fission of dibenzofuran by Gram-negative and Gram-positive biphenyl-utilizing bacteria. Appl Microbiol Biotechnol 59 : 62 67.[PubMed][CrossRef]
151. Le TT, Murugesan K, Nam I-H, Jeon J-R, Chang Y-S. 2013. Degradation of dibenzofuran via multiple dioxygenation by a newly isolated Agrobacterium sp. PH-08. J Appl Microbiol 116 : 542 553.[PubMed][CrossRef]

Tables

Generic image for table
TABLE 1

BTEX chemical structures and properties

Citation: Inoue K, Pinyakong O, Kasuga K, Nojiri H. 2016. A Basic Introduction to Aerobic Biodegradation of Petroleum Aromatic Compounds, p 5.1.5-1-5.1.5-18. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch5.1.5
Generic image for table
TABLE 2

BTEX-degrading strains, source of the isolates, degradation genes, and references

Citation: Inoue K, Pinyakong O, Kasuga K, Nojiri H. 2016. A Basic Introduction to Aerobic Biodegradation of Petroleum Aromatic Compounds, p 5.1.5-1-5.1.5-18. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch5.1.5
Generic image for table
TABLE 3

PAHs chemical structures and properties

Citation: Inoue K, Pinyakong O, Kasuga K, Nojiri H. 2016. A Basic Introduction to Aerobic Biodegradation of Petroleum Aromatic Compounds, p 5.1.5-1-5.1.5-18. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch5.1.5
Generic image for table
TABLE 4

Naphthalene, fluorene, phenanthrene, anthracene, and pyrene-degrading strains, source of the isolates, degradation genes, and references

Citation: Inoue K, Pinyakong O, Kasuga K, Nojiri H. 2016. A Basic Introduction to Aerobic Biodegradation of Petroleum Aromatic Compounds, p 5.1.5-1-5.1.5-18. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch5.1.5
Generic image for table
TABLE 5

HAC chemical structures and properties

Citation: Inoue K, Pinyakong O, Kasuga K, Nojiri H. 2016. A Basic Introduction to Aerobic Biodegradation of Petroleum Aromatic Compounds, p 5.1.5-1-5.1.5-18. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch5.1.5
Generic image for table
TABLE 6

HACs-degrading strains, source of the isolates, degradation genes, and references

Citation: Inoue K, Pinyakong O, Kasuga K, Nojiri H. 2016. A Basic Introduction to Aerobic Biodegradation of Petroleum Aromatic Compounds, p 5.1.5-1-5.1.5-18. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch5.1.5

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error