1887

Chapter 11 : Regulated Expression Systems for Mycobacteria and Their Applications

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Regulated Expression Systems for Mycobacteria and Their Applications, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818845/9781555818838_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555818845/9781555818838_Chap11-2.gif

Abstract:

During growth with short aliphatic amides (e.g., acetamide) as the primary carbon source, induces expression of the acetamidase encoded by ( Fig. 1 a) ( ). The regulatory elements of this gene were utilized to generate the first inducible expression system for mycobacteria ( ). The system proved valuable for the production of mycobacterial antigens ( ) and enabled the first silencing studies of essential genes (e.g., and ) in ( ). But genetic instability limited the use of this system in ( ), and its complexity—regulation of involves three regulators (AmiC, AmiD, and AmiA) ( )—prevented its optimization. While the acetamidase system has been largely replaced by other tools, especially in , a derivative, which incorporated the T7 RNA polymerase (RNAP), remains one of the best tools available to achieve high-level overexpression of a protein in ( ).

Citation: Schnappinger D, Ehrt S. 2014. Regulated Expression Systems for Mycobacteria and Their Applications, p 225-238. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0018-2013

Key Concept Ranking

Fatty Acid Biosynthesis
0.4370585
Ribosome Binding Site
0.40255132
0.4370585
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Regulatory systems for mycobacteria. The transcriptional regulatory systems are shown in to , the two controlled proteolysis systems in and , and the theophylline riboswitch in . Dotted lines ending in a perpendicular line indicate negative regulatory interactions; dotted lines ending in an arrow represent positive regulatory interactions. Ace, acetamide; tc/atc, tetracycline/anhydrotetracycline; IPTG, isopropyl β- 1-thiogalactopyranoside; ara, arabinose; IVN, isovaleronitrile; PI, pristinamycin. doi:10.1128/microbiolspec.MGM2-0018-2013.f1

Citation: Schnappinger D, Ehrt S. 2014. Regulated Expression Systems for Mycobacteria and Their Applications, p 225-238. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0018-2013
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818845.chap11
1. Draper P. 1967. Aliphatic acylamide amidohydrolase of Mycobacterium smegmatis: its inducible nature and relation to acyl-transfer to hydroxylamine. J Gen Microbiol 46: 111123.[PubMed]
2. Mahenthiralingam E,, Draper P,, Davis EO,, Colston MJ. 1993. Cloning and sequencing of the gene which encodes the highly inducible acetamidase of Mycobacterium smegmatis. J Gen Microbiol 139: 575583.[PubMed]
3. Parish T,, Mahenthiralingam E,, Draper P,, Davis EO,, Colston MJ. 1997. Regulation of the inducible acetamidase gene of Mycobacterium smegmatis. Microbiology 143: 22672276.[PubMed]
4. Triccas JA,, Parish T,, Britton WJ,, Gicquel B. 1998. An inducible expression system permitting the efficient purification of a recombinant antigen from Mycobacterium smegmatis. FEMS Microbiol Lett 167: 151156.[PubMed]
5. Daugelat S,, Kowall J,, Mattow J,, Bumann D,, Winter R,, Hurwitz R,, Kaufmann SH. 2003. The RD1 proteins of Mycobacterium tuberculosis: expression in Mycobacterium smegmatis and biochemical characterization. Microbes Infect 5: 10821095.[PubMed]
6. Gomez JE,, Bishai WR. 2000. whmD is an essential mycobacterial gene required for proper septation and cell division. Proc Natl Acad Sci USA 97: 85548559.[PubMed][CrossRef]
7. Greendyke R,, Rajagopalan M,, Parish T,, Madiraju MV. 2002. Conditional expression of Mycobacterium smegmatisdnaA: an essential DNA replication gene. Microbiology 148: 38873900.[PubMed]
8. Brown AC,, Parish T. 2006. Instability of the acetamide-inducible expression vector pJAM2 in Mycobacterium tuberculosis. Plasmid 55: 8186.[PubMed][CrossRef]
9. Parish T,, Turner J,, Stoker NG. 2001. amiA is a negative regulator of acetamidase expression in Mycobacterium smegmatis. BMC Microbiol 1:19. [PubMed]
10. Roberts G,, Muttucumaru DG,, Parish T. 2003. Control of the acetamidase gene of Mycobacterium smegmatis by multiple regulators. FEMS Microbiol Lett 221: 131136.[PubMed]
11. Wang F,, Jain P,, Gulten G,, Liu Z,, Feng YC,, Ganesula K,, Motiwala AS,, Ioerger TR,, Alland D,, Vilcheze C,, Jacobs WR,, Sacchettini JC. 2010. Mycobacterium tuberculosis dihydrofolate reductase is not a target relevant to the antitubercular activity of isoniazid. Antimicrob Agents Chemother 54: 37763782.[PubMed][CrossRef]
12. Hillen W,, Berens C. 1994. Mechanisms underlying expression of Tn10 encoded tetracycline resistance. Annu Rev Microbiol 48: 345369.[PubMed][CrossRef]
13. Lederer T,, Kintrup M,, Takahashi M,, Sum PE,, Ellestad GA,, Hillen W. 1996. Tetracycline analogs affecting binding to Tn10-encoded Tet repressor trigger the same mechanism of induction. Biochemistry 35: 74397446.[PubMed][CrossRef]
14. Blokpoel MC,, Murphy HN,, O'Toole R,, Wiles S,, Runn ES,, Stewart GR,, Young DB,, Robertson BD. 2005. Tetracycline-inducible gene regulation in mycobacteria. Nucleic Acids Res 33:e22. [PubMed][CrossRef]
15. Ehrt S,, Guo XV,, Hickey CM,, Ryou M,, Monteleone M,, Riley LW,, Schnappinger D. 2005. Controlling gene expression in mycobacteria with anhydrotetracycline and Tet repressor. Nucleic Acids Res 33:e21. [PubMed][CrossRef]
16. Carroll P,, Muttucumaru DG,, Parish T. 2005. Use of a tetracycline-inducible system for conditional expression in Mycobacterium tuberculosis and Mycobacterium smegmatis. Appl Environ Microbiol 71: 30773084.[PubMed][CrossRef]
17. Williams KJ,, Joyce G,, Robertson BD. 2010. Improved mycobacterial tetracycline inducible vectors. Plasmid 64: 6973.[PubMed][CrossRef]
18. Wissmann A,, Wray LV Jr,, Somaggio U,, Baumeister R,, Geissendorfer M,, Hillen W. 1991. Selection for Tn10 tet repressor binding to tet operator in Escherichia coli: isolation of temperature-sensitive mutants and combinatorial mutagenesis in the DNA binding motif. Genetics 128: 225232.[PubMed]
19. Hecht B,, Muller G,, Hillen W. 1993. Noninducible Tet repressor mutations map from the operator binding motif to the C terminus. J Bacteriol 175: 12061210.[PubMed]
20. Guo XV,, Monteleone M,, Klotzsche M,, Kamionka A,, Hillen W,, Braunstein M,, Ehrt S,, Schnappinger D. 2007. Silencing Mycobacterium smegmatis by using tetracycline repressors. J Bacteriol 189: 46144623.[PubMed][CrossRef]
21. Klotzsche M,, Ehrt S,, Schnappinger D. 2009. Improved tetracycline repressors for gene silencing in mycobacteria. Nucleic Acids Res 37: 17781788.[PubMed][CrossRef]
22. Wei JR,, Krishnamoorthy V,, Murphy K,, Kim JH,, Schnappinger D,, Alber T,, Sassetti CM,, Rhee KY,, Rubin EJ. 2011. Depletion of antibiotic targets has widely varying effects on growth. Proc Natl Acad Sci USA 108: 41764181.[PubMed][CrossRef]
23. Kim JH,, Wei JR,, Wallach JB,, Robbins RS,, Rubin EJ,, Schnappinger D. 2011. Protein inactivation in mycobacteria by controlled proteolysis and its application to deplete the beta subunit of RNA polymerase. Nucleic Acids Res 39: 22102220.[PubMed][CrossRef]
24. Boldrin F,, Casonato S,, Dainese E,, Sala C,, Dhar N,, Palu G,, Riccardi G,, Cole ST,, Manganelli R. 2010. Development of a repressible mycobacterial promoter system based on two transcriptional repressors. Nucleic Acids Res 38:e134. [PubMed][CrossRef]
25. Chang Y,, Mead D,, Dhodda V,, Brumm P,, Fox BG. 2009. One-plasmid tunable coexpression for mycobacterial protein-protein interaction studies. Protein Sci 18: 23162325.[PubMed][CrossRef]
26. Guzman LM,, Belin D,, Carson MJ,, Beckwith J. 1995. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177: 41214130.[PubMed]
27. Schleif R. 2010. AraC protein, regulation of the l-arabinose operon in Escherichia coli, and the light switch mechanism of AraC action. FEMS Microbiol Rev 34: 779796.[PubMed][CrossRef]
28. Carroll P,, Brown AC,, Hartridge AR,, Parish T. 2007. Expression of Mycobacterium tuberculosis Rv1991c using an arabinose-inducible promoter demonstrates its role as a toxin. FEMS Microbiol Lett 274: 7382.[PubMed][CrossRef]
29. Terpe K. 2006. Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Applied Microbiol Biotechnol 72: 211222.[PubMed][CrossRef]
30. Lee BY,, Clemens DL,, Horwitz MA. 2008. The metabolic activity of Mycobacterium tuberculosis, assessed by use of a novel inducible GFP expression system, correlates with its capacity to inhibit phagosomal maturation and acidification in human macrophages. Mol Microbiol 68: 10471060.[PubMed][CrossRef]
31. Kaur P,, Agarwal S,, Datta S. 2009. Delineating bacteriostatic and bactericidal targets in mycobacteria using IPTG inducible antisense expression. PLoS One 4:e5923. [PubMed][CrossRef]
32. Kobayashi M,, Shimizu S. 1994. Versatile nitrilases: nitrile-hydrolyzing enzymes. FEMS Microbiol Lett 120: 217223.
33. Nagasawa T,, Kobayashi M,, Yamada H. 1988. Optimum culture conditions for the production of benzonitrilase by Rhodococcus rhodochrous J1. Arch Microbiol 150: 8994.
34. Komeda H,, Hori Y,, Kobayashi M,, Shimizu S. 1996. Transcriptional regulation of the Rhodococcus rhodochrous J1 nitA gene encoding a nitrilase. Proc Natl Acad Sci USA 93: 1057210577.[PubMed]
35. Herai S,, Hashimoto Y,, Higashibata H,, Maseda H,, Ikeda H,, Omura S,, Kobayashi M. 2004. Hyper-inducible expression system for streptomycetes. Proc Natl Acad Sci USA 101: 1403114035.[PubMed][CrossRef]
36. Pandey AK,, Raman S,, Proff R,, Joshi S,, Kang CM,, Rubin EJ,, Husson RN,, Sassetti CM. 2009. Nitrile-inducible gene expression in mycobacteria. Tuberculosis 89: 1216.[PubMed][CrossRef]
37. Mukhtar TA,, Wright GD. 2005. Streptogramins, oxazolidinones, and other inhibitors of bacterial protein synthesis. Chem Rev 105: 529542.[PubMed][CrossRef]
38. Blanc V,, Salah-Bey K,, Folcher M,, Thompson CJ. 1995. Molecular characterization and transcriptional analysis of a multidrug resistance gene cloned from the pristinamycin-producing organism, Streptomyces pristinaespiralis. Mol Microbiol 17: 989999.[PubMed]
39. Salah-Bey K,, Blanc V,, Thompson CJ. 1995. Stress-activated expression of a Streptomyces pristinaespiralis multidrug resistance gene (ptr) in various Streptomyces spp. and Escherichia coli. Mol Microbiol 17: 10011012.[PubMed]
40. Folcher M,, Morris RP,, Dale G,, Salah-Bey-Hocini K,, Viollier PH,, Thompson CJ. 2001. A transcriptional regulator of a pristinamycin resistance gene in Streptomyces coelicolor. J Biol Chem 276: 14791485.[PubMed][CrossRef]
41. Forti F,, Crosta A,, Ghisotti D. 2009. Pristinamycin-inducible gene regulation in mycobacteria. J Biotechnol 140: 270277.[PubMed][CrossRef]
42. Hernandez-Abanto SM,, Woolwine SC,, Jain SK,, Bishai WR. 2006. Tetracycline-inducible gene expression in mycobacteria within an animal host using modified Streptomyces tcp830 regulatory elements. Arch Microbiol 186: 459464.[PubMed][CrossRef]
43. Gur E,, Biran D,, Ron EZ. 2011. Regulated proteolysis in Gram-negative bacteria: how and when? Nat Rev Microbiol 9: 839848.[PubMed][CrossRef]
44. Gottesman S. 2003. Proteolysis in bacterial regulatory circuits. Annu Rev Cell Dev Biol 19: 565587.
45. Keiler KC. 2008. Biology of trans-translation. Annu Rev Microbiol 62: 133151.
46. Flynn JM,, Levchenko I,, Seidel M,, Wickner SH,, Sauer RT,, Baker TA. 2001. Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis. Proc Natl Acad Sci USA 98: 1058410589.[PubMed][CrossRef]
47. Levchenko I,, Seidel M,, Sauer RT,, Baker TA. 2000. A specificity-enhancing factor for the ClpXP degradation machine. Science 289: 23542356.
48. Lessner FH,, Venters BJ,, Keiler KC. 2007. Proteolytic adaptor for transfer-messenger RNA-tagged proteins from alpha-proteobacteria. J Bacteriol 189: 272275.[PubMed][CrossRef]
49. McGinness KE,, Baker TA,, Sauer RT. 2006. Engineering controllable protein degradation. Mol Cell 22: 701707.[PubMed][CrossRef]
50. Griffith KL,, Grossman AD. 2008. Inducible protein degradation in Bacillus subtilis using heterologous peptide tags and adaptor proteins to target substrates to the protease ClpXP. Mol Microbiol 70: 10121025.[PubMed][CrossRef]
51. Nudler E,, Mironov AS. 2004. The riboswitch control of bacterial metabolism. Trends Biochem Sci 29: 1117.
52. Topp S,, Reynoso CM,, Seeliger JC,, Goldlust IS,, Desai SK,, Murat D,, Shen A,, Puri AW,, Komeili A,, Bertozzi CR,, Scott JR,, Gallivan JP. 2010. Synthetic riboswitches that induce gene expression in diverse bacterial species. Appl Environ Microbiol 76: 78817884.[PubMed][CrossRef]
53. Seeliger JC,, Topp S,, Sogi KM,, Previti ML,, Gallivan JP,, Bertozzi CR. 2012. A riboswitch-based inducible gene expression system for mycobacteria. PLoS One 7:e29266. [PubMed][CrossRef]
54. Barnes PJ. 2003. Theophylline: new perspectives for an old drug. Am J Respir Crit Care Med 167: 813818. [PubMed][CrossRef]
55. Woong Park S,, Klotzsche M,, Wilson DJ,, Boshoff HI,, Eoh H,, Manjunatha U,, Blumenthal A,, Rhee K,, Barry CE 3rd,, Aldrich CC,, Ehrt S,, Schnappinger D. 2011. Evaluating the sensitivity of Mycobacterium tuberculosis to biotin deprivation using regulated gene expression. PLoS Pathog 7:e1002264. [PubMed][CrossRef]
56. Leblanc C,, Prudhomme T,, Tabouret G,, Ray A,, Burbaud S,, Cabantous S,, Mourey L,, Guilhot C,, Chalut C. 2012. 4'-Phosphopantetheinyl transferase PptT, a new drug target required for Mycobacterium tuberculosis growth and persistence in vivo. PLoS Pathog 8:e1003097. [PubMed][CrossRef]
57. Marrero J,, Rhee KY,, Schnappinger D,, Pethe K,, Ehrt S. 2010. Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proc Natl Acad Sci USA 107: 98199824.[PubMed][CrossRef]
58. Blumenthal A,, Trujillo C,, Ehrt S,, Schnappinger D. 2010. Simultaneous analysis of multiple Mycobacterium tuberculosis knockdown mutants in vitro and in vivo. PLoS One 5:e15667. [PubMed][CrossRef]
59. Gandotra S,, Schnappinger D,, Monteleone M,, Hillen W,, Ehrt S. 2007. In vivo gene silencing identifies the Mycobacterium tuberculosis proteasome as essential for the bacteria to persist in mice. Nat Med 13: 15151520.[PubMed][CrossRef]
60. Stallings CL,, Stephanou NC,, Chu L,, Hochschild A,, Nickels BE,, Glickman MS. 2009. CarD is an essential regulator of rRNA transcription required for Mycobacterium tuberculosis persistence. Cell 138: 146159.[PubMed][CrossRef]
61. Bashiri G,, Squire CJ,, Baker EN,, Moreland NJ. 2007. Expression, purification and crystallization of native and selenomethionine labeled Mycobacterium tuberculosis FGD1 (Rv0407) using a Mycobacterium smegmatis expression system. Protein Expr Purif 54: 3844.[PubMed][CrossRef]
62. Noens EE,, Williams C,, Anandhakrishnan M,, Poulsen C,, Ehebauer MT,, Wilmanns M. 2011. Improved mycobacterial protein production using a Mycobacterium smegmatis groEL1DeltaC expression strain. BMC Biotechnol 11:27. [PubMed][CrossRef]
63. Ramage HR,, Connolly LE,, Cox JS. 2009. Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS Genet 5:e1000767. [PubMed][CrossRef]
64. Rodrigue S,, Brodeur J,, Jacques PE,, Gervais AL,, Brzezinski R,, Gaudreau L. 2007. Identification of mycobacterial sigma factor binding sites by chromatin immunoprecipitation assays. J Bacteriol 189: 15051513.[PubMed][CrossRef]
65. Galagan JE,, Minch K,, Peterson M,, Lyubetskaya A,, Azizi E,, Sweet L,, Gomes A,, Rustad T,, Dolganov G,, Glotova I,, Abeel T,, Mahwinney C,, Kennedy AD,, Allard R,, Brabant W,, Krueger A,, Jaini S,, Honda B,, Yu WH,, Hickey MJ,, Zucker J,, Garay C,, Weiner B,, Sisk P,, Stolte C,, Winkler JK,, Van de Peer Y,, Iazzetti P,, Camacho D,, Dreyfuss J,, Liu Y,, Dorhoi A,, Mollenkopf HJ,, Drogaris P,, Lamontagne J,, Zhou Y,, Piquenot J,, Park ST,, Raman S,, Kaufmann SH,, Mohney RP,, Chelsky D,, Moody DB,, Sherman DR,, Schoolnik GK. 2013. The Mycobacterium tuberculosis regulatory network and hypoxia. Nature 499: 178183.[PubMed][CrossRef]
66. Wilson T,, de Lisle GW,, Marcinkeviciene JA,, Blanchard JS,, Collins DM. 1998. Antisense RNA to ahpC, an oxidative stress defence gene involved in isoniazid resistance, indicates that AhpC of Mycobacterium bovis has virulence properties. Microbiology 144(Pt 10): 26872695.[PubMed]
67. Rubin EJ,, Akerley BJ,, Novik VN,, Lampe DJ,, Husson RN,, Mekalanos JJ. 1999. In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc Natl Acad Sci USA 96: 16451650.[PubMed]
68. Forti F,, Mauri V,, Deho G,, Ghisotti D. 2011. Isolation of conditional expression mutants in Mycobacterium tuberculosis by transposon mutagenesis. Tuberculosis 91: 569578.[PubMed][CrossRef]
69. Arnvig KB,, Comas I,, Thomson NR,, Houghton J,, Boshoff HI,, Croucher NJ,, Rose G,, Perkins TT,, Parkhill J,, Dougan G,, Young DB. 2011. Sequence-based analysis uncovers an abundance of non-coding RNA in the total transcriptome of Mycobacterium tuberculosis. PLoS Pathog 7:e1002342. [PubMed][CrossRef]
70. Uplekar S,, Rougemont J,, Cole ST,, Sala C. 2013. High-resolution transcriptome and genome-wide dynamics of RNA polymerase and NusA in Mycobacterium tuberculosis. Nucleic Acids Res 41: 961977.[PubMed][CrossRef]
71. Raju RM,, Unnikrishnan M,, Rubin DH,, Krishnamoorthy V,, Kandror O,, Akopian TN,, Goldberg AL,, Rubin EJ. 2012. Mycobacterium tuberculosis ClpP1 and ClpP2 function together in protein degradation and are required for viability in vitro and during infection. PLoS Pathog 8:e1002511. [PubMed][CrossRef]
72. Gee CL,, Papavinasasundaram KG,, Blair SR,, Baer CE,, Falick AM,, King DS,, Griffin JE,, Venghatakrishnan H,, Zukauskas A,, Wei JR,, Dhiman RK,, Crick DC,, Rubin EJ,, Sassetti CM,, Alber T. 2012. A phosphorylated pseudokinase complex controls cell wall synthesis in mycobacteria. Sci Signal 5:ra7. [PubMed][CrossRef]
73. Glickman MS,, Jacobs WR,, . 2001. Microbial pathogenesis of Mycobacterium tuberculosis: dawn of a discipline. Cell 104: 477485.[PubMed]
74. Young K,, Jayasuriya H,, Ondeyka JG,, Herath K,, Zhang CW,, Kodali S,, Galgoci A,, Painter R,, Brown-Driver V,, Yamamoto R,, Silver LL,, Zheng YC,, Ventura JI,, Sigmund J,, Ha S,, Basilio A,, Vicente F,, Tormo JR,, Pelaez F,, Youngman P,, Cully D,, Barrett JF,, Schmatz D,, Singh SB,, Wang J. 2006. Discovery of FabH/FabF inhibitors from natural products. Antimicrob Agents Chemother 50: 519526.[PubMed][CrossRef]
75. Jayasuriya H,, Herath KB,, Zhang C,, Zink DL,, Basilio A,, Genilloud O,, Diez MT,, Vicente F,, Gonzalez I,, Salazar O,, Pelaez F,, Cummings R,, Ha S,, Wang J,, Singh SB. 2007. Isolation and structure of platencin: a FabH and FabF dual inhibitor with potent broad-spectrum antibiotic activity. Angew Chem Int Ed Engl 46: 46844688.[PubMed][CrossRef]
76. Wang J,, Kodali S,, Lee SH,, Galgoci A,, Painter R,, Dorso K,, Racine F,, Motyl M,, Hernandez L,, Tinney E,, Colletti SL,, Herath K,, Cummings R,, Salazar O,, Gonzalez I,, Basilio A,, Vicente F,, Genilloud O,, Pelaez F,, Jayasuriya H,, Young K,, Cully DF,, Singh SB. 2007. Discovery of platencin, a dual FabF and FabH inhibitor with in vivo antibiotic properties. Proc Natl Acad Sci USA 104: 76127616.[PubMed][CrossRef]
77. Wang J,, Soisson SM,, Young K,, Shoop W,, Kodali S,, Galgoci A,, Painter R,, Parthasarathy G,, Tang YS,, Cummings R,, Ha S,, Dorso K,, Motyl M,, Jayasuriya H,, Ondeyka J,, Herath K,, Zhang C,, Hernandez L,, Allocco J,, Basilio A,, Tormo JR,, Genilloud O,, Vicente F,, Pelaez F,, Colwell L,, Lee SH,, Michael B,, Felcetto T,, Gill C,, Silver LL,, Hermes JD,, Bartizal K,, Barrett J,, Schmatz D,, Becker JW,, Cully D,, Singh SB. 2006. Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature 441: 358361.[PubMed][CrossRef]
78. Fischbach MA,, Walsh CT. 2009. Antibiotics for emerging pathogens. Science 325: 10891093.[PubMed][CrossRef]
79. Abrahams GL,, Kumar A,, Savvi S,, Hung AW,, Wen S,, Abell C,, Barry CE 3rd,, Sherman DR,, Boshoff HI,, Mizrahi V. 2012. Pathway-selective sensitization of Mycobacterium tuberculosis for target-based whole-cell screening. Chem Biol 19: 844854.[PubMed][CrossRef]
80. Ollinger J,, O'Malley T,, Ahn J,, Odingo J,, Parish T. 2012. Inhibition of the sole type I signal peptidase of Mycobacterium tuberculosis is bactericidal under replicating and nonreplicating conditions. J Bacteriol 194: 26142619.[PubMed][CrossRef]
81. Dziadek J,, Rutherford SA,, Madiraju MV,, Atkinson MA,, Rajagopalan M. 2003. Conditional expression of Mycobacterium smegmatisftsZ, an essential cell division gene. Microbiology 149: 15931603.[PubMed]
82. Jani C,, Eoh H,, Lee JJ,, Hamasha K,, Sahana MB,, Han JS,, Nyayapathy S,, Lee JY,, Suh JW,, Lee SH,, Rehse SJ,, Crick DC,, Kang CM. 2010. Regulation of polar peptidoglycan biosynthesis by Wag31 phosphorylation in mycobacteria. BMC Microbiol 10: 327. [PubMed][CrossRef]
83. Kang CM,, Nyayapathy S,, Lee JY,, Suh JW,, Husson RN. 2008. Wag31, a homologue of the cell division protein DivIVA, regulates growth, morphology and polar cell wall synthesis in mycobacteria. Microbiology 154: 725735.[PubMed][CrossRef]
84. Bhatt A,, Kremer L,, Dai AZ,, Sacchettini JC,, Jacobs WR Jr. 2005. Conditional depletion of KasA, a key enzyme of mycolic acid biosynthesis, leads to mycobacterial cell lysis. J Bacteriol 187: 75967606.[PubMed][CrossRef]
85. Rao M,, Liu H,, Yang M,, Zhao C,, He ZG. 2012. A copper-responsive global repressor regulates expression of diverse membrane-associated transporters and bacterial drug resistance in mycobacteria. J Biol Chem 287: 3972139731.[PubMed][CrossRef]
86. Frampton R,, Aggio RB,, Villas-Boas SG,, Arcus VL,, Cook GM. 2012. Toxin-antitoxin systems of Mycobacterium smegmatis are essential for cell survival. J Biol Chem 287: 53405356.[PubMed][CrossRef]
87. Huang F,, He ZG. 2010. Characterization of an interplay between a Mycobacterium tuberculosis MazF homolog, Rv1495 and its sole DNA topoisomerase I. Nucleic Acids Res 38: 82198230.[PubMed][CrossRef]
88. Robson J,, McKenzie JL,, Cursons R,, Cook GM,, Arcus VL. 2009. The vapBC operon from Mycobacterium smegmatis is an autoregulated toxin-antitoxin module that controls growth via inhibition of translation. J Mol Biol 390: 353367.[PubMed][CrossRef]
89. Yang M,, Gao C,, Wang Y,, Zhang H,, He ZG. 2010. Characterization of the interaction and cross-regulation of three Mycobacterium tuberculosis RelBE modules. PLoS One 5:e10672. [PubMed][CrossRef]
90. Barik S,, Sureka K,, Mukherjee P,, Basu J,, Kundu M. 2010. RseA, the SigE specific anti-sigma factor of Mycobacterium tuberculosis, is inactivated by phosphorylation-dependent ClpC1P2 proteolysis. Mol Microbiol 75: 592606. [PubMed][CrossRef]
91. Nisa S,, Blokpoel MC,, Robertson BD,, Tyndall JD,, Lun S,, Bishai WR,, O'Toole R. 2010. Targeting the chromosome partitioning protein ParA in tuberculosis drug discovery. J Antimicrob Chemother 65: 23472358.[PubMed][CrossRef]
92. Kang J,, Xu L,, Yang S,, Yu W,, Liu S,, Xin Y,, Ma Y. 2013. Effect of phosphoglucosamine mutase on biofilm formation and antimicrobial susceptibilities in M. smegmatisglmM gene knockdown strain. PLoS One 8:e61589. [PubMed][CrossRef]
93. Sureka K,, Dey S,, Datta P,, Singh AK,, Dasgupta A,, Rodrigue S,, Basu J,, Kundu M. 2007. Polyphosphate kinase is involved in stress-induced mprAB-sigE-rel signalling in mycobacteria. Mol Microbiol 65: 261276.[PubMed][CrossRef]
94. Sureka K,, Sanyal S,, Basu J,, Kundu M. 2009. Polyphosphate kinase 2: a modulator of nucleoside diphosphate kinase activity in mycobacteria. Mol Microbiol 74: 11871197.[PubMed][CrossRef]
95. Rao SP,, Camacho L,, Huat Tan B,, Boon C,, Russel DG,, Dick T,, Pethe K. 2008. Recombinase-based reporter system and antisense technology to study gene expression and essentiality in hypoxic nonreplicating mycobacteria. FEMS Microbiol Lett 284: 6875.[PubMed][CrossRef]
96. Goyal R,, Das AK,, Singh R,, Singh PK,, Korpole S,, Sarkar D. 2011. Phosphorylation of PhoP protein plays direct regulatory role in lipid biosynthesis of Mycobacterium tuberculosis. J Biol Chem 286: 4519745208.[PubMed][CrossRef]
97. Minch K,, Rustad T,, Sherman DR. 2012. Mycobacterium tuberculosis growth following aerobic expression of the DosR regulon. PLoS One 7:e35935. [CrossRef]
98. Sinha KM,, Stephanou NC,, Gao F,, Glickman MS,, Shuman S. 2007. Mycobacterial UvrD1 is a Ku-dependent DNA helicase that plays a role in multiple DNA repair events, including double-strand break repair. J Biol Chem 282: 1511415125.[PubMed][CrossRef]
99. Stephanou NC,, Gao F,, Bongiorno P,, Ehrt S,, Schnappinger D,, Shuman S,, Glickman MS. 2007. Mycobacterial nonhomologous end joining mediates mutagenic repair of chromosomal double-strand DNA breaks. J Bacteriol 189: 52375246.[PubMed][CrossRef]
100. Baughn AD,, Deng J,, Vilcheze C,, Riestra A,, Welch JT,, Jacobs WR Jr,, Zimhony O. 2010. Mutually exclusive genotypes for pyrazinamide and 5-chloropyrazinamide resistance reveal a potential resistance-proofing strategy. Antimicrob Agents Chemother 54: 53235328.[PubMed][CrossRef]
101. Duckworth BP,, Geders TW,, Tiwari D,, Boshoff HI,, Sibbald PA,, Barry CE 3rd,, Schnappinger D,, Finzel BC,, Aldrich CC. 2011. Bisubstrate adenylation inhibitors of biotin protein ligase from Mycobacterium tuberculosis. Chem Biol 18: 14321441.[PubMed][CrossRef]
102. Hett EC,, Chao MC,, Rubin EJ. 2010. Interaction and modulation of two antagonistic cell wall enzymes of mycobacteria. PLoS Pathog 6:e1001020. [PubMed][CrossRef]
103. Raghavan S,, Manzanillo P,, Chan K,, Dovey C,, Cox JS. 2008. Secreted transcription factor controls Mycobacterium tuberculosis virulence. Nature 454: 717721.[PubMed][CrossRef]
104. Korch SB,, Contreras H,, Clark-Curtiss JE. 2009. Three Mycobacterium tuberculosis Rel toxin-antitoxin modules inhibit mycobacterial growth and are expressed in infected human macrophages. J Bacteriol 191: 16181630.[PubMed][CrossRef]
105. Ahidjo BA,, Kuhnert D,, McKenzie JL,, Machowski EE,, Gordhan BG,, Arcus V,, Abrahams GL,, Mizrahi V. 2011. VapC toxins from Mycobacterium tuberculosis are ribonucleases that differentially inhibit growth and are neutralized by cognate VapB antitoxins. PLoS One 6:e21738. [PubMed][CrossRef]
106. Sharp JD,, Cruz JW,, Raman S,, Inouye M,, Husson RN,, Woychik NA. 2012. Growth and translation inhibition through sequence-specific RNA binding by Mycobacterium tuberculosis VapC toxin. J Biol Chem 287: 1283512847.[PubMed][CrossRef]
107. Singh R,, Barry CE 3rd,, Boshoff HI. 2010. The three RelE homologs of Mycobacterium tuberculosis have individual, drug-specific effects on bacterial antibiotic tolerance. J Bacteriol 192: 12791291.[PubMed][CrossRef]
108. Rigel NW,, Gibbons HS,, McCann JR,, McDonough JA,, Kurtz S,, Braunstein M. 2009. The accessory SecA2 system of mycobacteria requires ATP binding and the canonical SecA1. J Biol Chem 284: 99279936.[PubMed][CrossRef]
109. Chalut C,, Botella L,, de Sousa-D'Auria C,, Houssin C,, Guilhot C. 2006. The nonredundant roles of two 4′-phosphopantetheinyl transferases in vital processes of mycobacteria. Proc Natl Acad Sci USA 103: 85118516.[PubMed][CrossRef]
110. Hett EC,, Chao MC,, Deng LL,, Rubin EJ. 2008. A mycobacterial enzyme essential for cell division synergizes with resuscitation-promoting factor. PLoS Pathog 4:e1000001. [PubMed][CrossRef]
111. Rana AK,, Singh A,, Gurcha SS,, Cox LR,, Bhatt A,, Besra GS. 2012. Ppm1-encoded polyprenyl monophosphomannose synthase activity is essential for lipoglycan synthesis and survival in mycobacteria. PloS One 7:e48211. [PubMed][CrossRef]
112. Trauner A,, Lougheed KE,, Bennett MH,, Hingley-Wilson SM,, Williams HD. 2012. The dormancy regulator DosR controls ribosome stability in hypoxic mycobacteria. J Biol Chem 287: 2405324063.[PubMed][CrossRef]
113. Garces A,, Atmakuri K,, Chase MR,, Woodworth JS,, Krastins B,, Rothchild AC,, Ramsdell TL,, Lopez MF,, Behar SM,, Sarracino DA,, Fortune SM. 2010. EspA acts as a critical mediator of ESX1-dependent virulence in Mycobacterium tuberculosis by affecting bacterial cell wall integrity. PLoS Pathog 6:e1000957. [PubMed][CrossRef]
114. de la Paz Santangelo M,, Gest PM,, Guerin ME,, Coincon M,, Pham H,, Ryan G,, Puckett SE,, Spencer JS,, Gonzalez-Juarrero M,, Daher R,, Lenaerts AJ,, Schnappinger D,, Therisod M,, Ehrt S,, Sygusch J,, Jackson M. 2011. Glycolytic and non-glycolytic functions of Mycobacterium tuberculosis fructose-1,6-bisphosphate aldolase, an essential enzyme produced by replicating and non-replicating bacilli. J Biol Chem 286: 4021940231.[PubMed][CrossRef]
115. Siegrist MS,, Unnikrishnan M,, McConnell MJ,, Borowsky M,, Cheng TY,, Siddiqi N,, Fortune SM,, Moody DB,, Rubin EJ. 2009. Mycobacterial Esx-3 is required for mycobactin-mediated iron acquisition. Proc Natl Acad Sci USA 106: 1879218797.[PubMed][CrossRef]
116. Kumar A,, Zhang M,, Zhu L,, Liao RP,, Mutai C,, Hafsat S,, Sherman DR,, Wang MW. 2012. High-throughput screening and sensitized bacteria identify an M. tuberculosis dihydrofolate reductase inhibitor with whole cell activity. PLoS One 7:e39961. [PubMed][CrossRef]
117. Carroll P,, Faray-Kele MC,, Parish T. 2011. Identifying vulnerable pathways in Mycobacterium tuberculosis by using a knockdown approach. Appl Environ Microbiol 77: 50405043.[PubMed][CrossRef]
118. Cortes M,, Singh AK,, Reyrat JM,, Gaillard JL,, Nassif X,, Herrmann JL. 2011. Conditional gene expression in Mycobacterium abscessus. PLoS One 6:e29306. [PubMed][CrossRef]
119. Di Luca M,, Bottai D,, Batoni G,, Orgeur M,, Aulicino A,, Counoupas C,, Campa M,, Brosch R,, Esin S. 2012. The ESX-5 associated eccB-eccC locus is essential for Mycobacterium tuberculosis viability. PLoS One 7:e52059. [PubMed][CrossRef]
120. Serafini A,, Boldrin F,, Palu G,, Manganelli R. 2009. Characterization of a Mycobacterium tuberculosis ESX-3 conditional mutant: essentiality and rescue by iron and zinc. J Bacteriol 191: 63406344.[PubMed][CrossRef]

Tables

Generic image for table
Table 1

Regulated expression systems for mycobacteria and examples of their applications

Citation: Schnappinger D, Ehrt S. 2014. Regulated Expression Systems for Mycobacteria and Their Applications, p 225-238. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0018-2013

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error