1887

Chapter 28 : Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818845/9781555818838_Chap28-1.gif /docserver/preview/fulltext/10.1128/9781555818845/9781555818838_Chap28-2.gif

Abstract:

The compositional and architectural complexity of the mycobacterial cell envelope is probably the most distinctive feature of the genus. It is the basis of many of the physiological and pathogenic features of these bacteria and the site of susceptibility and resistance to many antimycobacterial drugs ( ). In the context of the increasing incidence of multidrug-resistant strains of , elucidating the complex pathways allowing mycobacteria to synthesize and assemble this complex structure represents a crucial area of research.

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013

Key Concept Ranking

Tumor Necrosis Factor alpha
0.40875724
0.40875724
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Schematic representation of the cell envelope. Many of the classes of lipids and glycolipids discussed in the text are represented schematically and are shown in probable locations in the cell envelope. The structures with light and dark green hexagons represent trehalose mono- and dimycolates, respectively; the red lollipops represent phthiocerol dimycocerosates, and the gold ones represent sulfolipids, diacyltrehaloses, and polyacyltrehaloses. Gray circles represent phospholipid headgroups; black circles, isoprenoids; light blue squares, GlcNAc; white squares, MurNAc; white pentagons, arabinofuranose; yellow diamonds, galactofuranose; and blue hexagons, mannose. The overall schematic and individual structures are not drawn to scale, and the numbers of carbohydrate residues shown are not representative of the actual molecules. Proteins and peptides are not shown for the sake of clarity. doi:10.1128/microbiolspec.MGM2-0021-2013.f1

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Structures of mycobacterial phospholipids. doi:10.1128/microbiolspec.MGM2-0021-2013.f2

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Structures of IPP and DMAPP. These molecules are precursors of all isoprenoid compounds. doi:10.1128/microbiolspec.MGM2-0021-2013.f3

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Structures of representative short-chain IPPs synthesized by mycobacteria. The sterochemical conformation is shown. doi:10.1128/microbiolspec.MGM2-0021-2013.f4

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Structures of isoprenylphosphates reported from . doi:10.1128/microbiolspec.MGM2-0021-2013.f5

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Structures of the predominant menaquinone and menaquinone sulfate reported from . Carbon positions 2 and 3 and the β-isoprene unit are indicated by the arrows and call-out. doi:10.1128/microbiolspec.MGM2-0021-2013.f6

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Structures of representative carotenoids found in mycobacteria. doi:10.1128/microbiolspec.MGM2-0021-2013.f7

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Structures of representative noncarotenoid cyclic isoprenoids found in mycobacteria. doi:10.1128/microbiolspec.MGM2-0021-2013.f8

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

Structures of TMM and TDM. doi:10.1128/microbiolspec.MGM2-0021-2013.f9

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10
Figure 10

Structures of SLs, DATs, and PATs and biosynthetic gene clusters. The major sulfolipid, SL-I (2,3,6,6′-tetraacyl α-α′-trehalose-2′-sulfate), is represented. In SL-I, trehalose is sulfated at the 2′ position and esterified with palmitic acid and the multimethyl-branched phthioceranic and hydroxyphthioceranic acids. In DAT (2,3-di--acyltrehalose), trehalose is esterified with palmitic acid and the multimethyl-branched mycosanoic acid. In PAT, trehalose is esterified with palmitic acid and the multimethyl-branched mycolipenic acids. doi:10.1128/microbiolspec.MGM2-0021-2013.f10

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 11
Figure 11

Structures of (A) major LOS (LOS-A) of ATCC 356 (R and/or R : octanoic acid and tetra- or hexa-decanoic acid) and (B) “canettii”; R = Ac. (C) LOS biosynthetic gene cluster of mc155. Shown is the 25.15-kb region spanning () to (). ORFs are depicted as arrows. Black arrows indicate genes encoding biosynthetic enzymes; gray arrows indicate putative transporter genes; white arrows show hypothetical genes of unknown function. Abbreviations: Pks5, Mas-like polyketide synthase; Pap, putative acyltransferase; MSMEG_4729 and MSMEG_4730, putative acyltransferases; FadD, putative acyl-CoA synthase; Gtf (MSMEG_4732), putative glycosyltransferase; Gap2, putative transmembrane protein involved in glycolipid translocation; MSMEG_4734, hypothetical PE/PPE-like protein; Gtf (MSMEG_4735), putative glycosyltransferase; MSMEG_4736 and MSMEG_4737, putative pyrruvylyl transferases; MSMEG_4738, hypothetical protein; Mtf, possible -methyltransferase; Gtf (MSMEG_4740), putative glycosyltransferase; MmpL, putative inner membrane transporter. doi:10.1128/microbiolspec.MGM2-0021-2013.f11

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12
Figure 12

Structure of the predominant mannosyl-β-1-phosphomycoketide from H37Rv. See text for details. doi:10.1128/microbiolspec.MGM2-0021-2013.f12

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 13
Figure 13

Structures of the PDIMs, PGLs, and -hydroxybenzoic acid derivatives (-HBADs) of . In , p, p′ = 3-5; n, n′ = 16-18; m2 = 15-17 ; m1 = 20-22; R = CH-CH or CH. doi:10.1128/microbiolspec.MGM2-0021-2013.f13

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 14
Figure 14

Genetic organization of the PDIM and PGL locus of H37Rv. ORFs are depicted as arrows. Black arrows indicate genes encoding biosynthetic enzymes; gray arrows indicate putative transporter genes; white arrows indicate hypothetical genes of unknown function. More details about the function of each gene are provided in Table 3 and Fig. 15 . Adapted from reference . doi:10.1128/microbiolspec.MGM2-0021-2013.f14

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 15
Figure 15

The PDIM biosynthetic pathway. See text for details. doi:10.1128/microbiolspec.MGM2-0021-2013.f15

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 16
Figure 16

(A) Structure of the nonspecific glycopeptidolipids of . R = –H or –CH; R = –H or –Ac; R, –CH, -succinyl, -rhamnosyl or -2--succinylrhamnosyl; m = 12-14; n, 6-10. (B) GPL biosynthetic gene cluster of mc155. Shown is the 64.97-kb region spanning () to . ORFs are depicted as arrows. Black arrows indicate genes encoding biosynthetic enzymes; gray arrows indicate putative transporter genes; white arrows indicate putative regulatory genes. Chp, putative acyltransferase; FadE, putative acyl-CoA dehydrogenase; PapA, putative acyltransferase. Other genes are described in the text. doi:10.1128/microbiolspec.MGM2-0021-2013.f16

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 17
Figure 17

Structure and biosynthesis of α--glucans in . See text for details. doi:10.1128/microbiolspec.MGM2-0021-2013.f17

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 18
Figure 18

Representative structures of mycobactins and carboxymycobactins from . See text for details. Mycobactins: R = H; R = (CH)CH, n = 16-19; (CH)CH = CH(CH)CH, x+y = 14-17. Carboxymycobactins: R = H, CH; R = (CH)COOCH/COOH, n = 1-7; (CH)CH = CH(CH)COOCH/COOH, x+y = 1-5. doi:10.1128/microbiolspec.MGM2-0021-2013.f18

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19
Figure 19

Representative structure of a mycolactone from . The genes involved in the biosynthesis of the various constituents of mycolactone are indicated on the structure. doi:10.1128/microbiolspec.MGM2-0021-2013.f19

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818845.chap28
1. Daffé M,, Draper P. 1998. The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol 39: 131203.[PubMed][CrossRef]
2. Jackson M,, McNeil MR,, Brennan PJ. 2013. Progress in targeting cell envelope biogenesis in Mycobacterium tuberculosis. Future Microbiol 8: 855875.[PubMed][CrossRef]
3. Hoffmann C,, Leis A,, Niederweis M,, Plitzko JM,, Engelhardt H. 2008. Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc Natl Acad Sci USA 105: 39633967.[PubMed][CrossRef]
4. Zuber B,, Chami M,, Houssin C,, Dubochet J,, Griffiths G,, Daffe M. 2008. Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state. J Bacteriol 190: 56725680.[PubMed][CrossRef]
5. Sani M,, Houben ENG,, Geurtsen J,, Pierson J,, de Punder K,, van Zon M,, Wever B,, Piersma SR,, Jimenez CR,, Daffe M,, Appelmelk BJ,, Bitter W,, van der Wel N,, Peters PJ. 2010. Direct visualization by cryo-EM of the mycobacterial capsular layer: a labile structure containing ESX-1-secreted proteins. PLoS Pathog 6:e1000794. [PubMed][CrossRef]
6. Lemassu A,, Daffé M. 1994. Structural features of the exocellular polysaccharides of Mycobacterium tuberculosis. Biochem J 297: 351357.[PubMed]
7. Ortalo-Magné A,, Dupont MA,, Lemassu A,, Andersen AB,, Gounon P,, Daffé M. 1995. Molecular composition of the outermost capsular material of the tubercle bacillus. Microbiology 141: 16091620.[PubMed][CrossRef]
8. Ortalo-Magné A,, Lemassu A,, Lanéelle MA,, Bardou F,, Silve G,, Gounon P,, Marchal G,, Daffé M. 1996. Identification of the surface-exposed lipids on the cell envelopes of Mycobacterium tuberculosis and other mycobacterial species. J Bacteriol 178: 456461.[PubMed]
9. Lemassu A,, Ortalo-Magne A,, Bardou F,, Silve G,, Laneelle M-A,, Daffe M. 1996. Extracellular and surface-exposed polysaccharides of non-tuberculous mycobacteria. Microbiology 142: 15131520.[PubMed][CrossRef]
10. Raynaud C,, Etienne G,, Peyron P,, Laneelle MA,, Daffe M. 1998. Extracellular enzyme activities potentially involved in the pathogenicity of Mycobacterium tuberculosis. Microbiology 144: 577587.[PubMed][CrossRef]
11. Ehlers MRW,, Daffé M. 1998. Interactions between Mycobacterium tuberculosis and host cells: are mycobacterial sugars the key? Trends Microbiol 6: 328335.[PubMed][CrossRef]
12. Daffé M,, Etienne G. 1999. The capsule of Mycobacterium tuberculosis and its implications for pathogenicity. Tuber Lung Dis 79: 153169.[PubMed][CrossRef]
13. Goren MB,. 1984. Biosynthesis and structures of phospholipids and sulfatides, p 379415. In Kubica GP,, Wayne LG (ed), The Mycobacteria. A Sourcebook, vol. 1. Marcel Dekker, New York/Basel.
14. Brennan PJ,. 1988. Mycobacterium and other actinomycetes, p 203298. In Ratledge C,, Wilkinson SG (ed), Microbial Lipids, vol. 1. Academic Press, London.
15. Daniel J,, Deb C,, Dubey VS,, Sirakova TD,, Abomoelak B,, Morbidoni HR,, Kolattukudy PE. 2004. Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture. J Bacteriol 186: 50175030.[PubMed][CrossRef]
16. Walker RW,, Barakat H,, Hung JGC. 1970. The positional distribution of fatty acids in the phospholipids and triglycerides of Mycobacterium smegmatis and M. bovis BCG. Lipids 5: 684691.[PubMed][CrossRef]
17. Fernandes ND,, Kolattukudy PE. 1996. Cloning, sequencing and characterization of a fatty acid synthase-encoding gene from Mycobacterium tuberculosis var. bovis BCG. Gene 170: 9599.[PubMed][CrossRef]
18. Zimhony O,, Vilcheze C,, Jacobs WR Jr. 2004. Characterization of Mycobacterium smegmatis expressing the Mycobacterium tuberculosis fatty acid synthase I (fas1) gene. J Bacteriol 186: 40514055.[PubMed][CrossRef]
19. Yao J,, Rock CO. 2013. Phosphatidic acid synthesis in bacteria. Biochim Biophys Acta 1831: 495502.[PubMed][CrossRef]
20. Comba S,, Menendez-Bravo S,, Arabolaza A,, Gramajo H. 2013. Identification and physiological characterization of phosphatidic acid phosphatase enzymes involved in triacylglycerol biosynthesis in Streptomyces coelicolor. Microbial Cell Factories 12:9. [PubMed][CrossRef]
21. Sirakova TD,, Dubey VS,, Deb C,, Daniel J,, Korotkova TA,, Abomoelak B,, Kolattukudy PE. 2006. Identification of a diacylglycerol acyltransferase gene involved in accumulation of triacylglycerol in Mycobacterium tuberculosis under stress. Microbiology 152: 27172725.[PubMed][CrossRef]
22. Elamin AA,, Stehr M,, Spallek R,, Rohde M,, Singh M. 2011. The Mycobacterium tuberculosis Ag85A is a novel diacylglycerol acyltransferase involved in lipid body formation. Mol Microbiol 81: 15771592.[PubMed][CrossRef]
23. Nigou J,, Besra GS. 2002. Cytidine diphosphate-diacylglycerol synthesis in Mycobacterium smegmatis. Biochem J 367: 157162.[PubMed][CrossRef]
24. Salman M,, Lonsdale JT,, Besra GS,, Brennan PJ. 1999. Phosphatidylinositol synthesis in mycobacteria. Biochim Biophys Acta 1436: 437450.[PubMed][CrossRef]
25. Jackson M,, Crick DC,, Brennan PJ. 2000. Phosphatidylinositol is an essential phospholipid of mycobacteria. J Biol Chem 275: 3009230099.[PubMed][CrossRef]
26. Morii H,, Ogawa M,, Fukuda K,, Taniguchi H,, Koga Y. 2010. A revised biosynthetic pathway for phosphatidylinositol in mycobacteria. J Biochem 148: 593602.[PubMed][CrossRef]
27. Sandoval-Calderon M,, Geiger O,, Guan Z,, Barona-Gomez F,, Sohlenkamp C. 2009. A eukaryote-like cardiolipin synthase is present in Streptomyces coelicolor and in most actinobacteria. J Biol Chem 284: 1738317390.[PubMed][CrossRef]
28. Korduláková J,, Gilleron M,, Mikusova K,, Puzo G,, Brennan PJ,, Gicquel B,, Jackson M. 2002. Definition of the first mannosylation step in phosphatidylinositol synthesis: PimA is essential for growth of mycobacteria. J Biol Chem 277: 3133531344.[PubMed][CrossRef]
29. Guerin ME,, Kordulakova J,, Schaeffer F,, Svetlikova Z,, Buschiazzo A,, Giganti D,, Gicquel B,, Mikusova K,, Jackson M,, Alzari PM. 2007. Molecular recognition and interfacial catalysis by the essential phosphatidylinositol mannosyltransferase PimA from mycobacteria. J Biol Chem 282: 2070520714.[PubMed][CrossRef]
30. Guerin ME,, Schaeffer F,, Chaffotte A,, Gest P,, Giganti D,, Kordulakova J,, van der Woerd M,, Jackson M,, Alzari PM. 2009. Substrate-induced conformational changes in the essential peripheral membrane-associated mannosyltransferase PimA from mycobacteria: implications for catalysis. J Biol Chem 284: 2161321625.[PubMed][CrossRef]
31. Guerin ME,, Kaur D,, Somashekar BS,, Gibbs S,, Gest P,, Chatterjee D,, Brennan PJ,, Jackson M. 2009. New insights into the early steps of phosphatidylinositol mannosides biosynthesis in mycobacteria. PimB′ is an essential enzyme of Mycobacterium smegmatis. J Biol Chem 284: 2568725696.[PubMed][CrossRef]
32. Korduláková J,, Gilleron M,, Puzo G,, Brennan PJ,, Gicquel B,, Mikusova K,, Jackson M. 2003. Identification of the required acyltransferase step in the biosynthesis of the phosphatidylinositol mannosides of Mycobacterium species. J Biol Chem 278: 3628536295.[PubMed][CrossRef]
33. Kaur D,, Guerin ME,, Skovierova H,, Brennan PJ,, Jackson M. 2009. Chapter 2: biogenesis of the cell wall and other glycoconjugates of Mycobacterium tuberculosis. Adv Appl Microbiol 69: 2378.[PubMed][CrossRef]
34. Morita YS,, Sena CCB,, Waller RF,, Kurokawa K,, Sernee MF,, Nakatani F,, Haites RE,, Billman-Jacobe H,, McConville MJ,, Maeda Y,, Kinoshita T. 2006. PimE is a polyprenol-phosphate-mannose-dependent mannosyltransferase that transfers the fifth mannose of phosphatidylinositol mannoside in mycobacteria. J Biol Chem 281: 2514325155.[PubMed][CrossRef]
35. Berg S,, Kaur D,, Jackson M,, Brennan PJ. 2007. The glycosyltransferases of Mycobacterium tuberculosis: roles in the synthesis of arabinogalactan, lipoarabinomannan, and other glycoconjugates. Glycobiology 17: 35R56R.[PubMed][CrossRef]
36. Morita YS,, Velasquez R,, Taig E,, Waller RF,, Patterson JH,, Tull D,, Williams SJ,, Billman-Jacobe H,, McConville MJ. 2005. Compartmentalization of lipid biosynthesis in mycobacteria. J Biol Chem 280: 2164521652.[PubMed][CrossRef]
37. Sulzenbacher G,, Canaan S,, Bordat Y,, Neyrolles O,, Stadthagen G,, Roig-Zamboni V,, Rauzier J,, Maurin D,, Laval F,, Daffe M,, Cambillau C,, Gicquel B,, Bourne Y,, Jackson M. 2006. LppX is a lipoprotein required for the translocation of phthiocerol dimycocerosates to the surface of Mycobacterium tuberculosis. EMBO J 25: 14361444.[PubMed][CrossRef]
38. Drage MG,, Tsai HC,, Pecora ND,, Cheng TY,, Arida AR,, Shukla S,, Rojas RE,, Seshadri C,, Moody DB,, Boom WH,, Sacchettini JC,, Harding CV. 2010. Mycobacterium tuberculosis lipoprotein LprG (Rv1411c) binds triacylated glycolipid agonists of Toll-like receptor 2. Nat Struct Mol Biol 17: 10881095.[PubMed][CrossRef]
39. Wolucka BA,, McNeil MR,, de Hoffmann E,, Chojnacki T,, Brennan PJ. 1994. Recognition of the lipid intermediate for arabinogalactan/arabinomannan biosynthesis and its relation to the mode of action of ethambutol on mycobacteria. J Biol Chem 269: 2332823335.[PubMed]
40. Mahapatra S,, Yagi T,, Belisle JT,, Espinosa BJ,, Hill PJ,, McNeil MR,, Brennan PJ,, Crick DC. 2005. Mycobacterial lipid II is composed of a complex mixture of modified muramyl and peptide moieties linked to decaprenyl phosphate. J Bacteriol 187: 27472757.[PubMed][CrossRef]
41. Anderson RG,, Hussey H,, Baddiley J. 1972. The mechanism of wall synthesis in bacteria. The organization of enzymes and isoprenoid phosphates in the membrane. Biochem J 127: 1125.[PubMed]
42. Mikusova K,, Mikus M,, Besra GS,, Hancock I,, Brennan PJ. 1996. Biosynthesis of the linkage region of the mycobacterial cell wall. J Biol Chem 271: 78207828.[PubMed][CrossRef]
43. Sacchettini JC,, Poulter CD. 1997. Creating isoprenoid diversity. Science 277: 17881789.[PubMed][CrossRef]
44. Schwender J,, Seemann M,, Lichtenthaler HK,, Rohmer M. 1996. Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. Biochem J 316: 7380.[PubMed]
45. Sprenger GA,, Schorken U,, Wiegert T,, Grolle S,, De Graaf AA,, Taylor SV,, Begley TP,, Bringer-Meyer S,, Sahm H. 1997. Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1-deoxy-d-xylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxol. Proc Natl Acad Sci USA 94: 1285712862.[PubMed][CrossRef]
46. Lois LM,, Campos N,, Putra SR,, Danielsen K,, Rohmer M,, Boronat A. 1998. Cloning and characterization of a gene from Escherichia coli encoding a transketolase-like enzyme that catalyzes the synthesis of d-1- deoxyxylulose 5-phosphate, a common precursor for isoprenoid, thiamin, and pyridoxol biosynthesis. Proc Natl Acad Sci USA 95: 21052110.[PubMed][CrossRef]
47. Hill RE,, Himmeldirk K,, Kennedy IA,, Pauloski RM,, Sayer BG,, Wolf E,, Spenser ID. 1996. The biogenetic anatomy of vitamin B-6. A C-13NMR investigation of the biosynthesis of pyridoxol in Escherichia coli. J Biol Chem 271: 3042630435.[PubMed][CrossRef]
48. Querol J,, Rodriguez-Concepcion M,, Boronat A,, Imperial S. 2001. Essential role of residue H49 for activity of Escherichia coli 1-deoxy-d-xylulose 5-phosphate synthase, the enzyme catalyzing the first step of the 2-C-methyl-d-erythritol 4-phosphate pathway for isoprenoid synthesis. Biochem Biophys Res Commun 289: 155160.[PubMed][CrossRef]
49. Bailey AM,, Mahapatra S,, Brennan PJ,, Crick DC. 2002. Identification, cloning, purification, and enzymatic characterization of Mycobacterium tuberculosis 1-deoxy-d-xylulose 5-phosphate synthase. Glycobiology 12: 813820.[PubMed][CrossRef]
50. Brown AC,, Eberl M,, Crick DC,, Jomaa H,, Parish T. 2010. The nonmevalonate pathway of isoprenoid biosynthesis in Mycobacterium tuberculosis is essential and transcriptionally regulated by Dxs. J Bacteriol 192: 24242433.[PubMed][CrossRef]
51. Takahashi S,, Kuzuyama T,, Watanabe H,, Seto H. 1998. A 1-deoxy-d-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-d-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis. Proc Natl Acad Sci USA 95: 98799884.[PubMed][CrossRef]
52. Arigoni D,, Sagner S,, Latzel C,, Eisenreich W,, Bacher A,, Zenk MH. 1997. Terpenoid biosynthesis from 1-deoxy-d-xylulose in higher plants by intramolecular skeletal rearrangement. Proc Natl Acad Sci USA 94: 1060010605.[PubMed][CrossRef]
53. Reuter K,, Sanderbrand S,, Jomaa H,, Wiesner J,, Steinbrecher I,, Beck E,, Hintz M,, Klebe G,, Stubbs MT. 2002. Crystal structure of 1-deoxy-d-xylulose-5-phosphate reductoisomerase, a crucial enzyme in the non-mevalonate pathway of isoprenoid biosynthesis. J Biol Chem 277: 53785384.[PubMed][CrossRef]
54. Argyrou A,, Blanchard JS. 2004. Kinetic and chemical mechanism of Mycobacterium tuberculosis 1-deoxy-d-xylulose-5-phosphate isomeroreductase. Biochemistry 43: 43754384.[PubMed][CrossRef]
55. Dhiman RK,, Schaeffer ML,, Bailey AM,, Testa CA,, Scherman H,, Crick DC. 2005. 1-Deoxy-d-xylulose 5-phosphate reductoisomerase (IspC) from Mycobacterium tuberculosis: towards understanding mycobacterial resistance to fosmidomycin. J Bacteriol 187: 83958402.[PubMed][CrossRef]
56. Henriksson LM,, Unge T,, Carlsson J,, Aqvist J,, Mowbray SL,, Jones TA. 2007. Structures of Mycobacterium tuberculosis 1-deoxy-d-xylulose-5-phosphate reductoisomerase provide new insights into catalysis. J Biol Chem 282: 1990519916.[PubMed][CrossRef]
57. Rohdich F,, Wungsintaweekul J,, Fellermeier M,, Sagner S,, Herz S,, Kis K,, Eisenreich W,, Bacher A,, Zenk MH. 1999. Cytidine 5′-triphosphate-dependent biosynthesis of isoprenoids: YgbP protein of Escherichia coli catalyzes the formation of 4-diphosphocytidyl-2-C-methylerythritol. Proc Natl Acad Sci USA 96: 1175811763.[PubMed][CrossRef]
58. Eoh H,, Brown AC,, Buetow L,, Hunter WN,, Parish T,, Kaur D,, Brennan PJ,, Crick DC. 2007. Characterization of the Mycobacterium tuberculosis 4-diphosphocytidyl-2-C-methyl-d-erythritol synthase: potential for drug development. J Bacteriol 189: 89228927.[PubMed][CrossRef]
59. Herz S,, Wungsintaweekul J,, Schuhr CA,, Hecht S,, Luttgen H,, Sagner S,, Fellermeier M,, Eisenreich W,, Zenk MH,, Bacher A,, Rohdich F. 2000. Biosynthesis of terpenoids: YgbB protein converts 4-diphosphocytidyl-2C- methyl-d-erythritol 2-phosphate to 2C-methyl-d-erythritol 2,4- cyclodiphosphate. Proc Natl Acad Sci USA 97: 24862490.[PubMed][CrossRef]
60. Rohdich F,, Wungsintaweekul J,, Luttgen H,, Fischer M,, Eisenreich W,, Schuhr CA,, Fellermeier M,, Schramek N,, Zenk MH,, Bacher A. 2000. Biosynthesis of terpenoids: 4-diphosphocytidyl-2-C-methyl-d-erythritol kinase from tomato. Proc Natl Acad Sci USA 97: 82518256.[PubMed][CrossRef]
61. Eoh H,, Narayanasamy P,, Brown AC,, Parish T,, Brennan PJ,, Crick DC. 2009. Expression and characterization of soluble 4-diphosphocytidyl-2-C-methyl-d-erythritol kinase from bacterial pathogens. Chem Biol 16: 12301239.[PubMed][CrossRef]
62. Narayanasamy P,, Eoh H,, Crick DC. 2008. Chemoenzymatic synthesis of 4-diphosphocytidyl-2-C-methyl-d-erythritol: a substrate for IspE. Tetrahedron Lett 49: 44614463.[PubMed][CrossRef]
63. Narayanasamy P,, Eoh H,, Brennan PJ,, Crick DC. 2010. Synthesis of 4-diphosphocytidyl-2-C-methyl-d-erythritol-2-phosphate and kinetic studies of Mycobacterium tuberculosis IspF. Chem Biol 17: 117122.[PubMed][CrossRef]
64. Buetow L,, Brown AC,, Parish T,, Hunter WN. 2007. The structure of mycobacteria 2C-methyl-d-erythritol-2,4-cyclodiphosphatesynthase, an essential enzyme, provides a platform for drug discovery. BMC Struct Biol 7:68. [PubMed][CrossRef]
65. Hecht S,, Eisenreich W,, Adam P,, Amslinger S,, Kis K,, Bacher A,, Arigoni D,, Rohdich F. 2001. Studies on the nonmevalonate pathway to terpenes: the role of the GcpE (IspG) protein. Proc Natl Acad Sci USA 98: 1483714842.[PubMed][CrossRef]
66. Altincicek B,, Duin EC,, Reichenberg A,, Hedderich R,, Kollas AK,, Hintz M,, Wagner S,, Wiesner J,, Beck E,, Jomaa H. 2002. LytB protein catalyzes the terminal step of the 2-C-methyl-d-erythritol-4-phosphate pathway of isoprenoid biosynthesis. FEBS Lett 532: 437440.[PubMed][CrossRef]
67. Altincicek B,, Kollas A,, Eberl M,, Wiesner J,, Sanderbrand S,, Hintz M,, Beck E,, Jomaa H. 2001. LytB, a novel gene of the 2-C-methyl-d-erythritol 4-phosphate pathway of isoprenoid biosynthesis in Escherichia coli. FEBS Lett 499: 3740.[PubMed][CrossRef]
68. Seemann M,, Bui BTS,, Wolff M,, Tritsch D,, Campos N,, Boronat A,, Marquet A,, Rohmer M. 2002. Isoprenoid biosynthesis through the methylerythritol phosphate pathway: the (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase (GcpE) is a [4Fe-4S] protein. Angew Chem Int Edu Engl 41: 43374339.[PubMed][CrossRef]
69. Rohdich F,, Zepeck F,, Adam P,, Hecht S,, Kaiser J,, Laupitz R,, Grawert T,, Amslinger S,, Eisenreich W,, Bacher A,, Arigoni D. 2003. The deoxyxylulose phosphate pathway of isoprenoid biosynthesis: studies on the mechanisms of the reactions catalyzed by IspG and IspH protein. Proc Natl Acad Sci USA 100: 15861591.[PubMed][CrossRef]
70. Rohdich F,, Hecht S,, Gartner K,, Adam P,, Krieger C,, Amslinger S,, Arigoni D,, Bacher A,, Eisenreich W. 2002. Studies on the nonmevalonate terpene biosynthetic pathway: metabolic role of IspH (LytB) protein. Proc Natl Acad Sci USA 99: 11581163.[PubMed][CrossRef]
71. Agranoff BW,, Eggerer H,, Henning U,, Lynen F. 2013. Biosynthesis of terpenes. VII. Isopentenyl pyrophosphate isomerase. J Biol Chem 235: 326332.[PubMed]
72. Phillips MA,, D’Auria JC,, Gershenzon J,, Pichersky E. 2008. The Arabidopsis thaliana type I isopentenyl diphosphate isomerases are targeted to multiple subcellular compartments and have overlapping functions in isoprenoid biosynthesis. Plant Cell 20: 677696.[PubMed][CrossRef]
73. Kuzuyama T,, Seto H. 2003. Diversity of the biosynthesis of the isoprene units. Nat Prod Rep 20: 171183.[PubMed][CrossRef]
74. Hahn FM,, Hurlburt AP,, Poulter CD. 1999. Escherichia coli open reading frame 696 is idi, a nonessential gene encoding isopentenyl diphosphate isomerase. J Bacteriol 181: 44994504.[PubMed]
75. Kaneda K,, Kuzuyama T,, Takagi M,, Hayakawa Y,, Seto H. 2001. An unusual isopentenyl diphosphate isomerase found in the mevalonate pathway gene cluster from Streptomyces sp strain CL190. Proc Natl Acad Sci USA 98: 932937.[PubMed][CrossRef]
76. Vandermoten S,, Haubruge E,, Cusson M. 2009. New insights into short-chain prenyltransferases: structural features, evolutionary history and potential for selective inhibition. Cell Mol Life Sci 66: 36853695.[PubMed][CrossRef]
77. Ambo T,, Noike M,, Kurokawa H,, Koyama T. 2008. Cloning and functional analysis of novel short-chain cis-prenyltransferases. Biochem Biophys Res Commun 375: 536540.[PubMed][CrossRef]
78. Liang PH. 2009. Reaction kinetics, catalytic mechanisms, conformational changes, and inhibitor design for prenyltransferases. Biochemistry 48: 65626570.[PubMed][CrossRef]
79. Schulbach MC,, Brennan PJ,, Crick DC. 2000. Identification of a short (C15) chain Z-isoprenyl diphosphate synthase and a homologous long (C50) chain isoprenyl diphosphate synthase in Mycobacterium tuberculosis. J Biol Chem 275: 2287622881.[PubMed][CrossRef]
80. Schulbach MC,, Mahapatra S,, Macchia M,, Barontini S,, Papi C,, Minutolo F,, Bertini S,, Brennan PJ,, Crick DC. 2001. Purification, enzymatic characterization, and inhibition of the Z-farnesyl diphosphate synthase from Mycobacterium tuberculosis. J Biol Chem 276: 1162411630.[PubMed][CrossRef]
81. Noike M,, Ambo T,, Kikuchi S,, Suzuki T,, Yamashita S,, Takahashi S,, Kurokawa H,, Mahapatra S,, Crick DC,, Koyama T. 2008. Product chain-length determination mechanism of Z,E-farnesyl diphosphate synthase. Biochem Biophys Res Commun 377: 1722.[PubMed][CrossRef]
82. Wang W,, Dong C,, McNeil M,, Kaur D,, Mahapatra S,, Crick DC,, Naismith JH. 2008. The structural basis of chain length control in Rv1086. J Mol Biol 381: 129140.[PubMed][CrossRef]
83. Kaur D,, Brennan PJ,, Crick DC. 2004. Decaprenyl diphosphate synthesis in Mycobacterium tuberculosis. J Bacteriol 186: 75647570.[PubMed][CrossRef]
84. Sato T,, Takizawa K,, Orito Y,, Kudo H,, Hoshino T. 2010. Insight into C35 terpene biosyntheses by nonpathogenic Mycobacterium species: functional analyses of three Z-prenyltransferases and identification of dehydroheptaprenylcyclines. Chembiochem 11: 18741881.[PubMed][CrossRef]
85. Mann FM,, Thomas JA,, Peters RJ. 2011. Rv0989c encodes a novel (E)-geranyl diphosphate synthase facilitating decaprenyl diphosphate biosynthesis in Mycobacterium tuberculosis. FEBS Lett 585: 549554.[PubMed][CrossRef]
86. Dhiman RK,, Schulbach MC,, Mahapatra S,, Baulard AR,, Vissa V,, Brennan PJ,, Crick DC. 2004. Identification of a novel class of {omega},E,E-farnesyl diphosphate synthase from Mycobacterium tuberculosis. J Lipid Res 45: 11401147.[PubMed][CrossRef]
87. Mann FM,, Xu M,, Davenport EK,, Peters RJ. 2012. Functional characterization and evolution of the isotuberculosinol operon in Mycobacterium tuberculosis and related mycobacteria. Front Microbiol 3:368. [PubMed][CrossRef]
88. IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN). 1987. Prenol nomenclature. Recommendations 1986. Eur J Biochem 167: 181184.[PubMed][CrossRef]
89. Takayama K,, Schnoes HK,, Semmler EJ. 1973. Characterization of the alkali-stable mannophospholipids of Mycobacterium smegmatis. Biochim Biophys Acta 316: 212221.[PubMed][CrossRef]
90. Besra GS,, Sievert T,, Lee RE,, Slayden RA,, Brennan PJ,, Takayama K. 1994. Identification of the apparent carrier in mycolic acid synthesis. Proc Natl Acad Sci USA 91: 1273512739.[PubMed][CrossRef]
91. Wolucka BA,, de Hoffmann E. 1998. Isolation and characterization of the major form of polyprenyl-phospho-mannose from Mycobacterium smegmatis. Glycobiology 8: 955962.[PubMed][CrossRef]
92. Takayama K,, Goldman DS. 1970. Enzymatic synthesis of mannosyl-1-phosphoryl-decaprenol by a cell-free system of Mycobacterium tuberculosis. J Biol Chem 245: 62516257.[PubMed]
93. Wolucka BA,, de Hoffmann E. 1995. The presence of beta-d-ribosyl-1-monophosphodecaprenol in mycobacteria. J Biol Chem 270: 2015120155.[PubMed][CrossRef]
94. El Ghachi M,, Bouhss A,, Blanot D,, Mengin-Lecreulx D. 2004. The bacA gene of Escherichia coli encodes a undecaprenyl pyrophosphate phosphatase activity. J Biol Chem 279: 3010630113.[PubMed][CrossRef]
95. Sherman MM,, Petersen LA,, Poulter CD. 1989. Isolation and characterization of isoprene mutants of Escherichia coli. J Bacteriol 171: 36193628.[PubMed]
96. Minnikin DE,. 1982. Lipids: complex lipids, their chemistry, biosynthesis and roles, p 95184. In Ratledge C,, Stanford J (ed), The Biology of Mycobacteria. Academic Press, London.
97. Embley TM,, Stackebrandt E. 1994. The molecular phylogeny and systematics of the Actinomycetes. Annu Rev Microbiol 48: 257289.[PubMed][CrossRef]
98. Pandya KP,, King HK. 1966. Ubiquinone and menaquinone in bacteria: a comparative study of some bacterial respiratory systems. Arch Biochem Biophys 114: 154157.[PubMed][CrossRef]
99. Meganathan R. 2001. Biosynthesis of menaquinone (vitamin K-2) and ubiquinone (coenzyme Q): a perspective on enzymatic mechanisms. Vitam Horm 61: 173218.[PubMed][CrossRef]
100. Collins MD,, Jones D. 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45: 316354.[PubMed]
101. da Costa MS,, Albuquerque L,, Nobre MF,, Wait R. 2011. The extraction and identification of respiratory lipoquinones of prokaryotes and their use in taxonomy. Methods Microbiol. 38: 197206.[CrossRef]
102. Brodie AF,, Revsin B,, Kalra V,, Phillips P,, Bogin E,, Higashi T,, Murti CR,, Cavari BZ,, Marquez E. 1970. Biological function of terpenoid quinones. Biochem Soc Symp 29: 119143.[PubMed]
103. Holsclaw CM,, Sogi KM,, Gilmore SA,, Schelle MW,, Leavell MD,, Bertozzi CR,, Leary JA. 2008. Structural characterization of a novel sulfated menaquinone produced by stf3 from Mycobacterium tuberculosis. ACS Chem Biol 3: 619624.[PubMed][CrossRef]
104. Bentley R. 1975. Biosynthesis of vitamin-K and other natural naphthoquinones. Pure Appl Chem 41: 4768.[CrossRef]
105. Bentley R,, Meganathan R. 1982. Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiol Rev 46: 241280.[PubMed]
106. Meganathan R,. 1996. Biosynthesis of vitamin K (menaquinone) and ubiquinone (coenzyme Q), p 642656. In Neihardt FC (ed), Escherichia coli and Salmonella. ASM Press, Washington, DC.
107. Azerad R,, Bleiler-Hill R,, Lederer E. 1965. Biosynthesis of a vitamin K2 by cell-free extracts of Mycobacterium phlei. Biochem Biophys Res Commun 19: 194197.[PubMed][CrossRef]
108. Li HJ,, Li X,, Liu N,, Zhang H,, Truglio JJ,, Mishra S,, Kisker C,, Garcia-Diaz M,, Tonge PJ. 2011. Mechanism of the intramolecular Claisen condensation reaction catalyzed by MenB, a crotonase superfamily member. Biochemistry 50: 95329544.[PubMed][CrossRef]
109. Li X,, Liu N,, Zhang H,, Knudson SE,, Li HJ,, Lai CT,, Simmerling C,, Slayden RA,, Tonge PJ. 2011. CoA adducts of 4-oxo-4-phenylbut-2-enoates: inhibitors of MenB from the M. tuberculosis menaquinone biosynthesis pathway. ACS Med Chem Lett 2: 818823.[PubMed][CrossRef]
110. Li X,, Liu N,, Zhang H,, Knudson SE,, Slayden RA,, Tonge PJ. 2010. Synthesis and SAR studies of 1,4-benzoxazine MenB inhibitors: novel antibacterial agents against Mycobacterium tuberculosis. Bioorg Med Chem Lett 20: 63066309.[PubMed][CrossRef]
111. Lu X,, Zhou R,, Sharma I,, Li X,, Kumar G,, Swaminathan S,, Tonge PJ,, Tan DS. 2012. Stable analogues of OSB-AMP: potent inhibitors of MenE, the o-succinylbenzoate-CoA synthetase from bacterial menaquinone biosynthesis. Chembiochem 13: 129136.[PubMed][CrossRef]
112. Lu X,, Zhang H,, Tonge PJ,, Tan DS. 2008. Mechanism-based inhibitors of MenE, an acyl-CoA synthetase involved in bacterial menaquinone biosynthesis. Bioorg Med Chem Lett 18: 59635966.[PubMed][CrossRef]
113. Truglio JJ,, Theis K,, Feng Y,, Gajda R,, Machutta C,, Tonge PJ,, Kisker C. 2003. Crystal structure of Mycobacterium tuberculosis MenB, a key enzyme in vitamin K2 biosynthesis. J Biol Chem 278: 4235242360.[PubMed][CrossRef]
114. Dhiman RK,, Mahapatra S,, Slayden RA,, Boyne ME,, Lenaerts A,, Hinshaw JC,, Angala SK,, Chatterjee D,, Biswas K,, Narayanasamy P,, Kurosu M,, Crick DC. 2009. Menaquinone synthesis is critical for maintaining mycobacterial viability during exponential growth and recovery from non-replicating persistence. Mol Microbiol 72: 8597.[PubMed][CrossRef]
115. Debnath J,, Siricilla S,, Wan B,, Crick DC,, Lenaerts AJ,, Franzblau SG,, Kurosu M. 2012. Discovery of selective menaquinone biosynthesis inhibitors against Mycobacterium tuberculosis. J Med Chem 55: 37393755.[PubMed][CrossRef]
116. Collins MD,, Goodfellow M,, Minnikin DE,, Alderson G. 1985. Menaquinone composition of mycolic acid-containing actinomycetes and some sporoactinomycetes. J Appl Bacteriol 58: 7786.[PubMed][CrossRef]
117. Mougous JD,, Senaratne RH,, Petzold CJ,, Jain M,, Lee DH,, Schelle MW,, Leavell MD,, Cox JS,, Leary JA,, Riley LW,, Bertozzi CR. 2006. A sulfated metabolite produced by stf3 negatively regulates the virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci USA 103: 42584263.[PubMed][CrossRef]
118. Johnston JB,, Kells PM,, Podust LM,, Ortiz de Montellano PR. 2009. Biochemical and structural characterization of CYP124: a methyl-branched lipid omega-hydroxylase from Mycobacterium tuberculosis. Proc Natl Acad Sci USA 106: 2068720692.[PubMed][CrossRef]
119. Vershinin A. 1999. Biological functions of carotenoids: diversity and evolution. Biofactors 10: 99104.[PubMed][CrossRef]
120. Mathews MM,, Krinsky NI. 1965. The relationship between carotenoid pigments and resistance to radiation in non-photosynthetic bacteria. Photochem Photobiol 4: 813817.[PubMed][CrossRef]
121. Goodwin TW. 1972. Carotenoids in fungi and non-photosynthetic bacteria. Prog Ind Microbiol 11: 2988.[PubMed]
122. Dembitsky VM. 2005. Astonishing diversity of natural surfactants. 3. Carotenoid glycosides and isoprenoid glycolipids. Lipids 40: 535557.[PubMed][CrossRef]
123. Subczynsk WK,, Markowska E,, Sieiewiesiuk J. 1991. Effect of polar carotenoids on the oxygen diffusion-concentration product in lipid bilayers. An EPR spin label study. Biochim Biophys Acta 1068: 6872.[PubMed][CrossRef]
124. Woodall AA,, Britton G,, Jackson MJ. 1997. Carotenoids and protection of phospholipids in solution or in liposomes against oxidation by peroxyl radicals: relationship between carotenoid structure and protective ability. Biochim Biophys Acta 1336: 575586.[PubMed][CrossRef]
125. Woodall AA,, Britton G,, Jackson MJ. 1995. Antioxidant activity of carotenoids in phosphatidylcholine vesicles: chemical and structural considerations. Biochem Soc Trans 23:133S. [PubMed]
126. Hertzberg S,, Liaaen JS. 1967. Bacterial carotenoids. XX. The carotenoids of Mycobacterium phlei strain Vera. 2. The structures of the phlei-xanthophylls: two novel tertiary glucosides. Acta Chem Scand 21: 1541.[PubMed][CrossRef]
127. Sieiro C,, Poza M,, de MT,, Villa TG. 2003. Genetic basis of microbial carotenogenesis. Int Microbiol 6: 1116.[PubMed]
128. Gao LY,, Groger R,, Cox JS,, Beverley SM,, Lawson EH,, Brown EJ. 2003. Transposon mutagenesis of Mycobacterium marinum identifies a locus linking pigmentation and intracellular survival. Infect Immun. 71: 922929.[PubMed][CrossRef]
129. Ramakrishnan L,, Tran HT,, Federspiel NA,, Falkow S. 1997. A crtB homolog essential for photochromogenicity in Mycobacterium marinum: isolation, characterization, and gene disruption via homologous recombination. J Bacteriol 179: 58625868.[PubMed]
130. Houssaini-Iraqui M,, Lazraq MH,, Clavel-Seres S,, Rastogi N,, David HL. 1992. Cloning and expression of Mycobacterium aurum carotenogenesis genes in Mycobacterium smegmatis. FEMS Microbiol Lett 69: 239244.[PubMed][CrossRef]
131. Viveiros M,, Krubasik P,, Sandmann G,, Houssaini-Iraqui M. 2000. Structural and functional analysis of the gene cluster encoding carotenoid biosynthesis in Mycobacterium aurum A+. FEMS Microbiol Lett 187: 95101.[PubMed][CrossRef]
132. Scherzinger D,, Scheffer E,, Bar C,, Ernst H,, Al-Babili S. 2010. The Mycobacterium tuberculosis ORF Rv0654 encodes a carotenoid oxygenase mediating central and excentric cleavage of conventional and aromatic carotenoids. FEBS J 277: 46624673.[PubMed][CrossRef]
133. Provvedi R,, Kocincova D,, Dona V,, Euphrasie D,, Daffe M,, Etienne G,, Manganelli R,, Reyrat JM. 2008. SigF controls carotenoid pigment production and affects transformation efficiency and hydrogen peroxide sensitivity in Mycobacterium smegmatis. J Bacteriol 190: 78597863.[PubMed][CrossRef]
134. Sato T,, Kigawa A,, Takagi R,, Adachi T,, Hoshino T. 2008. Biosynthesis of a novel cyclic C35-terpene via the cyclisation of a Z-type C35-polyprenyl diphosphate obtained from a nonpathogenic Mycobacterium species. Org Biomol Chem 6: 37883794.[PubMed][CrossRef]
135. Mann FM,, Xu M,, Chen X,, Fulton DB,, Russell DG,, Peters RJ. 2009. Edaxadiene: a new bioactive diterpene from Mycobacterium tuberculosis. J Am Chem Soc 131: 1752617527.[PubMed][CrossRef]
136. Hoshino T,, Nakano C,, Ootsuka T,, Shinohara Y,, Hara T. 2011. Substrate specificity of Rv3378c, an enzyme from Mycobacterium tuberculosis, and the inhibitory activity of the bicyclic diterpenoids against macrophage phagocytosis. Org Biomol Chem 9: 21562165.[PubMed][CrossRef]
137. Pethe K,, Swenson DL,, Alonso S,, Anderson J,, Wang C,, Russell DG. 2004. Isolation of Mycobacterium tuberculosis mutants defective in the arrest of phagosome maturation. Proc Natl Acad Sci USA 101: 1364213647.[PubMed][CrossRef]
138. Nakano C,, Okamura T,, Sato T,, Dairi T,, Hoshino T. 2005. Mycobacterium tuberculosis H37Rv3377c encodes the diterpene cyclase for producing the halimane skeleton. Chem Commun (Camb) 8: 10161018.[PubMed][CrossRef]
139. Maugel N,, Mann FM,, Hillwig ML,, Peters RJ,, Snider BB. 2010. Synthesis of (+/-)-nosyberkol (isotuberculosinol, revised structure of edaxadiene) and (+/-)-tuberculosinol. Org Lett 12: 26262629.[PubMed][CrossRef]
140. Spangler JE,, Carson CA,, Sorensen EJ. 2010. Synthesis enables a structural revision of the Mycobacterium tuberculosis-produced diterpene, edaxadiene. Chem Sci 1: 202205.[PubMed][CrossRef]
141. Jackson M,, Stadthagen G,, Gicquel B. 2007. Long-chain multiple methyl-branched fatty acid-containing lipids of Mycobacterium tuberculosis: biosynthesis, transport, regulation and biological activities. Tuberculosis 87: 7886.[PubMed][CrossRef]
142. Cardona P-J,, Soto CY,, Martin C,, Gicquel B,, Agusti G,, Guirado E,, Sirakova TD,, Kolattukudy PE,, Julian E,, Luquin M. 2006. Neutral red reaction is related to virulence and cell wall methyl-branched lipids in Mycobacterium tuberculosis. Microbes Infect 8: 183190.[PubMed][CrossRef]
143. Gonzalo Asensio J,, Maia C,, Ferrer NL,, Barilone N,, Laval F,, Soto CY,, Winter N,, Daffe M,, Gicquel B,, Martin C,, Jackson M. 2006. The virulence-associated two-component PhoP-PhoR system controls the biosynthesis of polyketide-derived lipids in Mycobacterium tuberculosis. J Biol Chem 281: 13131316.[PubMed][CrossRef]
144. Dubos RJ,, Middlebrook G. 1948. Cytochemical reaction of virulent tubercle bacilli. Am Rev Tuberc 58: 698699.[PubMed]
145. Grzegorzewicz AE,, Pham H,, Gundi VA,, Scherman MS,, North EJ,, Hess T,, Jones V,, Gruppo V,, Born SE,, Korduláková J,, Chavadi SS,, Morisseau C,, Lenaerts AJ,, Lee RE,, McNeil MR,, Jackson M. 2012. Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane. Nat Chem Biol 8: 334341.[PubMed][CrossRef]
146. Tahlan K,, Wilson R,, Kastrinsky DB,, Arora K,, Nair V,, Fischer E,, Barnes SW,, Walker JR,, Alland D,, Barry CE 3rd,, Boshoff HI. 2012. SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis. Antimicrobial Agents Chemother 56: 17971809.[PubMed][CrossRef]
147. Belisle JT,, Vissa VD,, Sievert T,, Takayama K,, Brennan PJ,, Besra GS. 1997. Role of the major antigen of Mycobacterium tuberculosis in the cell wall biogenesis. Science 276: 14201422.[PubMed][CrossRef]
148. Jackson M,, Raynaud C,, Lanéelle MA,, Guilhot C,, Laurent-Winter C,, Ensergueix D,, Gicquel B,, Daffé M. 1999. Inactivation of the antigen 85C gene profoundly affects the mycolate content and alters the permeability of the Mycobacterium tuberculosis cell envelope. Mol Microbiol 31: 15731587.[PubMed][CrossRef]
149. Puech V,, Guilhot C,, Perez E,, Tropis M,, Armitige LY,, Gicquel B,, Daffe M. 2002. Evidence for a partial redundancy of the fibronectin-binding proteins for the transfer of mycoloyl residues onto the cell wall arabinogalactan termini of Mycobacterium tuberculosis. Mol Microbiol 44: 11091122.[PubMed][CrossRef]
150. Harth G,, Horwitz MA,, Tabatadze D,, Zamecnik PC. 2002. Targeting the Mycobacterium tuberculosis 30/32-kDa mycolyl transferase complex as a therapeutic strategy against tuberculosis: proof of principle by using antisense technology. Proc Natl Acad Sci USA 99: 1561415619.[PubMed][CrossRef]
151. Armitige LY,, Jagannath C,, Wanger AR,, Norris SJ. 2000. Disruption of the genes encoding antigen 85A and antigen 85B of Mycobacterium tuberculosis H37Rv: effect on growth in culture and in macrophages. Infect Immun 68: 767778.[PubMed][CrossRef]
152. Nguyen L,, Chinnapapagari S,, Thompson CJ. 2005. FbpA-dependent biosynthesis of trehalose dimycolate is required for the intrinsic multidrug resistance, cell wall structure, and colonial morphology of Mycobacterium smegmatis. J Bacteriol 187: 66036611.[PubMed][CrossRef]
153. Katti MK,, Dai G,, Armitige LY,, Rivera Marrero C,, Daniel S,, Singh CR,, Lindsey DR,, Dhandayuthapani S,, Hunter RL,, Jagannath C. 2008. The Delta fbpA mutant derived from Mycobacterium tuberculosis H37Rv has an enhanced susceptibility to intracellular antimicrobial oxidative mechanisms, undergoes limited phagosome maturation and activates macrophages and dendritic cells. Cell Microbiol 10: 12861303.[PubMed][CrossRef]
154. Hunter RL,, Armitige L,, Jagannath C,, Actor JK. 2009. TB research at UT-Houston: a review of cord factor: new approaches to drugs, vaccines and the pathogenesis of tuberculosis. Tuberculosis (Edinb) 89(Suppl 1): S18S25.[PubMed][CrossRef]
155. Li C,, Du Q,, Deng W,, Xie J. 2012. The biology of Mycobacterium cord factor and roles in pathogen-host interaction. Crit Rev Eukaryotic Gene Expr 22: 289297.[PubMed][CrossRef]
156. Linares C,, Bernabeu A,, Luquin M,, Valero-Guillen PL. 2012. Cord factors from atypical mycobacteria (Mycobacterium alvei, Mycobacterium brumae) stimulate the secretion of some pro-inflammatory cytokines of relevance in tuberculosis. Microbiology 158: 28782885.[PubMed][CrossRef]
157. Glickman MS,. 2008. Cording, cord factors and trehalose dimycolate, p 6373. In Daffé M,, Reyrat J-M (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC.