1887

Chapter 28 : Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818845/9781555818838_Chap28-1.gif /docserver/preview/fulltext/10.1128/9781555818845/9781555818838_Chap28-2.gif

Abstract:

The compositional and architectural complexity of the mycobacterial cell envelope is probably the most distinctive feature of the genus. It is the basis of many of the physiological and pathogenic features of these bacteria and the site of susceptibility and resistance to many antimycobacterial drugs ( ). In the context of the increasing incidence of multidrug-resistant strains of , elucidating the complex pathways allowing mycobacteria to synthesize and assemble this complex structure represents a crucial area of research.

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Schematic representation of the cell envelope. Many of the classes of lipids and glycolipids discussed in the text are represented schematically and are shown in probable locations in the cell envelope. The structures with light and dark green hexagons represent trehalose mono- and dimycolates, respectively; the red lollipops represent phthiocerol dimycocerosates, and the gold ones represent sulfolipids, diacyltrehaloses, and polyacyltrehaloses. Gray circles represent phospholipid headgroups; black circles, isoprenoids; light blue squares, GlcNAc; white squares, MurNAc; white pentagons, arabinofuranose; yellow diamonds, galactofuranose; and blue hexagons, mannose. The overall schematic and individual structures are not drawn to scale, and the numbers of carbohydrate residues shown are not representative of the actual molecules. Proteins and peptides are not shown for the sake of clarity.

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Structures of mycobacterial phospholipids.

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Structures of IPP and DMAPP. These molecules are precursors of all isoprenoid compounds.

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Structures of representative short-chain IPPs synthesized by mycobacteria. The sterochemical conformation is shown.

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Structures of isoprenylphosphates reported from .

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Structures of the predominant menaquinone and menaquinone sulfate reported from . Carbon positions 2 and 3 and the β-isoprene unit are indicated by the arrows and call-out.

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Structures of representative carotenoids found in mycobacteria.

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Structures of representative noncarotenoid cyclic isoprenoids found in mycobacteria.

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

Structures of TMM and TDM.

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10
Figure 10

Structures of SLs, DATs, and PATs and biosynthetic gene clusters. The major sulfolipid, SL-I (2,3,6,6′-tetraacyl α-α′-trehalose-2′-sulfate), is represented. In SL-I, trehalose is sulfated at the 2′ position and esterified with palmitic acid and the multimethyl-branched phthioceranic and hydroxyphthioceranic acids. In DAT (2,3-di--acyltrehalose), trehalose is esterified with palmitic acid and the multimethyl-branched mycosanoic acid. In PAT, trehalose is esterified with palmitic acid and the multimethyl-branched mycolipenic acids.

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 11
Figure 11

Structures of (A) major LOS (LOS-A) of ATCC 356 (R and/or R : octanoic acid and tetra- or hexa-decanoic acid) and (B) “canettii”; R = Ac. (C) LOS biosynthetic gene cluster of mc155. Shown is the 25.15-kb region spanning () to (). ORFs are depicted as arrows. Black arrows indicate genes encoding biosynthetic enzymes; gray arrows indicate putative transporter genes; white arrows show hypothetical genes of unknown function. Abbreviations: Pks5, Mas-like polyketide synthase; Pap, putative acyltransferase; MSMEG_4729 and MSMEG_4730, putative acyltransferases; FadD, putative acyl-CoA synthase; Gtf (MSMEG_4732), putative glycosyltransferase; Gap2, putative transmembrane protein involved in glycolipid translocation; MSMEG_4734, hypothetical PE/PPE-like protein; Gtf (MSMEG_4735), putative glycosyltransferase; MSMEG_4736 and MSMEG_4737, putative pyrruvylyl transferases; MSMEG_4738, hypothetical protein; Mtf, possible -methyltransferase; Gtf (MSMEG_4740), putative glycosyltransferase; MmpL, putative inner membrane transporter.

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12
Figure 12

Structure of the predominant mannosyl-β-1-phosphomycoketide from H37Rv. See text for details.

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 13
Figure 13

Structures of the PDIMs, PGLs, and -hydroxybenzoic acid derivatives (-HBADs) of . In , p, p′ = 3-5; n, n′ = 16-18; m2 = 15-17 ; m1 = 20-22; R = CH-CH or CH.

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 14
Figure 14

Genetic organization of the PDIM and PGL locus of H37Rv. ORFs are depicted as arrows. Black arrows indicate genes encoding biosynthetic enzymes; gray arrows indicate putative transporter genes; white arrows indicate hypothetical genes of unknown function. More details about the function of each gene are provided in Table 3 and Fig. 15 . Adapted from reference .

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 15
Figure 15

The PDIM biosynthetic pathway. See text for details.

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 16
Figure 16

(A) Structure of the nonspecific glycopeptidolipids of . R = –H or –CH; R = –H or –Ac; R, –CH, -succinyl, -rhamnosyl or -2--succinylrhamnosyl; m = 12-14; n, 6-10. (B) GPL biosynthetic gene cluster of mc155. Shown is the 64.97-kb region spanning () to . ORFs are depicted as arrows. Black arrows indicate genes encoding biosynthetic enzymes; gray arrows indicate putative transporter genes; white arrows indicate putative regulatory genes. Chp, putative acyltransferase; FadE, putative acyl-CoA dehydrogenase; PapA, putative acyltransferase. Other genes are described in the text.

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 17
Figure 17

Structure and biosynthesis of α--glucans in . See text for details.

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 18
Figure 18

Representative structures of mycobactins and carboxymycobactins from . See text for details. Mycobactins: R = H; R = (CH)CH, n = 16-19; (CH)CH = CH(CH)CH, x+y = 14-17. Carboxymycobactins: R = H, CH; R = (CH)COOCH/COOH, n = 1-7; (CH)CH = CH(CH)COOCH/COOH, x+y = 1-5.

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19
Figure 19

Representative structure of a mycolactone from . The genes involved in the biosynthesis of the various constituents of mycolactone are indicated on the structure.

Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, p 559-609. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818845.chap28
1. Daffé M,, Draper P . 1998. The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol 39 : 131 203.[PubMed][CrossRef]
2. Jackson M,, McNeil MR,, Brennan PJ . 2013. Progress in targeting cell envelope biogenesis in Mycobacterium tuberculosis. Future Microbiol 8 : 855 875.[PubMed][CrossRef]
3. Hoffmann C,, Leis A,, Niederweis M,, Plitzko JM,, Engelhardt H . 2008. Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc Natl Acad Sci USA 105 : 3963 3967.[PubMed][CrossRef]
4. Zuber B,, Chami M,, Houssin C,, Dubochet J,, Griffiths G,, Daffe M . 2008. Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state. J Bacteriol 190 : 5672 5680.[PubMed][CrossRef]
5. Sani M,, Houben ENG,, Geurtsen J,, Pierson J,, de Punder K,, van Zon M,, Wever B,, Piersma SR,, Jimenez CR,, Daffe M,, Appelmelk BJ,, Bitter W,, van der Wel N,, Peters PJ . 2010. Direct visualization by cryo-EM of the mycobacterial capsular layer: a labile structure containing ESX-1-secreted proteins. PLoS Pathog 6 : e1000794. [PubMed][CrossRef]
6. Lemassu A,, Daffé M . 1994. Structural features of the exocellular polysaccharides of Mycobacterium tuberculosis. Biochem J 297 : 351 357.[PubMed]
7. Ortalo-Magné A,, Dupont MA,, Lemassu A,, Andersen AB,, Gounon P,, Daffé M . 1995. Molecular composition of the outermost capsular material of the tubercle bacillus. Microbiology 141 : 1609 1620.[PubMed][CrossRef]
8. Ortalo-Magné A,, Lemassu A,, Lanéelle MA,, Bardou F,, Silve G,, Gounon P,, Marchal G,, Daffé M . 1996. Identification of the surface-exposed lipids on the cell envelopes of Mycobacterium tuberculosis and other mycobacterial species. J Bacteriol 178 : 456 461.[PubMed]
9. Lemassu A,, Ortalo-Magne A,, Bardou F,, Silve G,, Laneelle M-A,, Daffe M . 1996. Extracellular and surface-exposed polysaccharides of non-tuberculous mycobacteria. Microbiology 142 : 1513 1520.[PubMed][CrossRef]
10. Raynaud C,, Etienne G,, Peyron P,, Laneelle MA,, Daffe M . 1998. Extracellular enzyme activities potentially involved in the pathogenicity of Mycobacterium tuberculosis. Microbiology 144 : 577 587.[PubMed][CrossRef]
11. Ehlers MRW,, Daffé M . 1998. Interactions between Mycobacterium tuberculosis and host cells: are mycobacterial sugars the key? Trends Microbiol 6 : 328 335.[PubMed][CrossRef]
12. Daffé M,, Etienne G . 1999. The capsule of Mycobacterium tuberculosis and its implications for pathogenicity. Tuber Lung Dis 79 : 153 169.[PubMed][CrossRef]
13. Goren MB, . 1984. Biosynthesis and structures of phospholipids and sulfatides, p 379 415. In Kubica GP,, Wayne LG (ed), The Mycobacteria. A Sourcebook, vol. 1. Marcel Dekker, New York/Basel.
14. Brennan PJ, . 1988. Mycobacterium and other actinomycetes, p 203 298. In Ratledge C,, Wilkinson SG (ed), Microbial Lipids, vol. 1. Academic Press, London.
15. Daniel J,, Deb C,, Dubey VS,, Sirakova TD,, Abomoelak B,, Morbidoni HR,, Kolattukudy PE . 2004. Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture. J Bacteriol 186 : 5017 5030.[PubMed][CrossRef]
16. Walker RW,, Barakat H,, Hung JGC . 1970. The positional distribution of fatty acids in the phospholipids and triglycerides of Mycobacterium smegmatis and M. bovis BCG. Lipids 5 : 684 691.[PubMed][CrossRef]
17. Fernandes ND,, Kolattukudy PE . 1996. Cloning, sequencing and characterization of a fatty acid synthase-encoding gene from Mycobacterium tuberculosis var. bovis BCG. Gene 170 : 95 99.[PubMed][CrossRef]
18. Zimhony O,, Vilcheze C,, Jacobs WR Jr . 2004. Characterization of Mycobacterium smegmatis expressing the Mycobacterium tuberculosis fatty acid synthase I ( fas1) gene. J Bacteriol 186 : 4051 4055.[PubMed][CrossRef]
19. Yao J,, Rock CO . 2013. Phosphatidic acid synthesis in bacteria. Biochim Biophys Acta 1831 : 495 502.[PubMed][CrossRef]
20. Comba S,, Menendez-Bravo S,, Arabolaza A,, Gramajo H . 2013. Identification and physiological characterization of phosphatidic acid phosphatase enzymes involved in triacylglycerol biosynthesis in Streptomyces coelicolor. Microbial Cell Factories 12 : 9. [PubMed][CrossRef]
21. Sirakova TD,, Dubey VS,, Deb C,, Daniel J,, Korotkova TA,, Abomoelak B,, Kolattukudy PE . 2006. Identification of a diacylglycerol acyltransferase gene involved in accumulation of triacylglycerol in Mycobacterium tuberculosis under stress. Microbiology 152 : 2717 2725.[PubMed][CrossRef]
22. Elamin AA,, Stehr M,, Spallek R,, Rohde M,, Singh M . 2011. The Mycobacterium tuberculosis Ag85A is a novel diacylglycerol acyltransferase involved in lipid body formation. Mol Microbiol 81 : 1577 1592.[PubMed][CrossRef]
23. Nigou J,, Besra GS . 2002. Cytidine diphosphate-diacylglycerol synthesis in Mycobacterium smegmatis. Biochem J 367 : 157 162.[PubMed][CrossRef]
24. Salman M,, Lonsdale JT,, Besra GS,, Brennan PJ . 1999. Phosphatidylinositol synthesis in mycobacteria. Biochim Biophys Acta 1436 : 437 450.[PubMed][CrossRef]
25. Jackson M,, Crick DC,, Brennan PJ . 2000. Phosphatidylinositol is an essential phospholipid of mycobacteria. J Biol Chem 275 : 30092 30099.[PubMed][CrossRef]
26. Morii H,, Ogawa M,, Fukuda K,, Taniguchi H,, Koga Y . 2010. A revised biosynthetic pathway for phosphatidylinositol in mycobacteria. J Biochem 148 : 593 602.[PubMed][CrossRef]
27. Sandoval-Calderon M,, Geiger O,, Guan Z,, Barona-Gomez F,, Sohlenkamp C . 2009. A eukaryote-like cardiolipin synthase is present in Streptomyces coelicolor and in most actinobacteria. J Biol Chem 284 : 17383 17390.[PubMed][CrossRef]
28. Korduláková J,, Gilleron M,, Mikusova K,, Puzo G,, Brennan PJ,, Gicquel B,, Jackson M . 2002. Definition of the first mannosylation step in phosphatidylinositol synthesis: PimA is essential for growth of mycobacteria. J Biol Chem 277 : 31335 31344.[PubMed][CrossRef]
29. Guerin ME,, Kordulakova J,, Schaeffer F,, Svetlikova Z,, Buschiazzo A,, Giganti D,, Gicquel B,, Mikusova K,, Jackson M,, Alzari PM . 2007. Molecular recognition and interfacial catalysis by the essential phosphatidylinositol mannosyltransferase PimA from mycobacteria. J Biol Chem 282 : 20705 20714.[PubMed][CrossRef]
30. Guerin ME,, Schaeffer F,, Chaffotte A,, Gest P,, Giganti D,, Kordulakova J,, van der Woerd M,, Jackson M,, Alzari PM . 2009. Substrate-induced conformational changes in the essential peripheral membrane-associated mannosyltransferase PimA from mycobacteria: implications for catalysis. J Biol Chem 284 : 21613 21625.[PubMed][CrossRef]
31. Guerin ME,, Kaur D,, Somashekar BS,, Gibbs S,, Gest P,, Chatterjee D,, Brennan PJ,, Jackson M . 2009. New insights into the early steps of phosphatidylinositol mannosides biosynthesis in mycobacteria. PimB′ is an essential enzyme of Mycobacterium smegmatis. J Biol Chem 284 : 25687 25696.[PubMed][CrossRef]
32. Korduláková J,, Gilleron M,, Puzo G,, Brennan PJ,, Gicquel B,, Mikusova K,, Jackson M . 2003. Identification of the required acyltransferase step in the biosynthesis of the phosphatidylinositol mannosides of Mycobacterium species. J Biol Chem 278 : 36285 36295.[PubMed][CrossRef]
33. Kaur D,, Guerin ME,, Skovierova H,, Brennan PJ,, Jackson M . 2009. Chapter 2: biogenesis of the cell wall and other glycoconjugates of Mycobacterium tuberculosis. Adv Appl Microbiol 69 : 23 78.[PubMed][CrossRef]
34. Morita YS,, Sena CCB,, Waller RF,, Kurokawa K,, Sernee MF,, Nakatani F,, Haites RE,, Billman-Jacobe H,, McConville MJ,, Maeda Y,, Kinoshita T . 2006. PimE is a polyprenol-phosphate-mannose-dependent mannosyltransferase that transfers the fifth mannose of phosphatidylinositol mannoside in mycobacteria. J Biol Chem 281 : 25143 25155.[PubMed][CrossRef]
35. Berg S,, Kaur D,, Jackson M,, Brennan PJ . 2007. The glycosyltransferases of Mycobacterium tuberculosis: roles in the synthesis of arabinogalactan, lipoarabinomannan, and other glycoconjugates. Glycobiology 17 : 35R 56R.[PubMed][CrossRef]
36. Morita YS,, Velasquez R,, Taig E,, Waller RF,, Patterson JH,, Tull D,, Williams SJ,, Billman-Jacobe H,, McConville MJ . 2005. Compartmentalization of lipid biosynthesis in mycobacteria. J Biol Chem 280 : 21645 21652.[PubMed][CrossRef]
37. Sulzenbacher G,, Canaan S,, Bordat Y,, Neyrolles O,, Stadthagen G,, Roig-Zamboni V,, Rauzier J,, Maurin D,, Laval F,, Daffe M,, Cambillau C,, Gicquel B,, Bourne Y,, Jackson M . 2006. LppX is a lipoprotein required for the translocation of phthiocerol dimycocerosates to the surface of Mycobacterium tuberculosis. EMBO J 25 : 1436 1444.[PubMed][CrossRef]
38. Drage MG,, Tsai HC,, Pecora ND,, Cheng TY,, Arida AR,, Shukla S,, Rojas RE,, Seshadri C,, Moody DB,, Boom WH,, Sacchettini JC,, Harding CV . 2010. Mycobacterium tuberculosis lipoprotein LprG (Rv1411c) binds triacylated glycolipid agonists of Toll-like receptor 2. Nat Struct Mol Biol 17 : 1088 1095.[PubMed][CrossRef]
39. Wolucka BA,, McNeil MR,, de Hoffmann E,, Chojnacki T,, Brennan PJ . 1994. Recognition of the lipid intermediate for arabinogalactan/arabinomannan biosynthesis and its relation to the mode of action of ethambutol on mycobacteria. J Biol Chem 269 : 23328 23335.[PubMed]
40. Mahapatra S,, Yagi T,, Belisle JT,, Espinosa BJ,, Hill PJ,, McNeil MR,, Brennan PJ,, Crick DC . 2005. Mycobacterial lipid II is composed of a complex mixture of modified muramyl and peptide moieties linked to decaprenyl phosphate. J Bacteriol 187 : 2747 2757.[PubMed][CrossRef]
41. Anderson RG,, Hussey H,, Baddiley J . 1972. The mechanism of wall synthesis in bacteria. The organization of enzymes and isoprenoid phosphates in the membrane. Biochem J 127 : 11 25.[PubMed]
42. Mikusova K,, Mikus M,, Besra GS,, Hancock I,, Brennan PJ . 1996. Biosynthesis of the linkage region of the mycobacterial cell wall. J Biol Chem 271 : 7820 7828.[PubMed][CrossRef]
43. Sacchettini JC,, Poulter CD . 1997. Creating isoprenoid diversity. Science 277 : 1788 1789.[PubMed][CrossRef]
44. Schwender J,, Seemann M,, Lichtenthaler HK,, Rohmer M . 1996. Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. Biochem J 316 : 73 80.[PubMed]
45. Sprenger GA,, Schorken U,, Wiegert T,, Grolle S,, De Graaf AA,, Taylor SV,, Begley TP,, Bringer-Meyer S,, Sahm H . 1997. Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1-deoxy- d-xylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxol. Proc Natl Acad Sci USA 94 : 12857 12862.[PubMed][CrossRef]
46. Lois LM,, Campos N,, Putra SR,, Danielsen K,, Rohmer M,, Boronat A . 1998. Cloning and characterization of a gene from Escherichia coli encoding a transketolase-like enzyme that catalyzes the synthesis of d-1- deoxyxylulose 5-phosphate, a common precursor for isoprenoid, thiamin, and pyridoxol biosynthesis. Proc Natl Acad Sci USA 95 : 2105 2110.[PubMed][CrossRef]
47. Hill RE,, Himmeldirk K,, Kennedy IA,, Pauloski RM,, Sayer BG,, Wolf E,, Spenser ID . 1996. The biogenetic anatomy of vitamin B-6. A C-13NMR investigation of the biosynthesis of pyridoxol in Escherichia coli. J Biol Chem 271 : 30426 30435.[PubMed][CrossRef]
48. Querol J,, Rodriguez-Concepcion M,, Boronat A,, Imperial S . 2001. Essential role of residue H49 for activity of Escherichia coli 1-deoxy- d-xylulose 5-phosphate synthase, the enzyme catalyzing the first step of the 2-C-methyl- d-erythritol 4-phosphate pathway for isoprenoid synthesis. Biochem Biophys Res Commun 289 : 155 160.[PubMed][CrossRef]
49. Bailey AM,, Mahapatra S,, Brennan PJ,, Crick DC . 2002. Identification, cloning, purification, and enzymatic characterization of Mycobacterium tuberculosis 1-deoxy- d-xylulose 5-phosphate synthase. Glycobiology 12 : 813 820.[PubMed][CrossRef]
50. Brown AC,, Eberl M,, Crick DC,, Jomaa H,, Parish T . 2010. The nonmevalonate pathway of isoprenoid biosynthesis in Mycobacterium tuberculosis is essential and transcriptionally regulated by Dxs. J Bacteriol 192 : 2424 2433.[PubMed][CrossRef]
51. Takahashi S,, Kuzuyama T,, Watanabe H,, Seto H . 1998. A 1-deoxy- d-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl- d-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis. Proc Natl Acad Sci USA 95 : 9879 9884.[PubMed][CrossRef]
52. Arigoni D,, Sagner S,, Latzel C,, Eisenreich W,, Bacher A,, Zenk MH . 1997. Terpenoid biosynthesis from 1-deoxy- d-xylulose in higher plants by intramolecular skeletal rearrangement. Proc Natl Acad Sci USA 94 : 10600 10605.[PubMed][CrossRef]
53. Reuter K,, Sanderbrand S,, Jomaa H,, Wiesner J,, Steinbrecher I,, Beck E,, Hintz M,, Klebe G,, Stubbs MT . 2002. Crystal structure of 1-deoxy- d-xylulose-5-phosphate reductoisomerase, a crucial enzyme in the non-mevalonate pathway of isoprenoid biosynthesis. J Biol Chem 277 : 5378 5384.[PubMed][CrossRef]
54. Argyrou A,, Blanchard JS . 2004. Kinetic and chemical mechanism of Mycobacterium tuberculosis 1-deoxy- d-xylulose-5-phosphate isomeroreductase. Biochemistry 43 : 4375 4384.[PubMed][CrossRef]
55. Dhiman RK,, Schaeffer ML,, Bailey AM,, Testa CA,, Scherman H,, Crick DC . 2005. 1-Deoxy- d-xylulose 5-phosphate reductoisomerase (IspC) from Mycobacterium tuberculosis: towards understanding mycobacterial resistance to fosmidomycin. J Bacteriol 187 : 8395 8402.[PubMed][CrossRef]
56. Henriksson LM,, Unge T,, Carlsson J,, Aqvist J,, Mowbray SL,, Jones TA . 2007. Structures of Mycobacterium tuberculosis 1-deoxy- d-xylulose-5-phosphate reductoisomerase provide new insights into catalysis. J Biol Chem 282 : 19905 19916.[PubMed][CrossRef]
57. Rohdich F,, Wungsintaweekul J,, Fellermeier M,, Sagner S,, Herz S,, Kis K,, Eisenreich W,, Bacher A,, Zenk MH . 1999. Cytidine 5′-triphosphate-dependent biosynthesis of isoprenoids: YgbP protein of Escherichia coli catalyzes the formation of 4-diphosphocytidyl-2-C-methylerythritol. Proc Natl Acad Sci USA 96 : 11758 11763.[PubMed][CrossRef]
58. Eoh H,, Brown AC,, Buetow L,, Hunter WN,, Parish T,, Kaur D,, Brennan PJ,, Crick DC . 2007. Characterization of the Mycobacterium tuberculosis 4-diphosphocytidyl-2-C-methyl- d-erythritol synthase: potential for drug development. J Bacteriol 189 : 8922 8927.[PubMed][CrossRef]
59. Herz S,, Wungsintaweekul J,, Schuhr CA,, Hecht S,, Luttgen H,, Sagner S,, Fellermeier M,, Eisenreich W,, Zenk MH,, Bacher A,, Rohdich F . 2000. Biosynthesis of terpenoids: YgbB protein converts 4-diphosphocytidyl-2C- methyl- d-erythritol 2-phosphate to 2C-methyl- d-erythritol 2,4- cyclodiphosphate. Proc Natl Acad Sci USA 97 : 2486 2490.[PubMed][CrossRef]
60. Rohdich F,, Wungsintaweekul J,, Luttgen H,, Fischer M,, Eisenreich W,, Schuhr CA,, Fellermeier M,, Schramek N,, Zenk MH,, Bacher A . 2000. Biosynthesis of terpenoids: 4-diphosphocytidyl-2-C-methyl- d-erythritol kinase from tomato. Proc Natl Acad Sci USA 97 : 8251 8256.[PubMed][CrossRef]
61. Eoh H,, Narayanasamy P,, Brown AC,, Parish T,, Brennan PJ,, Crick DC . 2009. Expression and characterization of soluble 4-diphosphocytidyl-2-C-methyl- d-erythritol kinase from bacterial pathogens. Chem Biol 16 : 1230 1239.[PubMed][CrossRef]
62. Narayanasamy P,, Eoh H,, Crick DC . 2008. Chemoenzymatic synthesis of 4-diphosphocytidyl-2-C-methyl- d-erythritol: a substrate for IspE. Tetrahedron Lett 49 : 4461 4463.[PubMed][CrossRef]
63. Narayanasamy P,, Eoh H,, Brennan PJ,, Crick DC . 2010. Synthesis of 4-diphosphocytidyl-2-C-methyl- d-erythritol-2-phosphate and kinetic studies of Mycobacterium tuberculosis IspF. Chem Biol 17 : 117 122.[PubMed][CrossRef]
64. Buetow L,, Brown AC,, Parish T,, Hunter WN . 2007. The structure of mycobacteria 2C-methyl- d-erythritol-2,4-cyclodiphosphatesynthase, an essential enzyme, provides a platform for drug discovery. BMC Struct Biol 7 : 68. [PubMed][CrossRef]
65. Hecht S,, Eisenreich W,, Adam P,, Amslinger S,, Kis K,, Bacher A,, Arigoni D,, Rohdich F . 2001. Studies on the nonmevalonate pathway to terpenes: the role of the GcpE (IspG) protein. Proc Natl Acad Sci USA 98 : 14837 14842.[PubMed][CrossRef]
66. Altincicek B,, Duin EC,, Reichenberg A,, Hedderich R,, Kollas AK,, Hintz M,, Wagner S,, Wiesner J,, Beck E,, Jomaa H . 2002. LytB protein catalyzes the terminal step of the 2-C-methyl- d-erythritol-4-phosphate pathway of isoprenoid biosynthesis. FEBS Lett 532 : 437 440.[PubMed][CrossRef]
67. Altincicek B,, Kollas A,, Eberl M,, Wiesner J,, Sanderbrand S,, Hintz M,, Beck E,, Jomaa H . 2001. LytB, a novel gene of the 2-C-methyl- d-erythritol 4-phosphate pathway of isoprenoid biosynthesis in Escherichia coli. FEBS Lett 499 : 37 40.[PubMed][CrossRef]
68. Seemann M,, Bui BTS,, Wolff M,, Tritsch D,, Campos N,, Boronat A,, Marquet A,, Rohmer M . 2002. Isoprenoid biosynthesis through the methylerythritol phosphate pathway: the (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase (GcpE) is a [4Fe-4S] protein. Angew Chem Int Edu Engl 41 : 4337 4339.[PubMed][CrossRef]
69. Rohdich F,, Zepeck F,, Adam P,, Hecht S,, Kaiser J,, Laupitz R,, Grawert T,, Amslinger S,, Eisenreich W,, Bacher A,, Arigoni D . 2003. The deoxyxylulose phosphate pathway of isoprenoid biosynthesis: studies on the mechanisms of the reactions catalyzed by IspG and IspH protein. Proc Natl Acad Sci USA 100 : 1586 1591.[PubMed][CrossRef]
70. Rohdich F,, Hecht S,, Gartner K,, Adam P,, Krieger C,, Amslinger S,, Arigoni D,, Bacher A,, Eisenreich W . 2002. Studies on the nonmevalonate terpene biosynthetic pathway: metabolic role of IspH (LytB) protein. Proc Natl Acad Sci USA 99 : 1158 1163.[PubMed][CrossRef]
71. Agranoff BW,, Eggerer H,, Henning U,, Lynen F . 2013. Biosynthesis of terpenes. VII. Isopentenyl pyrophosphate isomerase. J Biol Chem 235 : 326 332.[PubMed]
72. Phillips MA,, D’Auria JC,, Gershenzon J,, Pichersky E . 2008. The Arabidopsis thaliana type I isopentenyl diphosphate isomerases are targeted to multiple subcellular compartments and have overlapping functions in isoprenoid biosynthesis. Plant Cell 20 : 677 696.[PubMed][CrossRef]
73. Kuzuyama T,, Seto H . 2003. Diversity of the biosynthesis of the isoprene units. Nat Prod Rep 20 : 171 183.[PubMed][CrossRef]
74. Hahn FM,, Hurlburt AP,, Poulter CD . 1999. Escherichia coli open reading frame 696 is idi, a nonessential gene encoding isopentenyl diphosphate isomerase. J Bacteriol 181 : 4499 4504.[PubMed]
75. Kaneda K,, Kuzuyama T,, Takagi M,, Hayakawa Y,, Seto H . 2001. An unusual isopentenyl diphosphate isomerase found in the mevalonate pathway gene cluster from Streptomyces sp strain CL190. Proc Natl Acad Sci USA 98 : 932 937.[PubMed][CrossRef]
76. Vandermoten S,, Haubruge E,, Cusson M . 2009. New insights into short-chain prenyltransferases: structural features, evolutionary history and potential for selective inhibition. Cell Mol Life Sci 66 : 3685 3695.[PubMed][CrossRef]
77. Ambo T,, Noike M,, Kurokawa H,, Koyama T . 2008. Cloning and functional analysis of novel short-chain cis-prenyltransferases. Biochem Biophys Res Commun 375 : 536 540.[PubMed][CrossRef]
78. Liang PH . 2009. Reaction kinetics, catalytic mechanisms, conformational changes, and inhibitor design for prenyltransferases. Biochemistry 48 : 6562 6570.[PubMed][CrossRef]
79. Schulbach MC,, Brennan PJ,, Crick DC . 2000. Identification of a short (C 15) chain Z-isoprenyl diphosphate synthase and a homologous long (C 50) chain isoprenyl diphosphate synthase in Mycobacterium tuberculosis. J Biol Chem 275 : 22876 22881.[PubMed][CrossRef]
80. Schulbach MC,, Mahapatra S,, Macchia M,, Barontini S,, Papi C,, Minutolo F,, Bertini S,, Brennan PJ,, Crick DC . 2001. Purification, enzymatic characterization, and inhibition of the Z-farnesyl diphosphate synthase from Mycobacterium tuberculosis. J Biol Chem 276 : 11624 11630.[PubMed][CrossRef]
81. Noike M,, Ambo T,, Kikuchi S,, Suzuki T,, Yamashita S,, Takahashi S,, Kurokawa H,, Mahapatra S,, Crick DC,, Koyama T . 2008. Product chain-length determination mechanism of Z,E-farnesyl diphosphate synthase. Biochem Biophys Res Commun 377 : 17 22.[PubMed][CrossRef]
82. Wang W,, Dong C,, McNeil M,, Kaur D,, Mahapatra S,, Crick DC,, Naismith JH . 2008. The structural basis of chain length control in Rv1086. J Mol Biol 381 : 129 140.[PubMed][CrossRef]
83. Kaur D,, Brennan PJ,, Crick DC . 2004. Decaprenyl diphosphate synthesis in Mycobacterium tuberculosis. J Bacteriol 186 : 7564 7570.[PubMed][CrossRef]
84. Sato T,, Takizawa K,, Orito Y,, Kudo H,, Hoshino T . 2010. Insight into C 35 terpene biosyntheses by nonpathogenic Mycobacterium species: functional analyses of three Z-prenyltransferases and identification of dehydroheptaprenylcyclines. Chembiochem 11 : 1874 1881.[PubMed][CrossRef]
85. Mann FM,, Thomas JA,, Peters RJ . 2011. Rv0989c encodes a novel (E)-geranyl diphosphate synthase facilitating decaprenyl diphosphate biosynthesis in Mycobacterium tuberculosis. FEBS Lett 585 : 549 554.[PubMed][CrossRef]
86. Dhiman RK,, Schulbach MC,, Mahapatra S,, Baulard AR,, Vissa V,, Brennan PJ,, Crick DC . 2004. Identification of a novel class of {omega}, E,E-farnesyl diphosphate synthase from Mycobacterium tuberculosis. J Lipid Res 45 : 1140 1147.[PubMed][CrossRef]
87. Mann FM,, Xu M,, Davenport EK,, Peters RJ . 2012. Functional characterization and evolution of the isotuberculosinol operon in Mycobacterium tuberculosis and related mycobacteria. Front Microbiol 3 : 368. [PubMed][CrossRef]
88. IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN) . 1987. Prenol nomenclature. Recommendations 1986. Eur J Biochem 167 : 181184.[PubMed][CrossRef]
89. Takayama K,, Schnoes HK,, Semmler EJ . 1973. Characterization of the alkali-stable mannophospholipids of Mycobacterium smegmatis. Biochim Biophys Acta 316 : 212 221.[PubMed][CrossRef]
90. Besra GS,, Sievert T,, Lee RE,, Slayden RA,, Brennan PJ,, Takayama K . 1994. Identification of the apparent carrier in mycolic acid synthesis. Proc Natl Acad Sci USA 91 : 12735 12739.[PubMed][CrossRef]
91. Wolucka BA,, de Hoffmann E . 1998. Isolation and characterization of the major form of polyprenyl-phospho-mannose from Mycobacterium smegmatis. Glycobiology 8 : 955 962.[PubMed][CrossRef]
92. Takayama K,, Goldman DS . 1970. Enzymatic synthesis of mannosyl-1-phosphoryl-decaprenol by a cell-free system of Mycobacterium tuberculosis. J Biol Chem 245 : 6251 6257.[PubMed]
93. Wolucka BA,, de Hoffmann E . 1995. The presence of beta- d-ribosyl-1-monophosphodecaprenol in mycobacteria. J Biol Chem 270 : 20151 20155.[PubMed][CrossRef]
94. El Ghachi M,, Bouhss A,, Blanot D,, Mengin-Lecreulx D . 2004. The bacA gene of Escherichia coli encodes a undecaprenyl pyrophosphate phosphatase activity. J Biol Chem 279 : 30106 30113.[PubMed][CrossRef]
95. Sherman MM,, Petersen LA,, Poulter CD . 1989. Isolation and characterization of isoprene mutants of Escherichia coli. J Bacteriol 171 : 3619 3628.[PubMed]
96. Minnikin DE, . 1982. Lipids: complex lipids, their chemistry, biosynthesis and roles, p 95 184. In Ratledge C,, Stanford J (ed), The Biology of Mycobacteria. Academic Press, London.
97. Embley TM,, Stackebrandt E . 1994. The molecular phylogeny and systematics of the Actinomycetes. Annu Rev Microbiol 48 : 257 289.[PubMed][CrossRef]
98. Pandya KP,, King HK . 1966. Ubiquinone and menaquinone in bacteria: a comparative study of some bacterial respiratory systems. Arch Biochem Biophys 114 : 154 157.[PubMed][CrossRef]
99. Meganathan R . 2001. Biosynthesis of menaquinone (vitamin K-2) and ubiquinone (coenzyme Q): a perspective on enzymatic mechanisms. Vitam Horm 61 : 173 218.[PubMed][CrossRef]
100. Collins MD,, Jones D . 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45 : 316 354.[PubMed]
101. da Costa MS,, Albuquerque L,, Nobre MF,, Wait R . 2011. The extraction and identification of respiratory lipoquinones of prokaryotes and their use in taxonomy. Methods Microbiol. 38 : 197 206.[CrossRef]
102. Brodie AF,, Revsin B,, Kalra V,, Phillips P,, Bogin E,, Higashi T,, Murti CR,, Cavari BZ,, Marquez E . 1970. Biological function of terpenoid quinones. Biochem Soc Symp 29 : 119 143.[PubMed]
103. Holsclaw CM,, Sogi KM,, Gilmore SA,, Schelle MW,, Leavell MD,, Bertozzi CR,, Leary JA . 2008. Structural characterization of a novel sulfated menaquinone produced by stf3 from Mycobacterium tuberculosis. ACS Chem Biol 3 : 619 624.[PubMed][CrossRef]
104. Bentley R . 1975. Biosynthesis of vitamin-K and other natural naphthoquinones. Pure Appl Chem 41 : 47 68.[CrossRef]
105. Bentley R,, Meganathan R . 1982. Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiol Rev 46 : 241 280.[PubMed]
106. Meganathan R, . 1996. Biosynthesis of vitamin K (menaquinone) and ubiquinone (coenzyme Q), p 642 656. In Neihardt FC (ed), Escherichia coli and Salmonella. ASM Press, Washington, DC.
107. Azerad R,, Bleiler-Hill R,, Lederer E . 1965. Biosynthesis of a vitamin K2 by cell-free extracts of Mycobacterium phlei. Biochem Biophys Res Commun 19 : 194 197.[PubMed][CrossRef]
108. Li HJ,, Li X,, Liu N,, Zhang H,, Truglio JJ,, Mishra S,, Kisker C,, Garcia-Diaz M,, Tonge PJ . 2011. Mechanism of the intramolecular Claisen condensation reaction catalyzed by MenB, a crotonase superfamily member. Biochemistry 50 : 9532 9544.[PubMed][CrossRef]
109. Li X,, Liu N,, Zhang H,, Knudson SE,, Li HJ,, Lai CT,, Simmerling C,, Slayden RA,, Tonge PJ . 2011. CoA adducts of 4-oxo-4-phenylbut-2-enoates: inhibitors of MenB from the M. tuberculosis menaquinone biosynthesis pathway. ACS Med Chem Lett 2 : 818 823.[PubMed][CrossRef]
110. Li X,, Liu N,, Zhang H,, Knudson SE,, Slayden RA,, Tonge PJ . 2010. Synthesis and SAR studies of 1,4-benzoxazine MenB inhibitors: novel antibacterial agents against Mycobacterium tuberculosis. Bioorg Med Chem Lett 20 : 6306 6309.[PubMed][CrossRef]
111. Lu X,, Zhou R,, Sharma I,, Li X,, Kumar G,, Swaminathan S,, Tonge PJ,, Tan DS . 2012. Stable analogues of OSB-AMP: potent inhibitors of MenE, the o-succinylbenzoate-CoA synthetase from bacterial menaquinone biosynthesis. Chembiochem 13 : 129 136.[PubMed][CrossRef]
112. Lu X,, Zhang H,, Tonge PJ,, Tan DS . 2008. Mechanism-based inhibitors of MenE, an acyl-CoA synthetase involved in bacterial menaquinone biosynthesis. Bioorg Med Chem Lett 18 : 5963 5966.[PubMed][CrossRef]
113. Truglio JJ,, Theis K,, Feng Y,, Gajda R,, Machutta C,, Tonge PJ,, Kisker C . 2003. Crystal structure of Mycobacterium tuberculosis MenB, a key enzyme in vitamin K2 biosynthesis. J Biol Chem 278 : 42352 42360.[PubMed][CrossRef]
114. Dhiman RK,, Mahapatra S,, Slayden RA,, Boyne ME,, Lenaerts A,, Hinshaw JC,, Angala SK,, Chatterjee D,, Biswas K,, Narayanasamy P,, Kurosu M,, Crick DC . 2009. Menaquinone synthesis is critical for maintaining mycobacterial viability during exponential growth and recovery from non-replicating persistence. Mol Microbiol 72 : 85 97.[PubMed][CrossRef]
115. Debnath J,, Siricilla S,, Wan B,, Crick DC,, Lenaerts AJ,, Franzblau SG,, Kurosu M . 2012. Discovery of selective menaquinone biosynthesis inhibitors against Mycobacterium tuberculosis. J Med Chem 55 : 3739 3755.[PubMed][CrossRef]
116. Collins MD,, Goodfellow M,, Minnikin DE,, Alderson G . 1985. Menaquinone composition of mycolic acid-containing actinomycetes and some sporoactinomycetes. J Appl Bacteriol 58 : 77 86.[PubMed][CrossRef]
117. Mougous JD,, Senaratne RH,, Petzold CJ,, Jain M,, Lee DH,, Schelle MW,, Leavell MD,, Cox JS,, Leary JA,, Riley LW,, Bertozzi CR . 2006. A sulfated metabolite produced by stf3 negatively regulates the virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci USA 103 : 4258 4263.[PubMed][CrossRef]
118. Johnston JB,, Kells PM,, Podust LM,, Ortiz de Montellano PR . 2009. Biochemical and structural characterization of CYP124: a methyl-branched lipid omega-hydroxylase from Mycobacterium tuberculosis. Proc Natl Acad Sci USA 106 : 20687 20692.[PubMed][CrossRef]
119. Vershinin A . 1999. Biological functions of carotenoids: diversity and evolution. Biofactors 10 : 99 104.[PubMed][CrossRef]
120. Mathews MM,, Krinsky NI . 1965. The relationship between carotenoid pigments and resistance to radiation in non-photosynthetic bacteria. Photochem Photobiol 4 : 813 817.[PubMed][CrossRef]
121. Goodwin TW . 1972. Carotenoids in fungi and non-photosynthetic bacteria. Prog Ind Microbiol 11 : 29 88.[PubMed]
122. Dembitsky VM . 2005. Astonishing diversity of natural surfactants. 3. Carotenoid glycosides and isoprenoid glycolipids. Lipids 40 : 535 557.[PubMed][CrossRef]
123. Subczynsk WK,, Markowska E,, Sieiewiesiuk J . 1991. Effect of polar carotenoids on the oxygen diffusion-concentration product in lipid bilayers. An EPR spin label study. Biochim Biophys Acta 1068 : 68 72.[PubMed][CrossRef]
124. Woodall AA,, Britton G,, Jackson MJ . 1997. Carotenoids and protection of phospholipids in solution or in liposomes against oxidation by peroxyl radicals: relationship between carotenoid structure and protective ability. Biochim Biophys Acta 1336 : 575 586.[PubMed][CrossRef]
125. Woodall AA,, Britton G,, Jackson MJ . 1995. Antioxidant activity of carotenoids in phosphatidylcholine vesicles: chemical and structural considerations. Biochem Soc Trans 23 : 133S. [PubMed]
126. Hertzberg S,, Liaaen JS . 1967. Bacterial carotenoids. XX. The carotenoids of Mycobacterium phlei strain Vera. 2. The structures of the phlei-xanthophylls: two novel tertiary glucosides. Acta Chem Scand 21 : 15 41.[PubMed][CrossRef]
127. Sieiro C,, Poza M,, de MT,, Villa TG . 2003. Genetic basis of microbial carotenogenesis. Int Microbiol 6 : 11 16.[PubMed]
128. Gao LY,, Groger R,, Cox JS,, Beverley SM,, Lawson EH,, Brown EJ . 2003. Transposon mutagenesis of Mycobacterium marinum identifies a locus linking pigmentation and intracellular survival. Infect Immun. 71 : 922 929.[PubMed][CrossRef]
129. Ramakrishnan L,, Tran HT,, Federspiel NA,, Falkow S . 1997. A crtB homolog essential for photochromogenicity in Mycobacterium marinum: isolation, characterization, and gene disruption via homologous recombination. J Bacteriol 179 : 5862 5868.[PubMed]
130. Houssaini-Iraqui M,, Lazraq MH,, Clavel-Seres S,, Rastogi N,, David HL . 1992. Cloning and expression of Mycobacterium aurum carotenogenesis genes in Mycobacterium smegmatis. FEMS Microbiol Lett 69 : 239 244.[PubMed][CrossRef]
131. Viveiros M,, Krubasik P,, Sandmann G,, Houssaini-Iraqui M . 2000. Structural and functional analysis of the gene cluster encoding carotenoid biosynthesis in Mycobacterium aurum A+. FEMS Microbiol Lett 187 : 95 101.[PubMed][CrossRef]
132. Scherzinger D,, Scheffer E,, Bar C,, Ernst H,, Al-Babili S . 2010. The Mycobacterium tuberculosis ORF Rv0654 encodes a carotenoid oxygenase mediating central and excentric cleavage of conventional and aromatic carotenoids. FEBS J 277 : 4662 4673.[PubMed][CrossRef]
133. Provvedi R,, Kocincova D,, Dona V,, Euphrasie D,, Daffe M,, Etienne G,, Manganelli R,, Reyrat JM . 2008. SigF controls carotenoid pigment production and affects transformation efficiency and hydrogen peroxide sensitivity in Mycobacterium smegmatis. J Bacteriol 190 : 7859 7863.[PubMed][CrossRef]
134. Sato T,, Kigawa A,, Takagi R,, Adachi T,, Hoshino T . 2008. Biosynthesis of a novel cyclic C 35-terpene via the cyclisation of a Z-type C 35-polyprenyl diphosphate obtained from a nonpathogenic Mycobacterium species. Org Biomol Chem 6 : 3788 3794.[PubMed][CrossRef]
135. Mann FM,, Xu M,, Chen X,, Fulton DB,, Russell DG,, Peters RJ . 2009. Edaxadiene: a new bioactive diterpene from Mycobacterium tuberculosis. J Am Chem Soc 131 : 17526 17527.[PubMed][CrossRef]
136. Hoshino T,, Nakano C,, Ootsuka T,, Shinohara Y,, Hara T . 2011. Substrate specificity of Rv3378c, an enzyme from Mycobacterium tuberculosis, and the inhibitory activity of the bicyclic diterpenoids against macrophage phagocytosis. Org Biomol Chem 9 : 2156 2165.[PubMed][CrossRef]
137. Pethe K,, Swenson DL,, Alonso S,, Anderson J,, Wang C,, Russell DG . 2004. Isolation of Mycobacterium tuberculosis mutants defective in the arrest of phagosome maturation. Proc Natl Acad Sci USA 101 : 13642 13647.[PubMed][CrossRef]
138. Nakano C,, Okamura T,, Sato T,, Dairi T,, Hoshino T . 2005. Mycobacterium tuberculosis H37Rv3377c encodes the diterpene cyclase for producing the halimane skeleton. Chem Commun (Camb) 8 : 1016 1018.[PubMed][CrossRef]
139. Maugel N,, Mann FM,, Hillwig ML,, Peters RJ,, Snider BB . 2010. Synthesis of (+/-)-nosyberkol (isotuberculosinol, revised structure of edaxadiene) and (+/-)-tuberculosinol. Org Lett 12 : 2626 2629.[PubMed][CrossRef]
140. Spangler JE,, Carson CA,, Sorensen EJ . 2010. Synthesis enables a structural revision of the Mycobacterium tuberculosis-produced diterpene, edaxadiene. Chem Sci 1 : 202 205.[PubMed][CrossRef]
141. Jackson M,, Stadthagen G,, Gicquel B . 2007. Long-chain multiple methyl-branched fatty acid-containing lipids of Mycobacterium tuberculosis: biosynthesis, transport, regulation and biological activities. Tuberculosis 87 : 78 86.[PubMed][CrossRef]
142. Cardona P-J,, Soto CY,, Martin C,, Gicquel B,, Agusti G,, Guirado E,, Sirakova TD,, Kolattukudy PE,, Julian E,, Luquin M . 2006. Neutral red reaction is related to virulence and cell wall methyl-branched lipids in Mycobacterium tuberculosis. Microbes Infect 8 : 183 190.[PubMed][CrossRef]
143. Gonzalo Asensio J,, Maia C,, Ferrer NL,, Barilone N,, Laval F,, Soto CY,, Winter N,, Daffe M,, Gicquel B,, Martin C,, Jackson M . 2006. The virulence-associated two-component PhoP-PhoR system controls the biosynthesis of polyketide-derived lipids in Mycobacterium tuberculosis. J Biol Chem 281 : 1313 1316.[PubMed][CrossRef]
144. Dubos RJ,, Middlebrook G . 1948. Cytochemical reaction of virulent tubercle bacilli. Am Rev Tuberc 58 : 698 699.[PubMed]
145. Grzegorzewicz AE,, Pham H,, Gundi VA,, Scherman MS,, North EJ,, Hess T,, Jones V,, Gruppo V,, Born SE,, Korduláková J,, Chavadi SS,, Morisseau C,, Lenaerts AJ,, Lee RE,, McNeil MR,, Jackson M . 2012. Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane. Nat Chem Biol 8 : 334 341.[PubMed][CrossRef]
146. Tahlan K,, Wilson R,, Kastrinsky DB,, Arora K,, Nair V,, Fischer E,, Barnes SW,, Walker JR,, Alland D,, Barry CE 3rd,, Boshoff HI . 2012. SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis. Antimicrobial Agents Chemother 56 : 1797 1809.[PubMed][CrossRef]
147. Belisle JT,, Vissa VD,, Sievert T,, Takayama K,, Brennan PJ,, Besra GS . 1997. Role of the major antigen of Mycobacterium tuberculosis in the cell wall biogenesis. Science 276 : 1420 1422.[PubMed][CrossRef]
148. Jackson M,, Raynaud C,, Lanéelle MA,, Guilhot C,, Laurent-Winter C,, Ensergueix D,, Gicquel B,, Daffé M . 1999. Inactivation of the antigen 85C gene profoundly affects the mycolate content and alters the permeability of the Mycobacterium tuberculosis cell envelope. Mol Microbiol 31 : 1573 1587.[PubMed][CrossRef]
149. Puech V,, Guilhot C,, Perez E,, Tropis M,, Armitige LY,, Gicquel B,, Daffe M . 2002. Evidence for a partial redundancy of the fibronectin-binding proteins for the transfer of mycoloyl residues onto the cell wall arabinogalactan termini of Mycobacterium tuberculosis. Mol Microbiol 44 : 1109 1122.[PubMed][CrossRef]
150. Harth G,, Horwitz MA,, Tabatadze D,, Zamecnik PC . 2002. Targeting the Mycobacterium tuberculosis 30/32-kDa mycolyl transferase complex as a therapeutic strategy against tuberculosis: proof of principle by using antisense technology. Proc Natl Acad Sci USA 99 : 15614 15619.[PubMed][CrossRef]
151. Armitige LY,, Jagannath C,, Wanger AR,, Norris SJ . 2000. Disruption of the genes encoding antigen 85A and antigen 85B of Mycobacterium tuberculosis H37Rv: effect on growth in culture and in macrophages. Infect Immun 68 : 767 778.[PubMed][CrossRef]
152. Nguyen L,, Chinnapapagari S,, Thompson CJ . 2005. FbpA-dependent biosynthesis of trehalose dimycolate is required for the intrinsic multidrug resistance, cell wall structure, and colonial morphology of Mycobacterium smegmatis. J Bacteriol 187 : 6603 6611.[PubMed][CrossRef]
153. Katti MK,, Dai G,, Armitige LY,, Rivera Marrero C,, Daniel S,, Singh CR,, Lindsey DR,, Dhandayuthapani S,, Hunter RL,, Jagannath C . 2008. The Delta fbpA mutant derived from Mycobacterium tuberculosis H37Rv has an enhanced susceptibility to intracellular antimicrobial oxidative mechanisms, undergoes limited phagosome maturation and activates macrophages and dendritic cells. Cell Microbiol 10 : 1286 1303.[PubMed][CrossRef]
154. Hunter RL,, Armitige L,, Jagannath C,, Actor JK . 2009. TB research at UT-Houston: a review of cord factor: new approaches to drugs, vaccines and the pathogenesis of tuberculosis. Tuberculosis (Edinb) 89( Suppl 1) : S18 S25.[PubMed][CrossRef]
155. Li C,, Du Q,, Deng W,, Xie J . 2012. The biology of Mycobacterium cord factor and roles in pathogen-host interaction. Crit Rev Eukaryotic Gene Expr 22 : 289 297.[PubMed][CrossRef]
156. Linares C,, Bernabeu A,, Luquin M,, Valero-Guillen PL . 2012. Cord factors from atypical mycobacteria ( Mycobacterium alvei, Mycobacterium brumae) stimulate the secretion of some pro-inflammatory cytokines of relevance in tuberculosis. Microbiology 158 : 2878 2885.[PubMed][CrossRef]
157. Glickman MS, . 2008. Cording, cord factors and trehalose dimycolate, p 63 73. In Daffé M,, Reyrat J-M (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC.
158. Ishikawa E,, Ishikawa T,, Morita YS,, Toyonaga K,, Yamada H,, Takeuchi O,, Kinoshita T,, Akira S,, Yoshikai Y,, Yamasaki S . 2009. Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J Exp Med 206 : 2879 2888.[PubMed][CrossRef]
159. Sakamoto K,, Kim MJ,, Rhoades ER,, Allavena RE,, Ehrt S,, Wainwright HC,, Russell DG,, Rohde KH . 2013. Mycobacterial trehalose dimycolate reprograms macrophage global gene expression and activates matrix metalloproteinases. Infect Immun 81 : 764 776.[PubMed][CrossRef]
160. Lang R . 2013. Recognition of the mycobacterial cord factor by Mincle: relevance for granuloma formation and resistance to tuberculosis. Front Immunol 4 : 5. [PubMed][CrossRef]
161. Rao V,, Fujiwara N,, Porcelli SA,, Glickman MS . 2005. Mycobacterium tuberculosis controls host innate immune activation through cyclopropane modification of a glycolipid effector molecule. J Exp Med 201 : 535 543.[PubMed][CrossRef]
162. Dubey VS,, Sirakova TD,, Cynamon MH,, Kolattukudy PE . 2003. Biochemical function of msl5 ( pks8 plus pks17) in Mycobacterium tuberculosis H37Rv: biosynthesis of monomethyl branched unsaturated fatty acids. J Bacteriol 185 : 4620 4625.[PubMed][CrossRef]
163. Goren MB, . 1990. Mycobacterial fatty acid esters of sugars and sulfosugars, p 363 461. In Kates M (ed), Handbook of Lipid Research. Glycolipids, Phosphoglycolipids and Sulfoglycolipids, vol. 6. Plenum Press, New York/London. [CrossRef]
164. Mougous JD,, Petzold CJ,, Seraratne RH,, Lee DH,, Akey DL,, Lin FL,, Munchel SE,, Pratt MR,, Riley LW,, Leary JA,, Berger JM,, Bertozzi CR . 2004. Identification, function and structure of the mycobacterial sulfotransferase that initiates sulfolipid-1 biosynthesis. Nat Struct Mol Biol 11 : 721 729.[PubMed][CrossRef]
165. Kumar P,, Schelle MW,, Jain M,, Lin FL,, Petzold CJ,, Leavell MD,, Leary JA,, Cox JS,, Bertozzi CR . 2007. PapA1 and PapA2 are acyltransferases essential for the biosynthesis of the Mycobacterium tuberculosis virulence factor sulfolipid-1. Proc Natl Acad Sci USA 104 : 11221 11226.[PubMed][CrossRef]
166. Sirakova TD,, Thirumala AK,, Dubey VS,, Sprecher H,, Kolattukudy PE . 2001. The Mycobacterium tuberculosis pks2 gene encodes the synthase for the hepta- and octamethyl branched fatty acids required for sulfolipid synthesis. J Biol Chem 276 : 16833 16839.[PubMed][CrossRef]
167. Trivedi OA,, Arora P,, Sridharan V,, Tickoo R,, Mohanty D,, Gokhale RS . 2004. Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria. Nature 428 : 441 445.[PubMed][CrossRef]
168. Seeliger JC,, Holsclaw CM,, Schelle MW,, Botyanszki Z,, Gilmore SA,, Tully SE,, Niederweis M,, Cravatt BF,, Leary JA,, Bertozzi CR . 2012. Elucidation and chemical modulation of sulfolipid-1 biosynthesis in Mycobacterium tuberculosis. J Biol Chem 287 : 7990 8000.[PubMed][CrossRef]
169. Bhatt K,, Gurcha SS,, Bhatt A,, Besra GS,, Jacobs WR Jr . 2007. Two polyketide-synthase-associated acyltransferases are required for sulfolipid biosynthesis in Mycobacterium tuberculosis. Microbiology 153 : 513 520.[PubMed][CrossRef]
170. Converse SE,, Mougous JD,, Leavell MD,, Leary JA,, Bertozzi CR,, Cox JS . 2003. MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis virulence. Proc Natl Acad Sci USA 100 : 6121 6126.[PubMed][CrossRef]
171. Domenech P,, Reed MB,, Dowd CS,, Manca C,, Kaplan G,, Barry CE III . 2004. The role of MmpL8 in sulfatide biogenesis and virulence of Mycobacterium tuberculosis. J Biol Chem 279 : 21257 21265.[PubMed][CrossRef]
172. Zheng J,, Wei C,, Zhao L,, Liu L,, Leng W,, Li W,, Jin Q . 2011. Combining blue native polyacrylamide gel electrophoresis with liquid chromatography tandem mass spectrometry as an effective strategy for analyzing potential membrane protein complexes of Mycobacterium bovis bacillus Calmette-Guerin. BMC Genomics 12 : 40. [PubMed][CrossRef]
173. Graham JE,, Clark-Curtiss JE . 1999. Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Proc Natl Acad Sci USA 96 : 11554 11559.[PubMed][CrossRef]
174. Singh A,, Crossman DK,, Mai D,, Guidry L,, Voskuil MI,, Renfrow MB,, Steyn AJ . 2009. Mycobacterium tuberculosis WhiB3 maintains redox homeostasis by regulating virulence lipid anabolism to modulate macrophage response. PLoS Pathog 5 : e1000545. [PubMed][CrossRef]
175. Lee W,, Vanderven BC,, Fahey RJ,, Russell DG . 2013. Intracellular Mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress. J Biol Chem 288 : 6788 6800.[PubMed][CrossRef]
176. Walters SB,, Dubnau E,, Kolesnikova I,, Laval F,, Daffé M,, Smith I . 2006. The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Mol Microbiol 60 : 312 330.[PubMed][CrossRef]
177. Chesne-Seck M-L,, Barilone N,, Boudou F,, Gonzalo Asensio J,, Kolattukudy PE,, Martin C,, Cole ST,, Gicquel B,, Gopaul DN,, Jackson M . 2008. A point mutation in the two-component regulator PhoP-PhoR accounts for the absence of polyketide-derived acyltrehaloses but not that of phthiocerol dimycocerosates in Mycobacterium tuberculosis H37Ra. J Bact 190 : 1329 1334.[PubMed][CrossRef]
178. Goyal R,, Das AK,, Singh R,, Singh PK,, Korpole S,, Sarkar D . 2011. Phosphorylation of PhoP protein plays direct regulatory role in lipid biosynthesis of Mycobacterium tuberculosis. J Biol Chem 286 : 45197 45208.[PubMed][CrossRef]
179. Cimino M,, Thomas C,, Namouchi A,, Dubrac S,, Gicquel B,, Gopaul DN . 2012. Identification of DNA binding motifs of the Mycobacterium tuberculosis PhoP/PhoR two-component signal transduction system. PloS One 7 : e42876. [PubMed][CrossRef]
180. Goren MB,, Brennan PJ, . 1979. Mycobacterial lipids: chemistry and biologic activities, p 63 193. In Youmans GP (ed), Tuberculosis. W. B. Saunders, Philadelphia, PA.
181. Bertozzi CR,, Schelle MW, . 2008. Sulfated metabolites from Mycobacterium tuberculosis: sulfolipid-1 and beyond, p 291 304. In Daffé M,, Reyrat J-M (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC.
182. Gilleron M,, Stenger S,, Mazorra Z,, Wittke F,, Mariotti S,, Böhmer G,, Prandi J,, Mori L,<