1887

Chapter 5.2.3 : Microbial Uses in the Remediation of Metal-Impacted Soils

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Microbial Uses in the Remediation of Metal-Impacted Soils, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch5.2.3-1.gif /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch5.2.3-2.gif

Abstract:

Metal(loid)-impacted soils represent one of the more difficult environmental systems to remediate. Physicochemical heterogeneities combined with varying environmental conditions challenge both abiotic and biotic mitigation efforts. Yet, metal toxicities within soil systems are a growing concern that due to the recalcitrance of metals and metalloids will continue to persist. With renewed efforts, microbial-based technologies are being examined in the identification, prevention and remediation of metal-impacted soils, resulting in a re-emergence of old technologies with new perspectives and novel microbial uses. This chapter summarizes some of these efforts and provides a look into the future of microbial-based soil remediation.

Citation: Roane T, Lantz M. 2016. Microbial Uses in the Remediation of Metal-Impacted Soils, p 5.2.3-1-5.2.3-10. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch5.2.3
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555818821.ch5.2.3
1. Adrees M, Ali S, Rizwan M, Zia-ur-Rehman M, Ibrahim M, Abbas F, Farid M, Qayyum MF, Irshad MK. 2015. Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicol Environ Saf 119:186197.[PubMed][CrossRef]
2. Rana SVS. 2014. Perspectives in endocrine toxicity of heavy metals—a review. Biol Trace Elem Res 160:114.
3. Goyer RA. 1997. Toxic and essential metal interactions. Annu Rev Nutr 17:3750.[CrossRef]
4. Friberg L. 1984. Cadmium and the kidney. Environ Health Perspect 54:111.[PubMed][CrossRef]
5. Sahoo PK, Kim K, Equeenuddin SM, Powell MA. 2013. Current approaches for mitigating acid mine drainage. Rev Environ Contam Toxicol 226:132.[PubMed]
6. Shuman LM,. 1991. Chemical forms of micronutrients in soils, p. 113144. In Mortvedt J, Cox F, Shuman L, Welch R (eds), Micronutrients in agriculture, 2nd ed. Soil Science Society of America, Madison, WI.
7. Loganathan P, Vigneswaran S, Kandasamy J, Naidu R. 2012. Cadmium sorption and desorption in soils: a review. Crit Rev Environ Sci Technol 42:489533.[CrossRef]
8. Kelley ME, Brauning SE, Schoof RA, Ruby MV. 2002. Assessing Oral Bioavailability of Metals in Soil. Battelle Press, Columbus, OH.
9. Alvarenga P, Palma P, Gonçalves AP, Fernandes RM, de Varennes A, Vallini G, Duarte E, Cunha-Queda AC. 2008. Evaluation of tests to assess the quality of mine-contaminated soils. Environ Geochem Health 30:9599.[PubMed][CrossRef]
10. Ng JC, Juhasz A, Smith E, Naidu R. 2013. Assessing the bioavailability and bioaccessibility of metals and metalloids. Environ Sci Pollut Res 22:88028825.[CrossRef]
11. Villen-Guzman M, Paz-Garcia JM, Amaya-Santos G, Rodriguez-Maroto JM, Vereda-Alonso C, Gomez-Lahoz C. 2015. Effects of the buffering capacity of the soil on the mobilization of heavy metals. Equilibrium and kinetics. Chemosphere 131:7884.[PubMed][CrossRef]
12. Pascaud G, Leveque T, Soubrand M, Boussen S, Joussein E, Dumat C. 2014. Environmental and health risk assessment of Pb, Zn, As and Sb in soccer field soils and sediments from mine tailings: solid speciation and bioaccessibility. Environ Sci Pollut Res Int 21:42544264.[PubMed][CrossRef]
13. Sandrin TR, Maier RM. 2002. Effect of pH on cadmium toxicity, speciation, and accumulation during naphthalene biodegradation. Environ Toxicol Chem 21:20752079.[PubMed][CrossRef]
14. Niu H, Volesky B. 2003. Characteristics of anionic metal species biosorption with waste crab shells. Hydrometallurgy 71:209215.[CrossRef]
15. Cornu JY, Denaix L, Schneider A, Pellerin S. 2007. Temporal evolution of redox processes and free Cd dynamics in a metal-contaminated soil after rewetting. Chemosphere 70:306314.[PubMed][CrossRef]
16. Peng JF, Song YH, Yuan P, Cui XY, Qiu GL. 2009. The remediation of heavy metals contaminated sediment. J Hazard Mater 161:633640.[PubMed][CrossRef]
17. Jarecki MK, Lal R. 2005. Soil organic carbon sequestration rates in two long-term no-till experiments in Ohio. Soil Sci 170:280291.[CrossRef]
18. Mclean JE, Bledsoe BE. 1992. Behavior of metals in soils. EPA Gr Water 125. 10.1056/NEJMoa030660 http://dx.doi.org/10.1056/NEJMoa030660
19. Meeinkuirt W, Pokethitiyook P, Kruatrachue M, Tanhan P, Chaiyarat R. 2012. Phytostabilization of a Pb-contaminated mine tailing by various tree species in pot and field trial experiments. Int J Phytoremed 14:925938.[CrossRef]
20. Mendez MO, Maier RM. 2008. Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environ Health Perspect 116:278283.[PubMed][CrossRef]
21. Ammami MT, Portet-Koltalo F, Benamar A, Duclairoir-Poc C, Wang H, Le Derf F. 2015. Application of biosurfactants and periodic voltage gradient for enhanced electrokinetic remediation of metals and PAHs in dredged marine sediments. Chemosphere 125:18.[PubMed][CrossRef]
22. Demir A, Pamukcu S, Shrestha RA. 2015. Simultaneous removal of Pb, Cd, and Zn from heavily contaminated mine tailing soil using enhanced electrochemical process. Environ Eng Sci 32:416424.[CrossRef]
23. Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K. 2014. Remediation of heavy metal(loid)s contaminated soils—to mobilize or to immobilize? J Hazard Mater 266:141166.[PubMed][CrossRef]
24. Radu AD, Panturu E, Woinaroschy A, Isopescu R. 2015. Experimental design and process optimization for uranium polluted soils decontamination by acid washing. Water, Air, Soil Pollut 226:127.[CrossRef]
25. Yi YM, Sung K. 2015. Influence of washing treatment on the qualities of heavy metal–contaminated soil. Ecol Eng 81:8992.[CrossRef]
26. Li Y, Hu P, Zhao J, Dong C. 2015. Remediation of cadmium- and lead-contaminated agricultural soil by composite washing with chlorides and citric acid. Environ Sci Pollut Res 22:55635571.[CrossRef]
27. He F, Gao J, Pierce E, Strong PJ, Wang H, Liang L. 2015. In situ remediation technologies for mercury-contaminated soil. Environ Sci Pollut Res 22:81248147.[CrossRef]
28. Ouellet S, Bussière B, Mbonimpa M, Benzaazoua M, Aubertin M. 2006. Reactivity and mineralogical evolution of an underground mine sulphidic cemented paste backfill. Miner Eng 19:407419.[CrossRef]
29. Nehdi M, Tariq A. 2007. Stabilization of sulphidic mine tailings for prevention of metal release and acid drainage using cementitious materials: a review. J Environ Eng Sci 6:423436.[CrossRef]
30. Pašková V, Hilscherová K, Bláha L. 2011. Mechanisms of hexavalent chromium resistance and removal by microorganisms. Rev Environ Contam Toxicol 211233:4569.
31. Bodour AA, Drees KP, Maier RM. 2003. Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid southwestern soils. Appl Environ Microbiol 69:32803287.[PubMed][CrossRef]
32. Schalk IJ, Guillon L. 2013. Pyoverdine biosynthesis and secretion in Pseudomonas aeruginosa: implications for metal homeostasis. Environ Microbiol 15:16611673.[PubMed][CrossRef]
33. Juwarkar AA, Nair A, Dubey KV, Singh SK, Devotta S. 2007. Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 68:19962002.[PubMed][CrossRef]
34. Sandrin TR, Chech AM, Maier RM. 2000. A rhamnolipid biosurfactant reduces cadmium toxicity during naphthalene biodegradation. Appl Environ Microbiol 66:45854588.[PubMed][CrossRef]
35. Mulligan CN. 2005. Environmental applications for biosurfactants. Environ Pollut 133:183198.[PubMed][CrossRef]
36. Bentley R, Chasteen TG. 2002. Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 66:250271.[PubMed][CrossRef]
37. Thayer JS. 2002. Biological methylation of less-studied elements. Appl Organomet Chem 16:677691.[CrossRef]
38. Meyer J, Schmidt A, Michalke K, Hensel R. 2007. Volatilisation of metals and metalloids by the microbial population of an alluvial soil. Syst Appl Microbiol 30:229238.[PubMed][CrossRef]
39. Gadd GM. 2009. Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84:1328.[CrossRef]
40. Chojnacka K. 2010. Biosorption and bioaccumulation—the prospects for practical applications. Environ Int 36:299307.[PubMed][CrossRef]
41. De Philippis R, Colica G, Micheletti E. 2011. Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: molecular basis and practical applicability of the biosorption process. Appl Microbiol Biotechnol 92:697708.[PubMed][CrossRef]
42. Vasák M, Hasler DW. 2000. Metallothioneins: new functional and structural insights. Curr Opin Chem Biol 4:177183.[CrossRef]
43. Blindauer CA. 2011. Bacterial metallothioneins: past, present, and questions for the future. J Biol Inorg Chem 16:10111024.[PubMed][CrossRef]
44. Robinson NJ, Whitehall SK, Cavet JS. 2001. Microbial metallothioneins. Adv Microb Physiol 44:183213.[PubMed][CrossRef]
45. Pagani A, Villarreal L, Capdevila M, Atrian S. 2007. The Saccharomyces cerevisiae Crs5 metallothionein metal-binding abilities and its role in the response to zinc overload. Mol Microbiol 63:256269.[PubMed][CrossRef]
46. Ruiz ON, Alvarez D, Gonzalez-Ruiz G, Torres C. 2011. Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase. BMC Biotechnol 11:82.[PubMed][CrossRef]
47. Azabou S, Mechichi T, Sayadi S. 2007. Zinc precipitation by heavy-metal tolerant sulfate-reducing bacteria enriched on phosphogypsum as a sulfate source. Miner Eng 20:173178.[CrossRef]
48. Jong T, Parry DL. 2003. Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs. Water Res 37:33793389.[PubMed][CrossRef]
49. Chaudhuri G, Dey P, Dalal D, Venu-Babu P, Thilagaraj WR. 2013. A novel approach to precipitation of heavy metals from industrial effluents and single-ion solutions using bacterial alkaline phosphatase. Water, Air, Soil Pollut 224:1625.[CrossRef]
50. Park JH, Bolan N, Megharaj M, Naidu R. 2011. Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil. J Hazard Mater 185:829836.[PubMed][CrossRef]
51. Martinez RJ, Beazley MJ, Taillefert M, Arakaki AK, Skolnick J, Sobecky PA. 2007. Aerobic uranium (VI) bioprecipitation by metal-resistant bacteria isolated from radionuclide- and metal-contaminated subsurface soils. Environ Microbiol 9:31223133.[PubMed][CrossRef]
52. Watling HR. 2006. The bioleaching of sulphide minerals with emphasis on copper sulphides—a review. Hydrometallurgy 84:81108.[CrossRef]
53. Rawlings DE. 2005. Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microb Cell Fact 4:13.[PubMed][CrossRef]
54. Cárdenas JP, Valdés J, Quatrini R, Duarte F, Holmes DS. 2010. Lessons from the genomes of extremely acidophilic bacteria and archaea with special emphasis on bioleaching microorganisms. Appl Microbiol Biotechnol 88:605620.[CrossRef]
55. Rawlings DE. 2002. Heavy metal mining using microbes. Annu Rev Microbiol 56:6591.[PubMed][CrossRef]
56. Zeng X, Wei S, Sun L, Jacques D a., Tang J, Lian M, Ji Z, Wang J, Zhu J, Xu Z. 2015. Bioleaching of heavy metals from contaminated sediments by the Aspergillus niger strain SY1. J Soils Sediments 15:10291038.[CrossRef]
57. Liu W, Lin J, Pang X, Cui S, Mi S, Lin J. 2011. Overexpression of rusticyanin in Acidithiobacillus ferrooxidans ATCC19859 increased Fe(II) oxidation activity. Curr Microbiol 62:320324.[PubMed][CrossRef]
58. Brune KD, Bayer TS. 2012. Engineering microbial consortia to enhance biomining and bioremediation. Front Microbiol 3:203.[PubMed][CrossRef]
59. Johnson DB, Yajie L, Okibe N. 2008. “Bioshrouding”: a novel approach for securing reactive mineral tailings. Biotechnol Lett 30:445449.[PubMed][CrossRef]
60. Johnson D, Hallberg KB,. 2007. Techniques for detecting and identifying acidophilic mineral-oxidizing microorganisms, p. 237. In Rawlings D, Johnson D (eds.), Biomining. Springer, Heidelberg.
61. Afzal GM, Okibe N, Barrie JD. 2007. Attachment of acidophilic bacteria to solid surfaces: the significance of species and strain variations. Hydrometallurgy 85:7280.[CrossRef]
62. Andersson AF, Banfield JF. 2008. Virus population dynamics and acquired virus resistance in natural microbial communities. Science 320:10471050.[PubMed][CrossRef]
63. Andreazza R, Bortolon L, Pieniz S, Camargo FAO. 2013. Copper phytoextraction and phytostabilization by Brachiaria decumbens Stapf in vineyard soils and a copper mining waste. Open J Soil Sci 3:273282.[CrossRef]
64. Ye ZH, Shu WS, Zhang ZQ, Lan CY, Wong MH. 2002. Evaluation of major constraints to revegetation of lead/zinc mine tailings using bioassay techniques. Chemosphere 47:11031111.[PubMed][CrossRef]
65. Rascio N, Navari-Izzo F. 2011. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169181.[PubMed][CrossRef]
66. Zhao F-J, McGrath SP, Meharg AA. 2010. Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535559.[PubMed][CrossRef]
67. Terry N, Zayed AM, Souza MP De, Tarun AS. 2000. Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401432.[PubMed][CrossRef]
68. Li X, Huang L. 2014. Toward a new paradigm for tailings phytostabilization—nature of the substrates, amendment options, and anthropogenic pedogenesis. Crit Rev Environ Sci Technol 45:813839.[CrossRef]
69. Li X, You F, Bond PL, Huang L. 2015. Establishing microbial diversity and functions in weathered and neutral Cu–Pb–Zn tailings with native soil addition. Geoderma 247–248:108116.[CrossRef]
70. Uzarowicz Ł, Skiba S. 2011. Technogenic soils developed on mine spoils containing iron sulphides: mineral transformations as an indicator of pedogenesis. Geoderma 163:95108.[CrossRef]
71. Sharma S, Singh B, Manchanda VK. 2014. Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environ Sci Pollut Res 22:946962.[CrossRef]
72. Xiong J, Madejόn P, Madejόn E, Cabrera F. 2015. Assisted natural remediation of a trace element-contaminated acid soil: an eight-year field study. Pedosphere 25:250262.[CrossRef]
73. Santibáñez C, Verdugo C, Ginocchio R. 2008. Phytostabilization of copper mine tailings with biosolids: implications for metal uptake and productivity of Lolium perenne. Sci Total Environ 395:110.[CrossRef]
74. Pepper IL, Zerzghi HG, Bengson SA, Iker BC, Banerjee MJ, Brooks JP. 2012. Bacterial populations within copper mine tailings: long-term effects of amendment with Class A biosolids. J Appl Microbiol 113:569577.[PubMed][CrossRef]
75. Solís-Dominguez FA, White SA, Hutter TB, Amistadi MK, Root RA, Chorover J, Maier RM. 2012. Response of key soil parameters during compost-assisted phytostabilization in extremely acidic tailings: effect of plant species. Environ Sci Technol 46:10191027.[CrossRef]
76. Gómez-Sagasti MT, Alkorta I, Becerril JM, Epelde L, Anza M, Garbisu C. 2012. Microbial monitoring of the recovery of soil quality during heavy metal phytoremediation. Water Air Soil Pollut 223:32493262.[CrossRef]
77. Rosario K, Iverson SL, Henderson DA, Chartrand S, McKeon C, Glenn EP, Maier RM. 2007. Bacterial community changes during plant establishment at the San Pedro River mine tailings site. J Environ Qual 36:12491259.[PubMed][CrossRef]
78. Shin M, Barrington SF, Marshall WD, Kim J-W. 2005. Effect of surfactant alkyl chain length on soil cadmium desorption using surfactant/ligand systems. Chemosphere 58:735742.[PubMed][CrossRef]
79. Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS. 2011. Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633654.[CrossRef]
80. Menezes CTB, Barros EC, Rufino RD, Luna JM, Sarubbo LA. 2011. Replacing synthetic with microbial surfactants as collectors in the treatment of aqueous effluent produced by acid mine drainage, using the dissolved air flotation technique. Appl Biochem Biotechnol 163:540546.[PubMed][CrossRef]
81. Aşçi Y, Nurbaş M, Sa Açikel Y. 2008. A comparative study for the sorption of Cd(II) by K-feldspar and sepiolite as soil components, and the recovery of Cd(II) using rhamnolipid biosurfactant. J Environ Manage 88:383392.[CrossRef]
82. Wen J, Stacey SP, McLaughlin MJ, Kirby JK. 2009. Biodegradation of rhamnolipid, EDTA and citric acid in cadmium and zinc contaminated soils. Soil Biol Biochem 41:22142221.[CrossRef]
83. Meyer J, Michalke K, Kouril T, Hensel R. 2008. Volatilisation of metals and metalloids: an inherent feature of methanoarchaea? Syst Appl Microbiol 31:8187.[PubMed][CrossRef]
84. Pepi M, Gaggi C, Bernardini E, Focardi S, Lobianco A, Ruta M, Nicolardi V, Volterrani M, Gasperini S, Trinchera G, Renzi P, Gabellini M, Focardi SE. 2011. Mercury-resistant bacterial strains Pseudomonas and Psychrobacter spp. isolated from sediments of Orbetello Lagoon (Italy) and their possible use in bioremediation processes. Int Biodeterior Biodegrad 65:8591.[CrossRef]
85. Zhang W, Chen L, Liu D. 2012. Characterization of a marine-isolated mercury-resistant Pseudomonas putida strain SP1 and its potential application in marine mercury reduction. Appl Microbiol Biotechnol 93:13051314.[PubMed][CrossRef]
86. Mathema VB, Thakuri BC, Sillanpää M. 2011. Bacterial mer operon-mediated detoxification of mercurial compounds: a short review. Arch Microbiol 193:837844.[PubMed][CrossRef]
87. Karlson U, Frankenberger WT. 1990. Volatilization of selenium from agricultural evaporation pond sediments. Sci Total Environ 92:4154.[PubMed][CrossRef]
88. Flury M, Frankenberger WT, Jury WA. 1997. Long-term depletion of selenium from Kesterson dewatered sediments. Sci Total Environ 198:259270.[CrossRef]
89. Sheoran AS, Sheoran V. 2006. Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review. Miner Eng 19:105116.[CrossRef]
90. Das BK, Roy A, Koschorreck M, Mandal SM, Wendt-Potthoff K, Bhattacharya J. 2009. Occurrence and role of algae and fungi in acid mine drainage environment with special reference to metals and sulfate immobilization. Water Res 43:88394.[PubMed][CrossRef]
91. Kalin M, Wheeler WN, Meinrath G. 2005. The removal of uranium from mining waste water using algal/microbial biomass. J Environ Radioact 78:15177.[PubMed][CrossRef]
92. Wu S, Kuschk P, Wiessner A, Müller J, Saad RAB, Dong R. 2013. Sulphur transformations in constructed wetlands for wastewater treatment: a review. Ecol Eng 52:278289.[CrossRef]
93. Yadav AK, Abbassi R, Kumar N, Satya S, Sreekrishnan TR, Mishra BK. 2012. The removal of heavy metals in wetland microcosms: effects of bed depth, plant species, and metal mobility. Chem Eng J 211–212:501507.[CrossRef]
94. Xie W-Y, Huang Q, Li G, Rensing C, Zhu Y-G. 2013. Cadmium accumulation in the rootless macrophyte Wolffia globosa and its potential for phytoremediation. Int J Phytoremediation 15:385397.[PubMed][CrossRef]
95. Hong C, Si Y, Xing Y, Li Y. 2015. Illumina MiSeq sequencing investigation on the contrasting soil bacterial community structures in different iron mining areas. Environ Sci Pollut Res 22:1078810799.[CrossRef]
96. Chen LX, Li JT, Chen YT, Huang LN, Hua ZS, Hu M, Shu WS. 2013. Shifts in microbial community composition and function in the acidification of a lead/zinc mine tailings. Environ Microbiol 15:24312444.[PubMed][CrossRef]
97. Chodak M, Gołebiewski M, Morawska-Płoskonka J, Kuduk K, Niklińska M. 2013. Diversity of microorganisms from forest soils differently polluted with heavy metals. Appl Soil Ecol 64:714.[CrossRef]
98. Kuang J-L, Huang L-N, Chen L-X, Hua Z-S, Li S-J, Hu M, Li J-T, Shu W-S. 2013. Contemporary environmental variation determines microbial diversity patterns in acid mine drainage. ISME J 7:10381050.[PubMed][CrossRef]
99. Mora AP de, Ortega-Calvo JJ, Cabrera F, Madejón E. 2005. Changes in enzyme activities and microbial biomass after “in situ” remediation of a heavy metal-contaminated soil. Appl Soil Ecol 28:125137.[CrossRef]
100. Fujimoto H, Wakabayashi M, Yamashiro H, Maeda I, Isoda K, Kondoh M, Kawase M, Miyasaka H, Yagi K. 2006. Whole-cell arsenite biosensor using photosynthetic bacterium Rhodovulum sulfidophilum. Rhodovulum sulfidophilum as an arsenite biosensor. Appl Microbiol Biotechnol 73:332338.[PubMed][CrossRef]
101. Yagi K. 2007. Applications of whole-cell bacterial sensors in biotechnology and environmental science. Appl Microbiol Biotechnol 73:12511258.[PubMed][CrossRef]
102. Van der Meer JR, Belkin S. 2010. Where microbiology meets microengineering: design and applications of reporter bacteria. Nat Rev Microbiol 8:511522.[PubMed][CrossRef]
103. Maderova L, Paton GI. 2013. Deployment of microbial sensors to assess zinc bioavailability and toxicity in soils. Soil Biol Biochem 66:222228.[CrossRef]
104. Yagur-Kroll S, Belkin S. 2011. Upgrading bioluminescent bacterial bioreporter performance by splitting the lux operon. Anal Bioanal Chem 400:10711082.[PubMed][CrossRef]
105. Shin HJ. 2011. Genetically engineered microbial biosensors for in situ monitoring of environmental pollution. Appl Microbiol Biotechnol 89:867877.[PubMed][CrossRef]
106. Maletić SP, Watson MA, Dehlawi S, Diplock EE, Mardlin D, Paton GI. 2015. Deployment of microbial biosensors to assess the performance of ameliorants in metal-contaminated soils. Water, Air, Soil Pollut 226:85.[CrossRef]
107. Da Silva Souza T, Christofoletti CA, Bozzatto V, Fontanetti CS. 2014. The use of diplopods in soil ecotoxicology—a review. Ecotoxicol Environ Saf 103:6873.[PubMed][CrossRef]
108. Rainbow PS. 2007. Trace metal bioaccumulation: models, metabolic availability and toxicity. Environ Int 33:576582.[PubMed][CrossRef]
109. Regel RH, Ferris JM, Ganf GG, Brookes JD. 2002. Algal esterase activity as a biomeasure of environmental degradation in a freshwater creek. Aquat Toxicol 59:209223.[PubMed][CrossRef]
110. Navarrete AA, Kuramae EE, de Hollander M, Pijl AS, van Veen JA, Tsai SM. 2013. Acidobacterial community responses to agricultural management of soybean in Amazon forest soils. FEMS Microbiol Ecol 83:607621.[PubMed][CrossRef]
111. Schloss PD, Handelsman J. 2008. A statistical toolbox for metagenomics: assessing functional diversity in microbial communities. BMC Bioinformatics 9:34.[PubMed][CrossRef]
112. Yergeau E, Lawrence JR, Sanschagrin S, Waiser MJ, Korber DR, Greer CW. 2012. Next-generation sequencing of microbial communities in the Athabasca River and its tributaries in relation to oil sands mining activities. Appl Environ Microbiol 78:76267637.
113. Bissett A, Brown M V, Siciliano SD, Thrall PH. 2013. Microbial community responses to anthropogenically induced environmental change: towards a systems approach. Ecol Lett 16:128139.[CrossRef]
114. Allison SD, Martiny JBH. 2008. Colloquium paper: resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci USA 105(Suppl):1151211519.[PubMed][CrossRef]
115. Khamar Z, Makhdoumi-Kakhki A, Mahmudy Gharaie MH. 2015. Remediation of cyanide from the gold mine tailing pond by a novel bacterial co-culture. Int Biodeterior Biodegradation 99:123128.[CrossRef]
116. Shong J, Jimenez Diaz MR, Collins CH. 2012. Towards synthetic microbial consortia for bioprocessing. Curr Opin Biotechnol 23:798802.[PubMed][CrossRef]
117. Mani D, Kumar C, Patel NK, Pal N. 2015. Integrated potential of vermicompost, elemental sulphur and Glomus fasciculatum induced phytoremediation of cadmium and lead contaminated alluvial soil by Chrysanthemum indicum L. J Ind Chem Soc. 111:8695.
118. Singh JS, Abhilash PC, Singh HB, Singh RP, Singh DP. 2011. Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 480:19.[PubMed][CrossRef]
119. Liu S, Zhang F, Chen J, Sun G. 2011. Arsenic removal from contaminated soil via biovolatilization by genetically engineered bacteria under laboratory conditions. J Environ Sci 23:15441550.[CrossRef]
120. Yuan C, Lu SX, Qin J, Rosen BP, Le XC. 2008. Volatile arsenic species released from Escherichia coli expressing the Aslll S-adenosylmethionine methyltransferase gene. Environ Sci Technol 42:32013206.[PubMed][CrossRef]
121. Brim H, McFarlan SC, Fredrickson JK, Minton KW, Zhai M, Wackett LP, Daly MJ. 2000. Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol 18:8590.[PubMed][CrossRef]
122. Deng X, Wilson DB. 2001. Bioaccumulation of mercury from wastewater by genetically engineered Escherichia coli. Appl Microbiol Biotechnol 56:276279.[PubMed][CrossRef]
123. Sauge-Merle S, Cuine S, Carrier P, Lecomte-Pradines C, Luu D-T, Peltier G. 2003. Enhanced toxic metal accumulation in engineered bacterial cells expressing Arabidopsis thaliana phytochelatin synthase. Appl Environ Microbiol 69:490494.[PubMed][CrossRef]
124. Deng X, Yi XE, Liu G. 2007. Cadmium removal from aqueous solution by gene-modified Escherichia coli JM109. J Hazard Mater 139:3404.[PubMed][CrossRef]
125. Delgadillo J, Lafuente A, Doukkali B, Redondo-Gómez S, Mateos-Naranjo E, Caviedes MA, Pajuelo E, Rodríguez-Llorente ID. 2014. Improving legume nodulation and Cu rhizostabilization using a genetically modified rhizobia. Environ Technol 36:12371245.[PubMed][CrossRef]
126. Pajuelo E. 2014. Engineering the rhizosphere for the purpose of bioremediation: an overview. Perspect Agric Vet Sci Nutr Nat Resour 9:1.
127. Ike A, Sriprang R, Ono H, Murooka Y, Yamashita M. 2007. Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes. Chemosphere 66:16701676.[PubMed][CrossRef]
128. Haferburg G, Kothe E. 2010. Metallomics: lessons for metalliferous soil remediation. Appl Microbiol Biotechnol 87:12711280.[PubMed][CrossRef]
129. Zhou J, Deng Y, Luo F, He Z, Yang Y. 2011. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. MBio 2:e0012211.[PubMed][CrossRef]

Tables

Generic image for table
TABLE 1

Summary of microbial resistance mechanisms and impact on metal bioavailability and mobility for soil remediation purposes

Citation: Roane T, Lantz M. 2016. Microbial Uses in the Remediation of Metal-Impacted Soils, p 5.2.3-1-5.2.3-10. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch5.2.3
Generic image for table
TABLE 2

Microbial applications in soil metal remediation and the resulting impact on metal mobility

Citation: Roane T, Lantz M. 2016. Microbial Uses in the Remediation of Metal-Impacted Soils, p 5.2.3-1-5.2.3-10. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch5.2.3

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error