1887

Chapter 21 : Molecular Basis of Drug Resistance in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Molecular Basis of Drug Resistance in , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818845/9781555818838_Chap21-1.gif /docserver/preview/fulltext/10.1128/9781555818845/9781555818838_Chap21-2.gif

Abstract:

In 2011, the World Health Organization (WHO) reported nearly 60,000 new cases of multidrug-resistant tuberculosis (MDR-TB) ( ), and estimates of the annual global incidence are much higher. The emergence of drug-resistant strains has made the treatment of TB complex, costly, toxic, time-intensive, and less efficacious. Design of a treatment regimen for drug-resistant TB includes the administration of first-line drugs to which the strains remain susceptible together with second-line drugs. These second-line agents are more expensive, more difficult to administer (several require intravenous administration), and are often associated with severe toxicities, including hepatic and renal dysfunction. In comparison to the 6 months required to treat drug-susceptible TB, drug-resistant TB requires a prolonged treatment duration of 18 to 24 months. These logistics constitute considerable hardships for patients as well as for overburdened public health services. Too frequently, premature discontinuation of therapy occurs, leading to treatment failure and the emergence of strains with additional drug resistance.

Citation: Cohen K, Bishai W, Pym A. 2014. Molecular Basis of Drug Resistance in , p 413-429. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0036-2013

Key Concept Ranking

Type II Fatty Acid Synthase
0.40779018
0.40779018
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555818845.chap21
1. World Health Organization. 2012. Global Tuberculosis Report. Geneva, Switzerland.
2. Jassal M,, Bishai WR. 2009. Extensively drug-resistant tuberculosis. Lancet Infect Dis 9: 1930.[PubMed][CrossRef]
3. Velayati AA,, Masjedi MR,, Farnia P,, Tabarsi P,, Ghanavi J,, Ziazarifi AH,, Hoffner SE. 2009. Emergence of new forms of totally drug-resistant tuberculosis bacilli: super extensively drug-resistant tuberculosis or totally drug-resistant strains in Iran. Chest 136: 420425.[PubMed][CrossRef]
4. Udwadia ZF,, Amale RA,, Ajbani KK,, Rodrigues C. 2012. Totally drug-resistant tuberculosis in India. Clin Infect Dis 54: 579581.[PubMed][CrossRef]
5. Aristoff PA,, Garcia GA,, Kirchhoff PD,, Hollis Showalter HD. 2010. Rifamycins: obstacles and opportunities. Tuberculosis (Edinb) 90: 94118.[PubMed][CrossRef]
6. Zhang G,, Campbell EA,, Minakhin L,, Richter C,, Severinov K,, Darst SA. 1999. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution. Cell 98: 811824.[PubMed][CrossRef]
7. Campbell EA,, Korzheva N,, Mustaev A,, Murakami K,, Nair S,, Goldfarb A,, Darst SA. 2001. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104: 901912.[PubMed][CrossRef]
8. Chakraborty A,, Wang D,, Ebright YW,, Korlann Y,, Kortkhonjia E,, Kim T,, Chowdhury S,, Wigneshweraraj S,, Irschik H,, Jansen R,, Nixon BT,, Knight J,, Weiss S,, Ebright RH. 2012. Opening and closing of the bacterial RNA polymerase clamp. Science 337: 591595.[PubMed][CrossRef]
9. Zhang Y,, Feng Y,, Chatterjee S,, Tuske S,, Ho MX,, Arnold E,, Ebright RH. 2012. Structural basis of transcription initiation. Science 338: 10761080.[PubMed][CrossRef]
10. Gomez JE,, Chen JM,, Bishai WR. 1997. Sigma factors of Mycobacterium tuberculosis. Tuber Lung Dis 78: 175183.[PubMed][CrossRef]
11. Telenti A,, Imboden P,, Marchesi F,, Lowrie D,, Cole S,, Colston MJ,, Matter L,, Schopfer K,, Bodmer T. 1993. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 341: 647650.[PubMed][CrossRef]
12. Bodmer T,, Zürcher G,, Imboden P,, Telenti A,, Zurcher G. 1995. Mutation position and type of substitution in the Beta-subunit of the RNA polymerase influence in-vitro activity of rifamycins in rifampicin-resistant Mycobacterium tuberculosis. J Antimicrob Chemother 35: 345348.[PubMed][CrossRef]
13. Jin DJ,, Gross CA. 1988. Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. J Mol Biol 202: 4558.[PubMed][CrossRef]
14. Gagneux S,, DeRiemer K,, Van T,, Kato-Maeda M,, de Jong BC,, Narayanan S,, Nicol M,, Niemann S,, Kremer K,, Gutierrez MC,, Hilty M,, Hopewell PC,, Small PM. 2006. Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 103: 28692873.[PubMed][CrossRef]
15. Comas I,, Borrell S,, Roetzer A,, Rose G,, Malla B,, Kato-Maeda M,, Galagan J,, Niemann S,, Gagneux S. 2012. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat Genet 44: 106110.[PubMed][CrossRef]
16. Brandis G,, Wrande M,, Liljas L,, Hughes D. 2012. Fitness-compensatory mutations in rifampicin-resistant RNA polymerase. Mol Microbiol 85: 142151.[PubMed][CrossRef]
17. Jindani A,, Aber VR,, Edwards EA,, Mitchison DA. 1980. The early bactericidal activity of drugs in patients with pulmonary tuberculosis. Am Rev Respir Dis 121: 939949.[PubMed]
18. Winder FG,, Collins PB. 1970. Inhibition by isoniazid of synthesis of mycolic acids in Mycobacterium tuberculosis. J Gen Microbiol 63: 4148.[PubMed][CrossRef]
19. Takayama K,, Schnoes HK,, Armstrong EL,, Boyle RW. 1975. Site of inhibitory action of isoniazid in the synthesis of mycolic acids in Mycobacterium tuberculosis. J Lipid Res 16: 308317.[PubMed]
20. Takayama K,, Wang L,, David HL. 1972. Effect of isoniazid on the in vivo mycolic acid synthesis, cell growth, and viability of Mycobacterium tuberculosis. Antimicrob Agents Chemother 2: 2935.[PubMed][CrossRef]
21. Johnsson K,, Schultz PG. 1994. Mechanistic studies of the oxidation of isoniazid by the catalase peroxidase from Mycobacterium tuberculosis. J Am Chem Soc 116: 74257426.[CrossRef]
22. Rozwarski DA,, Grant GA,, Barton DH,, Jacobs WR,, Sacchettini JC. 1998. Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science 279: 98102.[PubMed][CrossRef]
23. Vilchèze C,, Weisbrod TR,, Chen B,, Kremer L,, Hazbón MH,, Wang F,, Alland D,, Sacchettini JC,, Jacobs WR. 2005. Altered NADH/NAD+ ratio mediates coresistance to isoniazid and ethionamide in mycobacteria. Antimicrob Agents Chemother 49: 708720.[PubMed][CrossRef]
24. Dessen A,, Quémard A,, Blanchard JS,, Jacobs WR,, Sacchettini JC. 1995. Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis. Science 267: 16381641.[PubMed][CrossRef]
25. Quémard A,, Sacchettini JC,, Dessen A,, Vilcheze C,, Bittman R,, Jacobs WR,, Blanchard JS. 1995. Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis. Biochemistry 34: 82358241.[PubMed][CrossRef]
26. Marrakchi H,, Lanéelle G,, Quémard A. 2000. InhA, a target of the antituberculous drug isoniazid, is involved in a mycobacterial fatty acid elongation system, FAS-II. Microbiology 146(Pt 2): 289296.[PubMed]
27. Zhang Y,, Heym B,, Allen B,, Young D,, Cole S. 1992. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358: 591593.[PubMed][CrossRef]
28. Heysell SK,, Houpt ER. 2012. The future of molecular diagnostics for drug-resistant tuberculosis. Expert Rev Mol Diagn 12: 395405.[PubMed][CrossRef]
29. Gagneux S,, Burgos MV,, DeRiemer K,, Encisco A,, Muñoz S,, Hopewell PC,, Small PM,, Pym AS. 2006. Impact of bacterial genetics on the transmission of isoniazid-resistant Mycobacterium tuberculosis. PLoS Pathog 2:e61. [PubMed][CrossRef]
30. Ramaswamy SV,, Reich R,, Dou S,, Jasperse L,, Pan X,, Wanger A,, Quitugua T,, Graviss EA. 2003. Single nucleotide polymorphisms in genes associated with isoniazid resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 47: 12411250.[PubMed][CrossRef]
31. Heym B,, Alzari PM,, Honoré N,, Cole ST.. 1995. Missense mutations in the catalase-peroxidase gene, katG, are associated with isoniazid resistance in Mycobacterium tuberculosis. Mol Microbiol 15: 235245.[PubMed][CrossRef]
32. Heym B,, Cole ST. 1992. Isolation and characterization of isoniazid-resistant mutants of Mycobacterium smegmatis and M. aurum. Res Microbiol 143: 721730.[PubMed][CrossRef]
33. Ghiladi RA,, Cabelli DE,, Ortiz de Montellano PR. 2004. Superoxide reactivity of KatG: insights into isoniazid resistance pathways in TB. J Am Chem Soc 126: 47724773.[PubMed][CrossRef]
34. Brossier F,, Veziris N,, Truffot-Pernot C,, Jarlier V,, Sougakoff W. 2006. Performance of the genotype MTBDR line probe assay for detection of resistance to rifampin and isoniazid in strains of Mycobacterium tuberculosis with low- and high-level resistance. J Clin Microbiol 44: 36593664.[PubMed][CrossRef]
35. Cardoso RF,, Cooksey RC,, Morlock GP,, Barco P,, Cecon L,, Forestiero F,, Leite CQF,, Sato DN,, Shikama M de L,, Mamizuka EM,, Hirata RDC,, Hirata MH. 2004. Screening and characterization of mutations in isoniazid-resistant Mycobacterium tuberculosis isolates obtained in Brazil. Antimicrob Agents Chemother 48: 33733381.[PubMed][CrossRef]
36. Guo H,, Seet Q,, Denkin S,, Parsons L,, Zhang Y. 2006. Molecular characterization of isoniazid-resistant clinical isolates of Mycobacterium tuberculosis from the USA. J Med Microbiol 55: 15271531.[PubMed][CrossRef]
37. Zhang M,, Yue J,, Yang Y-P,, Zhang H-M,, Lei J-Q,, Jin R-L,, Zhang X-L,, Wang H-H. 2005. Detection of mutations associated with isoniazid resistance in Mycobacterium tuberculosis isolates from China. J Clin Microbiol 43: 54775482.[PubMed][CrossRef]
38. Hazbón MH,, Brimacombe M,, Bobadilla del Valle M,, Cavatore M,, Guerrero MI,, Varma-Basil M,, Billman-Jacobe H,, Lavender C,, Fyfe J,, García-García L,, León CI,, Bose M,, Chaves F,, Murray M,, Eisenach KD,, Sifuentes-Osornio J,, Cave MD,, Ponce de León A,, Alland D. 2006. Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 50: 26402649.[PubMed][CrossRef]
39. Ng VH,, Cox JS,, Sousa AO,, MacMicking JD,, McKinney JD. 2004. Role of KatG catalase-peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst. Mol Microbiol 52: 12911302.[PubMed][CrossRef]
40. Heym B,, Stavropoulos E,, Honoré N,, Domenech P,, Saint-Joanis B,, Wilson TM,, Collins DM,, Colston MJ,, Cole ST. 1997. Effects of overexpression of the alkyl hydroperoxide reductase AhpC on the virulence and isoniazid resistance of Mycobacterium tuberculosis. Infect Immun 65: 13951401.[PubMed]
41. Pym AS,, Saint-Joanis B,, Cole ST. 2002. Effect of katG mutations on the virulence of Mycobacterium tuberculosis and the implication for transmission in humans. Infect Immun 70: 49554960.[PubMed][CrossRef]
42. Banerjee A,, Dubnau E,, Quemard A,, Balasubramanian V,, Um KS,, Wilson T,, Collins D,, de Lisle G,, Jacobs WR. 1994. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263: 227230.[PubMed][CrossRef]
43. Mdluli K,, Sherman DR,, Hickey MJ,, Kreiswirth BN,, Morris S,, Stover CK,, Barry CE. 1996. Biochemical and genetic data suggest that InhA is not the primary target for activated isoniazid in Mycobacterium tuberculosis. J Infect Dis 174: 10851090.[PubMed][CrossRef]
44. Musser JM,, Kapur V,, Williams DL,, Kreiswirth BN,, van Soolingen D,, van Embden JD. 1996. Characterization of the catalase-peroxidase gene (katG) and inhA locus in isoniazid-resistant and -susceptible strains of Mycobacterium tuberculosis by automated DNA sequencing: restricted array of mutations associated with drug resistance. J Infect Dis 173: 196202.[PubMed][CrossRef]
45. Campbell PJ,, Morlock GP,, Sikes RD,, Dalton TL,, Metchock B,, Starks AM,, Hooks DP,, Cowan LS,, Plikaytis BB,, Posey JE. 2011. Molecular detection of mutations associated with first- and second-line drug resistance compared with conventional drug susceptibility testing of Mycobacterium tuberculosis. Antimicrob Agents Chemother 55: 20322041.[PubMed][CrossRef]
46. Lee AS,, Lim IH,, Tang LL,, Telenti A,, Wong SY. 1999. Contribution of kasA analysis to detection of isoniazid-resistant Mycobacterium tuberculosis in Singapore. Antimicrob Agents Chemother 43: 20872089.[PubMed]
47. Baker LV,, Brown TJ,, Maxwell O,, Gibson AL,, Fang Z,, Yates MD,, Drobniewski FA. 2005. Molecular analysis of isoniazid-resistant Mycobacterium tuberculosis isolates from England and Wales reveals the phylogenetic significance of the ahpC -46A polymorphism. Antimicrob Agents Chemother 49: 14551464.[PubMed][CrossRef]
48. Boonaiam S,, Chaiprasert A,, Prammananan T,, Leechawengwongs M. 2010. Genotypic analysis of genes associated with isoniazid and ethionamide resistance in MDR-TB isolates from Thailand. Clin Microbiol Infect 16: 396399.[PubMed][CrossRef]
49. Mitchison DA. 1985. The action of antituberculosis drugs in short-course chemotherapy. Tubercle 66: 219225.[CrossRef]
50. Heifets L,, Lindholm-Levy P. 1992. Pyrazinamide sterilizing activity in vitro against semidormant Mycobacterium tuberculosis bacterial populations. Am Rev Respir Dis 145: 12231225.[PubMed][CrossRef]
51. Zhang Y,, Mitchison D. 2003. The curious characteristics of pyrazinamide: a review. Int J Tuberc Lung Dis 7: 621.[PubMed]
52. Scorpio A,, Zhang Y. 1996. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat Med 2: 662667.[PubMed][CrossRef]
53. Scorpio A,, Lindholm-Levy P,, Heifets L,, Gilman R,, Siddiqi S,, Cynamon M,, Zhang Y. 1997. Characterization of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 41: 540543.[PubMed]
54. Cheng SJ,, Thibert L,, Sanchez T,, Heifets L,, Zhang Y. 2000. pncA mutations as a major mechanism of pyrazinamide resistance in Mycobacterium tuberculosis: spread of a monoresistant strain in Quebec, Canada. Antimicrob Agents Chemother 44: 528532.[PubMed][CrossRef]
55. Hirano K,, Takahashi M,, Kazumi Y,, Fukasawa Y,, Abe C. 1997. Mutation in pncA is a major mechanism of pyrazinamide resistance in Mycobacterium tuberculosis. Tuber Lung Dis 78: 117122.[PubMed][CrossRef]
56. Stoffels K,, Mathys V,, Fauville-Dufaux M,, Wintjens R,, Bifani P. 2012. Systematic analysis of pyrazinamide-resistant spontaneous mutants and clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother 56: 51865193.[PubMed][CrossRef]
57. Simons SO,, van Ingen J,, van der Laan T,, Mulder A,, Dekhuijzen PNR,, Boeree MJ,, van Soolingen D. 2012. Validation of pncA gene sequencing in combination with the mycobacterial growth indicator tube method to test susceptibility of Mycobacterium tuberculosis to pyrazinamide. J Clin Microbiol 50: 428434.[PubMed][CrossRef]
58. Alexander DC,, Ma JH,, Guthrie JL,, Blair J,, Chedore P,, Jamieson FB. 2012. Gene sequencing for routine verification of pyrazinamide resistance in Mycobacterium tuberculosis: a role for pncA but not rpsA. J Clin Microbiol 50: 37263728.[PubMed][CrossRef]
59. Sreevatsan S,, Pan X,, Zhang Y,, Kreiswirth BN,, Musser JM. 1997. Mutations associated with pyrazinamide resistance in pncA of Mycobacterium tuberculosis complex organisms. Antimicrob Agents Chemother 41: 636640.[PubMed]
60. Zhang Y,, Wade MM,, Scorpio A,, Zhang H,, Sun Z. 2003. Mode of action of pyrazinamide: disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. J Antimicrob Chemother 52: 790795.[PubMed][CrossRef]
61. Zimhony O,, Cox JS,, Welch JT,, Vilchèze C,, Jacobs WR. 2000. Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis. Nat Med 6: 10431047.[PubMed][CrossRef]
62. Boshoff HI,, Mizrahi V,, Barry CE. 2002. Effects of pyrazinamide on fatty acid synthesis by whole mycobacterial cells and purified fatty acid synthase I. J Bacteriol 184: 21672172.[PubMed][CrossRef]
63. Shi W,, Zhang X,, Jiang X,, Yuan H,, Lee JS,, Barry CE,, Wang H,, Zhang W,, Zhang Y. 2011. Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science 333: 16301632.[PubMed][CrossRef]
64. Mendez S,, Traslavina R,, Hinchman M,, Huang L,, Green P,, Cynamon MH,, Welch JT. 2009. The antituberculosis drug pyrazinamide affects the course of cutaneous leishmaniasis in vivo and increases activation of macrophages and dendritic cells. Antimicrob Agents Chemother 53: 51145121.[PubMed][CrossRef]
65. Manca C,, Koo M-S,, Peixoto B,, Fallows D,, Kaplan G,, Subbian S. 2013. Host targeted activity of pyrazinamide in Mycobacterium tuberculosis infection. PLoS One 8:e74082. [PubMed][CrossRef]
66. Almeida D,, Tyagi S,, Li S-YL,, Wallengren K,, Pym AS,, Ammerman N,, Bishai WR,, Grosset JH. Revisiting anti-tuberculosis activity of pyrazinamide in mice. Mycobacterial Dis, in press.
67. Mikusová K,, Slayden RA,, Besra GS,, Brennan PJ. 1995. Biogenesis of the mycobacterial cell wall and the site of action of ethambutol. Antimicrob Agents Chemother 39: 24842489.[PubMed][CrossRef]
68. Alcaide F,, Pfyffer GE,, Telenti A. 1997. Role of embB in natural and acquired resistance to ethambutol in mycobacteria. Antimicrob Agents Chemother 41: 22702273.[PubMed]
69. Wolucka BA,, McNeil MR,, de Hoffmann E,, Chojnacki T,, Brennan PJ. 1994. Recognition of the lipid intermediate for arabinogalactan/arabinomannan biosynthesis and its relation to the mode of action of ethambutol on mycobacteria. J Biol Chem 269: 2332823335.[PubMed]
70. Takayama K,, Kilburn JO. 1989. Inhibition of synthesis of arabinogalactan by ethambutol in Mycobacterium smegmatis. Antimicrob Agents Chemother 33: 14931499.[PubMed][CrossRef]
71. Brennan PJ,, Nikaido H. 1995. The envelope of mycobacteria. Annu Rev Biochem 64: 2963.[PubMed][CrossRef]
72. Telenti A,, Philipp WJ,, Sreevatsan S,, Bernasconi C,, Stockbauer KE,, Wieles B,, Musser JM,, Jacobs WR. 1997. The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nat Med 3: 567570.[PubMed][CrossRef]
73. Laszlo A,, Rahman M,, Espinal M,, Raviglione M. 2002. Quality assurance programme for drug susceptibility testing of Mycobacterium tuberculosis in the WHO/IUATLD Supranational Reference Laboratory Network: five rounds of proficiency testing, 1994-1998. Int J Tuberc Lung Dis 6: 748756.[PubMed]
74. Plinke C,, Cox HS,, Kalon S,, Doshetov D,, Rüsch-Gerdes S,, Niemann S. 2009. Tuberculosis ethambutol resistance: concordance between phenotypic and genotypic test results. Tuberculosis (Edinb) 89: 448452.[PubMed][CrossRef]
75. Ramaswamy S,, Musser JM. 1998. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuber Lung Dis 79: 329.[PubMed][CrossRef]
76. Belanger AE,, Besra GS,, Ford ME,, Mikusová K,, Belisle JT,, Brennan PJ,, Inamine JM. 1996. The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol. Proc Natl Acad Sci USA 93: 1191911924.[PubMed][CrossRef]
77. Safi H,, Lingaraju S,, Amin A,, Kim S,, Jones M,, Holmes M,, McNeil M,, Peterson SN,, Chatterjee D,, Fleischmann R,, Alland D. 2013. Evolution of high-level ethambutol-resistant tuberculosis through interacting mutations in decaprenylphosphoryl-β-D-arabinose biosynthetic and utilization pathway genes. Nat Genet 110.[PubMed][CrossRef]
78. Noller HF. 1984. Structure of ribosomal RNA. Annu Rev Biochem 53: 119162.[PubMed][CrossRef]
79. Jnawali HN,, Yoo H,, Ryoo S,, Lee K-J,, Kim B-J,, Koh W-J,, Kim C-K,, Kim H-J,, Park YK. 2013. Molecular genetics of Mycobacterium tuberculosis resistant to aminoglycosides and cyclic peptide capreomycin antibiotics in Korea. World J Microbiol Biotechnol 29: 975982.[PubMed][CrossRef]
80. Katsukawa C,, Tamaru A,, Miyata Y,, Abe C,, Makino M,, Suzuki Y. 1997. Characterization of the rpsL and rrs genes of streptomycin-resistant clinical isolates of Mycobacterium tuberculosis in Japan. J Appl Microbiol 83: 634640.[PubMed][CrossRef]
81. Georghiou SB,, Magana M,, Garfein RS,, Catanzaro DG,, Catanzaro A,, Rodwell TC. 2012. Evaluation of genetic mutations associated with Mycobacterium tuberculosis resistance to amikacin, kanamycin and capreomycin: a systematic review. PLoS One 7:e33275. [PubMed][CrossRef]
82. Okamoto S,, Tamaru A,, Nakajima C,, Nishimura K,, Tanaka Y,, Tokuyama S,, Suzuki Y,, Ochi K. 2007. Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria. Mol Microbiol 63: 10961106.[PubMed][CrossRef]
83. Zaunbrecher MA,, Sikes RD,, Metchock B,, Shinnick TM,, Posey JE. 2009. Overexpression of the chromosomally encoded aminoglycoside acetyltransferase eis confers kanamycin resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 106: 2000420009.[PubMed][CrossRef]
84. Reeves AZ,, Campbell PJ,, Sultana R,, Malik S,, Murray M,, Plikaytis BB,, Shinnick TM,, Posey JE. 2013. Aminoglycoside cross-resistance in Mycobacterium tuberculosis due to mutations in the 5′ untranslated region of whiB7. Antimicrob Agents Chemother 57: 18571865.[PubMed][CrossRef]
85. Modolell J,, Vázquez D. 1977. The inhibition of ribosomal translocation by viomycin. Eur J Biochem 81: 491497.[PubMed][CrossRef]
86. Yamada T,, Mizugichi Y,, Nierhaus KH,, Wittmann HG. 1978. Resistance to viomycin conferred by RNA of either ribosomal subunit. Nature 275: 460461.[PubMed][CrossRef]
87. Maus CE,, Plikaytis BB,, Shinnick TM. 2005. Mutation of tlyA confers capreomycin resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 49: 571577.[PubMed][CrossRef]
88. Maus CE,, Plikaytis BB,, Shinnick TM.. 2005. Molecular analysis of cross-resistance to capreomycin, kanamycin, amikacin, and viomycin in Mycobacterium tuberculosis. Antimicrob Agents Chemother 49: 31923197.[PubMed][CrossRef]
89. Drlica K. 1999. Mechanism of fluoroquinolone action. Curr Opin Microbiol 2: 504508.[CrossRef]
90. Cole ST,, Brosch R,, Parkhill J,, Garnier T,, Churcher C,, Harris D,, Gordon SV,, Eiglmeier K,, Gas S,, Barry CE,, Tekaia F,, Badcock K,, Basham D,, Brown D,, Chillingworth T,, Connor R,, Davies R,, Devlin K,, Feltwell T,, Gentles S,, Hamlin N,, Holroyd S,, Hornsby T,, Jagels K,, Krogh A,, McLean J,, Moule S,, Murphy L,, Oliver K,, Osborne J,, Quail MA,, Rajandream MA,, Rogers J,, Rutter S,, Seeger K,, Skelton J,, Squares R,, Squares S,, Sulston JE,, Taylor K,, Whitehead S,, Barrell BG.. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537544.[PubMed][CrossRef]
91. Ginsburg AS,, Grosset JH,, Bishai WR. 2003. Fluoroquinolones, tuberculosis, and resistance. Lancet Infect Dis 3: 432442.[CrossRef]
92. Takiff HE,, Salazar L,, Guerrero C,, Philipp W,, Huang WM,, Kreiswirth B,, Cole ST,, Jacobs WR,, Telenti A. 1994. Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. Antimicrob Agents Chemother 38: 773780.[PubMed][CrossRef]
93. Maruri F,, Sterling TR,, Kaiga AW,, Blackman A,, van der Heijden YF,, Mayer C,, Cambau E,, Aubry A. 2012. A systematic review of gyrase mutations associated with fluoroquinolone-resistant Mycobacterium tuberculosis and a proposed gyrase numbering system. J Antimicrob Chemother 67: 819831.[PubMed][CrossRef]
94. Aubry A,, Veziris N,, Cambau E,, Truffot-Pernot C,, Jarlier V,, Fisher LM. 2006. Novel gyrase mutations in quinolone-resistant and -hypersusceptible clinical isolates of Mycobacterium tuberculosis: functional analysis of mutant enzymes. Antimicrob Agents Chemother 50: 104112.[PubMed][CrossRef]
95. Cambau E,, Sougakoff W,, Besson M,, Truffot-Pernot C,, Grosset J,, Jarlier V. 1994. Selection of a gyrA mutant of Mycobacterium tuberculosis resistant to fluoroquinolones during treatment with ofloxacin. J Infect Dis 170:1351. [PubMed]
96. Huang T-S,, Kunin CM,, Shin-Jung Lee S,, Chen Y-S,, Tu H-Z,, Liu Y-C. 2005. Trends in fluoroquinolone resistance of Mycobacterium tuberculosis complex in a Taiwanese medical centre: 1995-2003. J Antimicrob Chemother 56: 10581062.[PubMed][CrossRef]
97. Siddiqi N,, Shamim M,, Hussain S,, Choudhary RK,, Ahmed N,, Prachee,, Banerjee S,, Savithri GR,, Alam M,, Pathak N,, Amin A,, Hanief M,, Katoch VM,, Sharma SK,, Hasnain SE. 2002. Molecular characterization of multidrug-resistant isolates of Mycobacterium tuberculosis from patients in North India. Antimicrob Agents Chemother 46: 443450.[PubMed][CrossRef]
98. Von Groll A,, Martin A,, Jureen P,, Hoffner S,, Vandamme P,, Portaels F,, Palomino JC,, da Silva PA. 2009. Fluoroquinolone resistance in Mycobacterium tuberculosis and mutations in gyrA and gyrB. Antimicrob Agents Chemother 53: 44984500.[PubMed][CrossRef]
99. Sun Z,, Zhang J,, Zhang X,, Wang S,, Zhang Y,, Li C. 2008. Comparison of gyrA gene mutations between laboratory-selected ofloxacin-resistant Mycobacterium tuberculosis strains and clinical isolates. Int J Antimicrob Agents 31: 115121.[PubMed][CrossRef]
100. Hegde SS,, Vetting MW,, Roderick SL,, Mitchenall LA,, Maxwell A,, Takiff HE,, Blanchard JS. 2005. A fluoroquinolone resistance protein from Mycobacterium tuberculosis that mimics DNA. Science 308: 14801483.[PubMed][CrossRef]
101. Takiff HE,, Cimino M,, Musso MC,, Weisbrod T,, Martinez R,, Delgado MB,, Salazar L,, Bloom BR,, Jacobs WR. 1996. Efflux pump of the proton antiporter family confers low-level fluoroquinolone resistance in Mycobacterium smegmatis. Proc Natl Acad Sci USA 93: 362366.[PubMed][CrossRef]
102. Pasca MR,, Guglierame P,, Arcesi F,, Bellinzoni M,, De Rossi E,, Riccardi G. 2004. Rv2686c-Rv2687c-Rv2688c, an ABC fluoroquinolone efflux pump in Mycobacterium tuberculosis. Antimicrob Agents Chemother 48: 31753178.[PubMed][CrossRef]
103. Louw GE,, Warren RM,, Gey van Pittius NC,, Leon R,, Jimenez A,, Hernandez-Pando R,, McEvoy CRE,, Grobbelaar M,, Murray M,, van Helden PD,, Victor TC. 2011. Rifampicin reduces susceptibility to ofloxacin in rifampicin-resistant Mycobacterium tuberculosis through efflux. Am J Respir Crit Care Med 184: 269276.[PubMed][CrossRef]
104. Di Perri G,, Bonora S. 2004. Which agents should we use for the treatment of multidrug-resistant Mycobacterium tuberculosis? J Antimicrob Chemother 54: 593602.[PubMed][CrossRef]
105. Wang F,, Langley R,, Gulten G,, Dover LG,, Besra GS,, Jacobs WR,, Sacchettini JC. 2007. Mechanism of thioamide drug action against tuberculosis and leprosy. J Exp Med 204: 7378.[PubMed][CrossRef]
106. Canetti G. 1965. Present aspects of bacterial resistance in tuberculosis. Am Rev Respir Dis 92: 687703.[PubMed]
107. DeBarber AE,, Mdluli K,, Bosman M,, Bekker LG,, Barry CE. 2000. Ethionamide activation and sensitivity in multidrug-resistant Mycobacterium tuberculosis. Proc Natl Acad Sci USA 97: 96779682.[PubMed][CrossRef]
108. Baulard AR,, Betts JC,, Engohang-Ndong J,, Quan S,, McAdam RA,, Brennan PJ,, Locht C,, Besra GS. 2000. Activation of the pro-drug ethionamide is regulated in mycobacteria. J Biol Chem 275: 2832628331.[PubMed]
109. Morlock GP,, Metchock B,, Sikes D,, Crawford JT,, Cooksey RC. 2003. ethA, inhA, and katG loci of ethionamide-resistant clinical Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother 47: 37993805.[PubMed][CrossRef]
110. Vilchèze C,, Av-Gay Y,, Attarian R,, Liu Z,, Hazbón MH,, Colangeli R,, Chen B,, Liu W,, Alland D,, Sacchettini JC,, Jacobs WR. 2008. Mycothiol biosynthesis is essential for ethionamide susceptibility in Mycobacterium tuberculosis. Mol Microbiol 69: 13161329.[PubMed][CrossRef]
111. Bruning JB,, Murillo AC,, Chacon O,, Barletta RG,, Sacchettini JC. 2011. Structure of the Mycobacterium tuberculosis d-alanine:d-alanine ligase, a target of the antituberculosis drug d-cycloserine. Antimicrob Agents Chemother 55: 291301.[PubMed][CrossRef]
112. Halouska S,, Chacon O,, Fenton RJ,, Zinniel DK,, Barletta RG,, Powers R. 2007. Use of NMR metabolomics to analyze the targets of d-cycloserine in mycobacteria: role of d-alanine racemase. J Proteome Res 6: 46084614.[PubMed][CrossRef]
113. Cáceres NE,, Harris NB,, Wellehan JF,, Feng Z,, Kapur V,, Barletta RG. 1997. Overexpression of the d-alanine racemase gene confers resistance to d-cycloserine in Mycobacterium smegmatis. J Bacteriol 179: 50465055.[PubMed]
114. Feng Z,, Barletta RG. 2003. Roles of Mycobacterium smegmatis d-alanine:d-alanine ligase and d-alanine racemase in the mechanisms of action of and resistance to the peptidoglycan inhibitor d-cycloserine. Antimicrob Agents Chemother 47: 283291.[CrossRef]
115. Chen JM,, Uplekar S,, Gordon SV,, Cole ST. 2012. A point mutation in cycA partially contributes to the d-cycloserine resistance trait of Mycobacterium bovis BCG vaccine strains. PLoS One 7:e43467. [PubMed][CrossRef]
116. Mathys V,, Wintjens R,, Lefevre P,, Singhal A,, Kiass M,, Kurepina N,, Wang X-M,, Mathema B,, Baulard A,, Barry N,, Bifani P,, Bertout J,, Kreiswirth BN. 2009. Molecular genetics of para-aminosalicylic acid resistance in clinical isolates and spontaneous mutants of Mycobacterium tuberculosis. Antimicrob Agents Chemother 53: 21002109.[PubMed][CrossRef]
117. Chakraborty S,, Gruber T,, Barry CE,, Boshoff HI,, Rhee KY. 2013. Para-aminosalicylic acid acts as an alternative substrate of folate metabolism in Mycobacterium tuberculosis. Science 339: 8891.[PubMed][CrossRef]
118. Zheng J,, Rubin EJ,, Bifani P,, Mathys V,, Lim V,, Au M,, Jang J,, Nam J,, Dick T,, Walker JR,, Pethe K,, Camacho LR. 2013. para-Aminosalicylic acid is a prodrug targeting dihydrofolate reductase in Mycobacterium tuberculosis. J Biol Chem 288: 2344723456.[PubMed][CrossRef]
119. Schecter GF,, Scott C,, True L,, Raftery A,, Flood J,, Mase S. 2010. Linezolid in the treatment of multidrug-resistant tuberculosis. Clin Infect Dis 50: 4955.[PubMed][CrossRef]
120. Migliori GB,, Eker B,, Richardson MD,, Sotgiu G,, Zellweger J-P,, Skrahina A,, Ortmann J,, Girardi E,, Hoffmann H,, Besozzi G,, Bevilacqua N,, Kirsten D,, Centis R,, Lange C. 2009. A retrospective TBNET assessment of linezolid safety, tolerability and efficacy in multidrug-resistant tuberculosis. Eur Respir J 34: 387393.[PubMed][CrossRef]
121. Hillemann D,, Rüsch-Gerdes S,, Richter E. 2008. In vitro-selected linezolid-resistant Mycobacterium tuberculosis mutants. Antimicrob Agents Chemother 52: 800801.[PubMed][CrossRef]
122. Beckert P,, Hillemann D,, Kohl TA,, Kalinowski J,, Richter E,, Niemann S,, Feuerriegel S. 2012. rplC T460C identified as a dominant mutation in linezolid-resistant Mycobacterium tuberculosis strains. Antimicrob Agents Chemother 56: 27432745.[PubMed][CrossRef]
123. Wang F,, Cassidy C,, Sacchettini JC. 2006. Crystal structure and activity studies of the Mycobacterium tuberculosis beta-lactamase reveal its critical role in resistance to beta-lactam antibiotics. Antimicrob Agents Chemother 50: 27622771.[PubMed][CrossRef]
124. Payen MC,, De Wit S,, Martin C,, Sergysels R,, Muylle I,, Van Laethem Y,, Clumeck N. 2012. Clinical use of the meropenem-clavulanate combination for extensively drug-resistant tuberculosis. Int J Tuberc Lung Dis 16: 558560.[PubMed][CrossRef]
125. Van Deun A,, Maug AKJ,, Salim MAH,, Das PK,, Sarker MR,, Daru P,, Rieder HL. 2010. Short, highly effective, and inexpensive standardized treatment of multidrug-resistant tuberculosis. Am J Respir Crit Care Med 182: 684692.[PubMed][CrossRef]
126. Yano T,, Kassovska-Bratinova S,, Teh JS,, Winkler J,, Sullivan K,, Isaacs A,, Schechter NM,, Rubin H. 2011. Reduction of clofazimine by mycobacterial type 2 NADH:quinone oxidoreductase: a pathway for the generation of bactericidal levels of reactive oxygen species. J Biol Chem 286: 1027610287.[PubMed][CrossRef]
127. Andries K,, Verhasselt P,, Guillemont J,, Göhlmann HWH,, Neefs J-M,, Winkler H,, Van Gestel J,, Timmerman P,, Zhu M,, Lee E,, Williams P,, de Chaffoy D,, Huitric E,, Hoffner S,, Cambau E,, Truffot-Pernot C,, Lounis N,, Jarlier V. 2005. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307: 223227.[PubMed][CrossRef]
128. Koul A,, Vranckx L,, Dendouga N,, Balemans W,, Van den Wyngaert I,, Vergauwen K,, Göhlmann HWH,, Willebrords R,, Poncelet A,, Guillemont J,, Bald D,, Andries K. 2008. Diarylquinolines are bactericidal for dormant mycobacteria as a result of disturbed ATP homeostasis. J Biol Chem 283: 2527325280.[PubMed][CrossRef]
129. Biukovic G,, Basak S,, Manimekalai MSS,, Rishikesan S,, Roessle M,, Dick T,, Rao SPS,, Hunke C,, Grüber G. 2013. Variations of subunit ε of the Mycobacterium tuberculosis F1Fo ATP synthase and a novel model for mechanism of action of the tuberculosis drug TMC207. Antimicrob Agents Chemother 57: 168176.[PubMed][CrossRef]
130. Huitric E,, Verhasselt P,, Koul A,, Andries K,, Hoffner S,, Andersson DI. 2010. Rates and mechanisms of resistance development in Mycobacterium tuberculosis to a novel diarylquinoline ATP synthase inhibitor. Antimicrob Agents Chemother 54: 10221028.[PubMed][CrossRef]
131. Gupta S,, Cohen KA,, Winglee K,, Maiga M,, Diarra B,, Bishai WR. 2013. Efflux inhibition with verapamil potentiates bedaquiline in Mycobacterium tuberculosis. Antimicrob Agents Chemother [Epub ahead of print.] [PubMed][CrossRef]
132. Helb D,, Jones M,, Story E,, Boehme C,, Wallace E,, Ho K,, Kop J,, Owens MR,, Rodgers R,, Banada P,, Safi H,, Blakemore R,, Lan NTN,, Jones-López EC,, Levi M,, Burday M,, Ayakaka I,, Mugerwa RD,, McMillan B,, Winn-Deen E,, Christel L,, Dailey P,, Perkins MD,, Persing DH,, Alland D. 2010. Rapid detection of Mycobacterium tuberculosis and rifampin resistance by use of on-demand, near-patient technology. J Clin Microbiol 48: 229237.[PubMed][CrossRef]
133. Miotto P,, Piana F,, Cirillo DM,, Migliori GB. 2008. Genotype MTBDRplus: a further step toward rapid identification of drug-resistant Mycobacterium tuberculosis. J Clin Microbiol 46: 393394.[PubMed][CrossRef]
134. Köser CU,, Bryant JM,, Becq J,, Török ME,, Ellington MJ,, Marti-Renom MA,, Carmichael AJ,, Parkhill J,, Smith GP,, Peacock SJ. 2013. Whole-genome sequencing for rapid susceptibility testing of M. tuberculosis. N Engl J Med 369: 290292.[PubMed][CrossRef]
135. Farhat MR,, Shapiro BJ,, Kieser KJ,, Sultana R,, Jacobson KR,, Victor TC,, Warren RM,, Streicher EM,, Calver A,, Sloutsky A,, Kaur D,, Posey JE,, Plikaytis B,, Oggioni MR,, Gardy JL,, Johnston JC,, Rodrigues M,, Tang PKC,, Kato-Maeda M,, Borowsky ML,, Muddukrishna B,, Kreiswirth BN,, Kurepina N,, Galagan J,, Gagneux S,, Birren B,, Rubin EJ,, Lander ES,, Sabeti PC,, Murray M. 2013. Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis. Nat Genet 45: 11831189.[PubMed][CrossRef]
136. Zhang H,, Li D,, Zhao L,, Fleming J,, Lin N,, Wang T,, Liu Z,, Li C,, Galwey N,, Deng J,, Zhou Y,, Zhu Y,, Gao Y,, Wang T,, Wang S,, Huang Y,, Wang M,, Zhong Q,, Zhou L,, Chen T,, Zhou J,, Yang R,, Zhu G,, Hang H,, Zhang J,, Li F,, Wan K,, Wang J,, Zhang X-E,, Bi L. 2013. Genome sequencing of 161 Mycobacterium tuberculosis isolates from China identifies genes and intergenic regions associated with drug resistance. Nat Genet 45: 12551260.[PubMed][CrossRef]

Tables

Generic image for table
Table 1

The commonly used TB drugs with the genes associated with their respective resistance and major mechanism of resistance

Citation: Cohen K, Bishai W, Pym A. 2014. Molecular Basis of Drug Resistance in , p 413-429. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0036-2013

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error