1887

Chapter 35 : The Sculpting of the Genome by Host Cell–Derived Pressures

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

The Sculpting of the Genome by Host Cell–Derived Pressures, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818845/9781555818838_Chap35-1.gif /docserver/preview/fulltext/10.1128/9781555818845/9781555818838_Chap35-2.gif

Abstract:

The macrophage plays host to for much of the duration of its infection cycle ( ). And while the bacterium is not an obligate intracellular pathogen, the macrophage has undoubtedly played a dominant role in shaping the genome of .

Citation: Russell D, Lee W, Tan S, Sukumar N, Podinovskaia M, Fahey R, VanderVen B. 2014. The Sculpting of the Genome by Host Cell–Derived Pressures, p 727-745. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0016-2013

Key Concept Ranking

Nitric Oxide Synthase
0.44913182
Bacterial Cell Wall
0.4257285
0.44913182
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Genetic and transcriptome diversity of complex (MTC) clinical isolates. Radial neighbor-joining tree based on 24 loci MIRU-VNTR and 43 spacer spoligotyping showing the phylogenetic relationship of strains in this study. Three strains each from the five distinct lineages pathogenic to humans plus two sequenced reference strains (H37Rv and CDC1551) were chosen to represent the global diversity of MTC. Condition tree of MTC clinical isolate transcription profiles during log phase growth in 7H9 medium relative to the CDC1551 reference strain (three biological replicates). Expression profiles for genes passing quality filters (flagged as present in 42 of 48 samples) with differential expression in at least one strain (up or down >1.5-fold in at least 1 of 16) were clustered using the Spearman correlation. Each column represents the global transcription profile of a single strain. Genes were clustered vertically based on the distance measure. Red and blue indicate higher or lower gene expression than the CDC1551 control, respectively. This figure is reproduced from Homolka et al. ( ). doi:10.1128/microbiolspec.MGM2-0016-2013.f1

Citation: Russell D, Lee W, Tan S, Sukumar N, Podinovskaia M, Fahey R, VanderVen B. 2014. The Sculpting of the Genome by Host Cell–Derived Pressures, p 727-745. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0016-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Life and death dynamics during long-term intracellular survival of Survival assays. Resting murine bone-marrow-derived macrophages were infected at low multiplicity of infection (∼1:1) with CDC1551. Viable CFUs were quantified at day 0 and at 2-day intervals postinfection over a 14-day time course by lysis of monolayers, serial dilution, and plating on 7H10 medium. Error bars indicate standard error of the mean from two independent biological replicates, each consisting of three technical replicates per strain (total of six wells/strain). Replication clock plasmid. The percentage of bacteria containing the pBP10 plasmid during growth in resting macrophages was determined by comparing CFUs (mean ± standard deviation) recovered on kanamycin vs. nonselective media (red). The cumulative bacterial burden (CBB) (black) was determined by mathematical modeling based on total viable CFUs and plasmid frequency data. Data shown represent two independent experiments, with each sample performed in quadruplicate (eight total wells/time point). The “bottleneck” response. Temporal expression profiles of genes differentially regulated at day 2 postinfection, including genes from that were up- (red) or downregulated (blue) >1.5-fold (shown as ratio of signal intensity relative to control). Note the maximal change in transcript levels at day 2 postinfection followed by the majority trending back toward control levels. “Guilt by association” analysis. Genes regulated in synch with known virulence regulons (i.e., the DosR regulon) were identified by using a highly regulated member of this regulon, , in place of synthetic profiles. This figure is reproduced from Rohde et al. ( ). doi:10.1128/microbiolspec.MGM2-0016-2013.f2

Citation: Russell D, Lee W, Tan S, Sukumar N, Podinovskaia M, Fahey R, VanderVen B. 2014. The Sculpting of the Genome by Host Cell–Derived Pressures, p 727-745. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0016-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Distribution of zinc within intraphagosomal . Bone-marrow-derived mouse macrophages were infected with and treated for capturing of free zinc ions by an auto-metallography (AMG) procedure. Cells were then processed for electron microscopy observation. The zinc crystals formed during this procedure appeared as small dense deposits along the inner face of the phagosome membrane (arrows). The mycobacterial cytoplasm was devoid of zinc. Lysosomes also displayed zinc crystals. Comparable images were observed in –infected macrophages. Scale bar, 0.5 µm. This picture was provided by Dr. Chantal de Chastellier and was prepared as detailed in reference . doi:10.1128/microbiolspec.MGM2-0016-2013.f3

Citation: Russell D, Lee W, Tan S, Sukumar N, Podinovskaia M, Fahey R, VanderVen B. 2014. The Sculpting of the Genome by Host Cell–Derived Pressures, p 727-745. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0016-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Immunoelectronmicroscopy of –infected macrophages. All sections were probed with mouse antiubiquitin (12 nm gold) and rat anti-LAMP1 (6 nm gold). Untreated, infected macrophage demonstrating that the bacteria-containing vacuoles lack ubiquitin signal and that the ubiquitin signal is predominantly associated with either the membranes (horizontal arrows) or the lumen (vertical arrowheads) of LAMP1-positive, dense lysosomes. In cells treated by starvation for 2 h, the –containing vacuole has acquired a dense, LAMP1-positive, flocculent matrix that is also positive for ubiquitin (arrowed), demonstrating delivery of lysosomal ubiquitin to the bacteria-containing compartment. The relative distribution of ubiquitin-associated label in –containing vacuoles in untreated and starved bone marrow-derived macrophages is detailed in Fig. 4D, with standard error bars. This figure is reproduced from Alonso et al. ( ). doi:10.1128/microbiolspec.MGM2-0016-2013.f4

Citation: Russell D, Lee W, Tan S, Sukumar N, Podinovskaia M, Fahey R, VanderVen B. 2014. The Sculpting of the Genome by Host Cell–Derived Pressures, p 727-745. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0016-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Peripilin 2/ADFP expression in human tuberculosis granulomas. Immunofluorescence signals were obtained for each granuloma , and the corresponding region from a hematoxylin and eosin stained slide is shown. Nuclei are shown in blue and antigens in red. The macrophages subtending the caseum of this fibrocaseous granuloma label strongly for peripilin2/ADFP expression. This figure is reproduced from Kim et al. ( ). doi:10.1128/microbiolspec.MGM2-0016-2013.f5

Citation: Russell D, Lee W, Tan S, Sukumar N, Podinovskaia M, Fahey R, VanderVen B. 2014. The Sculpting of the Genome by Host Cell–Derived Pressures, p 727-745. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0016-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Outline of the pathways relevant to C metabolism. The metabolism of cholesterol, methyl-branched fatty acids, and odd-chain length lipids raises the intracellular levels of the C compounds propionate or propionyl-CoA, which finds highly toxic. The bacterium has developed three strategies to detoxify propionyl-CoA. Isocitrate lyase () activity has been suborned to fulfill the function of methylcitrate lyase in the last step of the methyl citrate cycle to generate the TCA cycle intermediate succinate. The methylmalonyl pathway has also been mobilized to metabolize propionyl-CoA to produce succinyl-CoA via the vitamin B-dependent activity of methylmalonyl-CoA mutase (). Finally, intermediates from the methylmalonyl pathway can be incorporated directly into the abundant, methyl-branched lipids of the bacterial cell wall, such as PDIM and SL-1. doi:10.1128/microbiolspec.MGM2-0016-2013.f6

Citation: Russell D, Lee W, Tan S, Sukumar N, Podinovskaia M, Fahey R, VanderVen B. 2014. The Sculpting of the Genome by Host Cell–Derived Pressures, p 727-745. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0016-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Intracellular growth is restored to the Δ through the induction of oleate-containing lipid droplets in the infected cell. The survival of the Δ mutant is impaired in macrophages, but growth could be restored by preloading the host cells with exogenous oleate or by adding vitamin B to the cell culture medium to facilitate operation of the methyl malonyl pathway. Induction of macrophage lipid droplets, detected with BODIPY 493/503 (green), expressing pVV16-mCherry (′::) (red), and nuclei (blue) in oleate-loaded macrophages versus untreated macrophages. In the absence of infection, the lipid droplets are lost from the macrophages in 48 h. However, in the presence of , the lipid droplets persist. Bacterial CFUs were determined at 2-day intervals across an 8-day period for the Δ in untreated, control macrophages (triangle), in lipid droplet–containing, oleate-loaded macrophages (square), and in macrophages supplemented by the addition of vitamin B to the medium (diamond). Error bars indicate the standard error of the mean from three representative replicates. This figure is reproduced from Podinovskaia et al. ( ) and Lee et al. ( ). doi:10.1128/microbiolspec.MGM2-0016-2013.f7

Citation: Russell D, Lee W, Tan S, Sukumar N, Podinovskaia M, Fahey R, VanderVen B. 2014. The Sculpting of the Genome by Host Cell–Derived Pressures, p 727-745. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0016-2013
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818845.chap35
1. Russell DG. 2001. Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol 2: 569577.[PubMed][CrossRef]
2. Russell DG. 2011. Mycobacterium tuberculosis and the intimate discourse of a chronic infection. Immunol Rev 240: 252268.[PubMed][CrossRef]
3. Manzanillo PS,, Shiloh MU,, Portnoy DA,, Cox JS. 2012. Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages. Cell Host Microbe 11: 469480.[PubMed][CrossRef]
4. Reiling N,, Holscher C,, Fehrenbach A,, Kroger S,, Kirschning CJ,, Goyert S,, Ehlers S. 2002. Cutting edge: Toll-like receptor (TLR)2- and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis. J Immunol 169: 34803484.[PubMed][CrossRef]
5. Heitmann L,, Schoenen H,, Ehlers S,, Lang R,, Holscher C. 2013. Mincle is not essential for controlling Mycobacterium tuberculosis infection. Immunobiology 218: 506516.[PubMed][CrossRef]
6. McElvania Tekippe E,, Allen IC,, Hulseberg PD,, Sullivan JT,, McCann JR,, Sandor M,, Braunstein M,, Ting JP. 2010. Granuloma formation and host defense in chronic Mycobacterium tuberculosis infection requires PYCARD/ASC but not NLRP3 or caspase-1. PloS One 5:e12320. [PubMed][CrossRef]
7. VanderVen BC,, Yates RM,, Russell DG. 2009. Intraphagosomal measurement of the magnitude and duration of the oxidative burst. Traffic 10: 372378.[PubMed][CrossRef]
8. Kim BH,, Shenoy AR,, Kumar P,, Das R,, Tiwari S,, MacMicking JD. 2011. A family of IFN-gamma-inducible 65-kD GTPases protects against bacterial infection. Science 332: 717721.[PubMed][CrossRef]
9. MacMicking JD. 2005. Immune control of phagosomal bacteria by p47 GTPases. Curr Opin Microbiol 8: 7482.[PubMed][CrossRef]
10. MacMicking JD,, North RJ,, LaCourse R,, Mudgett JS,, Shah SK,, Nathan CF. 1997. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci USA 94: 52435248.[PubMed][CrossRef]
11. Gutierrez MG,, Master SS,, Singh SB,, Taylor GA,, Colombo MI,, Deretic V. 2004. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119: 753766.[PubMed][CrossRef]
12. Yates RM,, Hermetter A,, Taylor GA,, Russell DG. 2007. Macrophage activation downregulates the degradative capacity of the phagosome. Traffic 8: 241250.[PubMed][CrossRef]
13. Sassetti CM,, Boyd DH,, Rubin EJ. 2001. Comprehensive identification of conditionally essential genes in mycobacteria. Proc Natl Acad Sci USA 98: 1271212717.[PubMed][CrossRef]
14. Sassetti CM,, Rubin EJ. 2003. Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci USA 100: 1298912994.[PubMed][CrossRef]
15. Schnappinger D,, Ehrt S,, Voskuil MI,, Liu Y,, Mangan JA,, Monahan IM,, Dolganov G,, Efron B,, Butcher PD,, Nathan C,, Schoolnik GK. 2003. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198: 693704.[PubMed][CrossRef]
16. Camacho LR,, Constant P,, Raynaud C,, Laneelle MA,, Triccas JA,, Gicquel B,, Daffe M,, Guilhot C. 2001. Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J Biol Chem 276: 1984519854.[PubMed][CrossRef]
17. Camacho LR,, Ensergueix D,, Perez E,, Gicquel B,, Guilhot C. 1999. Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol 34: 257267.[PubMed][CrossRef]
18. Cox JS,, Chen B,, McNeil M,, Jacobs WR Jr. 1999. Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402: 7983.[PubMed]
19. Hensel M,, Shea JE,, Gleeson C,, Jones MD,, Dalton E,, Holden DW. 1995. Simultaneous identification of bacterial virulence genes by negative selection. Science 269: 400403.[PubMed][CrossRef]
20. Sassetti CM,, Boyd DH,, Rubin EJ. 2003. Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48: 7784.[PubMed][CrossRef]
21. Lamichhane G,, Bishai W. 2007. Defining the “survivasome” of Mycobacterium tuberculosis. Nat Med 13: 280282.[PubMed][CrossRef]
22. Lamichhane G,, Zignol M,, Blades NJ,, Geiman DE,, Dougherty A,, Grosset J,, Broman KW,, Bishai WR. 2003. A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. Proc Natl Acad Sci USA 100: 72137218.[PubMed][CrossRef]
23. Dutta NK,, Mehra S,, Didier PJ,, Roy CJ,, Doyle LA,, Alvarez X,, Ratterree M,, Be NA,, Lamichhane G,, Jain SK,, Lacey MR,, Lackner AA,, Kaushal D. 2010. Genetic requirements for the survival of tubercle bacilli in primates. J Infect Dis 201: 17431752.[PubMed][CrossRef]
24. Boshoff HI,, Myers TG,, Copp BR,, McNeil MR,, Wilson MA,, Barry CE 3rd. 2004. The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J Biol Chem 279: 4017440184.[PubMed][CrossRef]
25. Talaat AM,, Lyons R,, Howard ST,, Johnston SA. 2004. The temporal expression profile of Mycobacterium tuberculosis infection in mice. Proc Natl Acad Sci USA 101: 46024607.[PubMed][CrossRef]
26. Waddell SJ,, Stabler RA,, Laing K,, Kremer L,, Reynolds RC,, Besra GS. 2004. The use of microarray analysis to determine the gene expression profiles of Mycobacterium tuberculosis in response to anti-bacterial compounds. Tuberculosis (Edinb) 84: 263274.[PubMed][CrossRef]
27. Rohde KH,, Abramovitch RB,, Russell DG. 2007. Mycobacterium tuberculosis invasion of macrophages: linking bacterial gene expression to environmental cues. Cell Host Microbe 2: 352364.[PubMed][CrossRef]
28. Homolka S,, Niemann S,, Russell DG,, Rohde KH. 2010. Functional genetic diversity among Mycobacterium tuberculosis complex clinical isolates: delineation of conserved core and lineage-specific transcriptomes during intracellular survival. PLoS Pathog 6:e1000988. [PubMed][CrossRef]
29. Rohde KH,, Veiga DF,, Caldwell S,, Balazsi G,, Russell DG. 2012. Linking the transcriptional profiles and the physiological states of Mycobacterium tuberculosis during an extended intracellular infection. PLoS Pathog 8:e1002769. [PubMed][CrossRef]
30. Gill WP,, Harik NS,, Whiddon MR,, Liao RP,, Mittler JE,, Sherman DR. 2009. A replication clock for Mycobacterium tuberculosis. Nat Med 15: 211214.[PubMed][CrossRef]
31. Park HD,, Guinn KM,, Harrell MI,, Liao R,, Voskuil MI,, Tompa M,, Schoolnik GK,, Sherman DR. 2003. Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol Microbiol 48: 833843.[PubMed][CrossRef]
32. Roberts DM,, Liao RP,, Wisedchaisri G,, Hol WG,, Sherman DR. 2004. Two sensor kinases contribute to the hypoxic response of Mycobacterium tuberculosis. J Biol Chem 279: 2308223087.[PubMed][CrossRef]
33. Rustad TR,, Harrell MI,, Liao R,, Sherman DR. 2008. The enduring hypoxic response of Mycobacterium tuberculosis. PloS One 3:e1502. [PubMed]
34. Leistikow RL,, Morton RA,, Bartek IL,, Frimpong I,, Wagner K,, Voskuil MI. 2010. The Mycobacterium tuberculosis DosR regulon assists in metabolic homeostasis and enables rapid recovery from nonrespiring dormancy. J Bacteriol 192: 16621670.[PubMed][CrossRef]
35. van der Wel N,, Hava D,, Houben D,, Fluitsma D,, van Zon M,, Pierson J,, Brenner M,, Peters PJ. 2007. M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129: 12871298.[PubMed][CrossRef]
36. Houben D,, Demangel C,, van Ingen J,, Perez J,, Baldeon L,, Abdallah AM,, Caleechurn L,, Bottai D,, van Zon M,, de Punder K,, van der Laan T,, Kant A,, Bossers-de Vries R,, Willemsen P,, Bitter W,, van Soolingen D,, Brosch R,, van der Wel N,, Peters PJ. 2012. ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria. Cell Microbiol 14: 12871298.[PubMed][CrossRef]
37. Abdallah AM,, Bestebroer J,, Savage ND,, de Punder K,, van Zon M,, Wilson L,, Korbee CJ,, van der Sar AM,, Ottenhoff TH,, van der Wel NN,, Bitter W,, Peters PJ. 2011. Mycobacterial secretion systems ESX-1 and ESX-5 play distinct roles in host cell death and inflammasome activation. J Immunol 187: 47444753.[PubMed][CrossRef]
38. Simeone R,, Bobard A,, Lippmann J,, Bitter W,, Majlessi L,, Brosch R,, Enninga J. 2012. Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death. PLoS Pathog 8:e1002507. [PubMed][CrossRef]
39. Pethe K,, Swenson DL,, Alonso S,, Anderson J,, Wang C,, Russell DG. 2004. Isolation of Mycobacterium tuberculosis mutants defective in the arrest of phagosome maturation. Proc Natl Acad Sci USA 101: 1364213647.[PubMed][CrossRef]
40. Schaible UE,, Sturgill-Koszycki S,, Schlesinger PH,, Russell DG. 1998. Cytokine activation leads to acidification and increases maturation of Mycobacterium avium-containing phagosomes in murine macrophages. J Immunol 160: 12901296.[PubMed]
41. Via LE,, Fratti RA,, McFalone M,, Pagan-Ramos E,, Deretic D,, Deretic V. 1998. Effects of cytokines on mycobacterial phagosome maturation. J Cell Sci 111(Pt 7): 897905.[PubMed]
42. Sturgill-Koszycki S,, Schlesinger PH,, Chakraborty P,, Haddix PL,, Collins HL,, Fok AK,, Allen RD,, Gluck SL,, Heuser J,, Russell DG. 1994. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263: 678681.[PubMed][CrossRef]
43. Yates RM,, Hermetter A,, Russell DG. 2005. The kinetics of phagosome maturation as a function of phagosome/lysosome fusion and acquisition of hydrolytic activity. Traffic 6: 413420.[PubMed][CrossRef]
44. Martin C,, Williams A,, Hernandez-Pando R,, Cardona PJ,, Gormley E,, Bordat Y,, Soto CY,, Clark SO,, Hatch GJ,, Aguilar D,, Ausina V,, Gicquel B. 2006. The live Mycobacterium tuberculosis phoP mutant strain is more attenuated than BCG and confers protective immunity against tuberculosis in mice and guinea pigs. Vaccine 24: 34083419.[PubMed][CrossRef]
45. Vandal OH,, Pierini LM,, Schnappinger D,, Nathan CF,, Ehrt S. 2008. A membrane protein preserves intrabacterial pH in intraphagosomal Mycobacterium tuberculosis. Nat Med 14: 849854.[PubMed][CrossRef]
46. Abramovitch RB,, Rohde KH,, Hsu FF,, Russell DG. 2011. aprABC: a Mycobacterium tuberculosis complex-specific locus that modulates pH-driven adaptation to the macrophage phagosome. Mol Microbiol 80: 678694.[PubMed][CrossRef]
47. Tan S,, Sukumar N,, Abramovitch RB,, Parish T,, Russell DG. 2013. Mycobacterium tuberculosis responds to chloride and pH as synergistic cues to the immune status of its host cell. PLoS Pathog 9:e1003282. [PubMed][CrossRef]
48. Sonawane ND,, Thiagarajah JR,, Verkman AS. 2002. Chloride concentration in endosomes measured using a ratioable fluorescent Cl- indicator: evidence for chloride accumulation during acidification. J Biol Chem 277: 55065513.[PubMed][CrossRef]
49. Adams LB,, Dinauer MC,, Morgenstern DE,, Krahenbuhl JL. 1997. Comparison of the roles of reactive oxygen and nitrogen intermediates in the host response to Mycobacterium tuberculosis using transgenic mice. Tuber Lung Dis 78: 237246.[PubMed][CrossRef]
50. Cooper AM,, Segal BH,, Frank AA,, Holland SM,, Orme IM. 2000. Transient loss of resistance to pulmonary tuberculosis in p47(phox-/-) mice. Infect Immun 68: 12311234.[PubMed][CrossRef]
51. Ng VH,, Cox JS,, Sousa AO,, MacMicking JD,, McKinney JD. 2004. Role of KatG catalase-peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst. Mol Microbiol 52: 12911302.[PubMed][CrossRef]
52. Wu CH,, Tsai-Wu JJ,, Huang YT,, Lin CY,, Lioua GG,, Lee FJ. 1998. Identification and subcellular localization of a novel Cu,Zn superoxide dismutase of Mycobacterium tuberculosis. FEBS Lett 439: 192196.[PubMed][CrossRef]
53. Edwards KM,, Cynamon MH,, Voladri RK,, Hager CC,, DeStefano MS,, Tham KT,, Lakey DL,, Bochan MR,, Kernodle DS. 2001. Iron-cofactored superoxide dismutase inhibits host responses to Mycobacterium tuberculosis. Am J Respir Crit Care Med 164: 22132219.[PubMed][CrossRef]
54. Buchmeier N,, Fahey RC. 2006. The mshA gene encoding the glycosyltransferase of mycothiol biosynthesis is essential in Mycobacterium tuberculosis Erdman. FEMS Microbiol Lett 264: 7479.[PubMed][CrossRef]
55. Vilcheze C,, Av-Gay Y,, Attarian R,, Liu Z,, Hazbon MH,, Colangeli R,, Chen B,, Liu W,, Alland D,, Sacchettini JC,, Jacobs WR Jr. 2008. Mycothiol biosynthesis is essential for ethionamide susceptibility in Mycobacterium tuberculosis. Mol Microbiol 69: 13161329.[PubMed][CrossRef]
56. Nicholson S,, Bonecini-Almeida Mda G,, Lapa e Silva JR,, Nathan C,, Xie QW,, Mumford R,, Weidner JR,, Calaycay J,, Geng J,, Boechat N,, Linhares C,, Rom W,, Ho JL. 1996. Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis. J Exp Med 183: 22932302.[PubMed][CrossRef]
57. Bryk R,, Lima CD,, Erdjument-Bromage H,, Tempst P,, Nathan C. 2002. Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like protein. Science 295: 10731077.[PubMed][CrossRef]
58. Tian J,, Bryk R,, Shi S,, Erdjument-Bromage H,, Tempst P,, Nathan C. 2005. Mycobacterium tuberculosis appears to lack alpha-ketoglutarate dehydrogenase and encodes pyruvate dehydrogenase in widely separated genes. Mol Microbiol 57: 859868.[PubMed][CrossRef]
59. Shi S,, Ehrt S. 2006. Dihydrolipoamide acyltransferase is critical for Mycobacterium tuberculosis pathogenesis. Infect Immun 74: 5663.[PubMed][CrossRef]
60. Lee WL,, Gold B,, Darby C,, Brot N,, Jiang X,, de Carvalho LP,, Wellner D,, St John G,, Jacobs WR Jr,, Nathan C. 2009. Mycobacterium tuberculosis expresses methionine sulphoxide reductases A and B that protect from killing by nitrite and hypochlorite. Mol Microbiol 71: 583593.[PubMed][CrossRef]
61. Darwin KH,, Lin G,, Chen Z,, Li H,, Nathan CF. 2005. Characterization of a Mycobacterium tuberculosis proteasomal ATPase homologue. Mol Microbiol 55: 561571.[PubMed][CrossRef]
62. Darwin KH,, Ehrt S,, Gutierrez-Ramos JC,, Weich N,, Nathan CF. 2003. The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science 302: 19631966.[PubMed][CrossRef]
63. Wagner D,, Maser J,, Lai B,, Cai Z,, Barry CE 3rd,, Honer Zu Bentrup K,, Russell DG,, Bermudez LE. 2005. Elemental analysis of Mycobacterium avium-, Mycobacterium tuberculosis-, and Mycobacterium smegmatis-containing phagosomes indicates pathogen-induced microenvironments within the host cell’s endosomal system. J Immunol 174: 14911500.[PubMed][CrossRef]
64. Vidal SM,, Malo D,, Vogan K,, Skamene E,, Gros P. 1993. Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell 73: 469485.[PubMed][CrossRef]
65. Forbes JR,, Gros P. 2003. Iron, manganese, and cobalt transport by Nramp1 (Slc11a1) and Nramp2 (Slc11a2) expressed at the plasma membrane. Blood 102: 18841892.[PubMed][CrossRef]
66. Ward SK,, Hoye EA,, Talaat AM. 2008. The global responses of Mycobacterium tuberculosis to physiological levels of copper. J Bacteriol 190: 29392946.[PubMed][CrossRef]
67. Liu T,, Ramesh A,, Ma Z,, Ward SK,, Zhang L,, George GN,, Talaat AM,, Sacchettini JC,, Giedroc DP. 2007. CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator. Nat Chem Biol 3: 6068.[PubMed][CrossRef]
68. Rowland JL,, Niederweis M. 2012. Resistance mechanisms of Mycobacterium tuberculosis against phagosomal copper overload. Tuberculosis (Edinb) 92: 202210.[PubMed][CrossRef]
69. Ward SK,, Abomoelak B,, Hoye EA,, Steinberg H,, Talaat AM. 2010. CtpV: a putative copper exporter required for full virulence of Mycobacterium tuberculosis. Mol Microbiol 77: 10961110.[PubMed][CrossRef]
70. Wolschendorf F,, Ackart D,, Shrestha TB,, Hascall-Dove L,, Nolan S,, Lamichhane G,, Wang Y,, Bossmann SH,, Basaraba RJ,, Niederweis M. 2011. Copper resistance is essential for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci USA 108: 16211626.[PubMed][CrossRef]
71. Soldati T,, Neyrolles O. 2012. Mycobacteria and the intraphagosomal environment: take it with a pinch of salt(s)! Traffic 13: 10421052.[PubMed][CrossRef]
72. Trost M,, English L,, Lemieux S,, Courcelles M,, Desjardins M,, Thibault P. 2009. The phagosomal proteome in interferon-gamma-activated macrophages. Immunity 30: 143154.[PubMed][CrossRef]
73. Botella H,, Stadthagen G,, Lugo-Villarino G,, de Chastellier C,, Neyrolles O. 2012. Metallobiology of host-pathogen interactions: an intoxicating new insight. Trends Microbiol 20: 106112.[PubMed][CrossRef]
74. Botella H,, Peyron P,, Levillain F,, Poincloux R,, Poquet Y,, Brandli I,, Wang C,, Tailleux L,, Tilleul S,, Charriere GM,, Waddell SJ,, Foti M,, Lugo-Villarino G,, Gao Q,, Maridonneau-Parini I,, Butcher PD,, Castagnoli PR,, Gicquel B,, de Chastellier C,, Neyrolles O. 2011. Mycobacterial p(1)-type ATPases mediate resistance to zinc poisoning in human macrophages. Cell Host Microbe 10: 248259.[PubMed][CrossRef]
75. Stoltenberg M,, Bruhn M,, Sondergaard C,, Doering P,, West MJ,, Larsen A,, Troncoso JC,, Danscher G. 2005. Immersion autometallographic tracing of zinc ions in Alzheimer beta-amyloid plaques. Histochem Cell Biol 123: 605611.[PubMed][CrossRef]
76. Deretic V,, Delgado M,, Vergne I,, Master S,, De Haro S,, Ponpuak M,, Singh S. 2009. Autophagy in immunity against Mycobacterium tuberculosis: a model system to dissect immunological roles of autophagy. Curr Top Microbiol Immunol 335: 169188.[PubMed][CrossRef]
77. Alonso S,, Pethe K,, Russell DG,, Purdy GE. 2007. Lysosomal killing of mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy. Proc Natl Acad Sci USA 104: 60316036.[PubMed][CrossRef]
78. Ponpuak M,, Delgado MA,, Elmaoued RA,, Deretic V. 2009. Monitoring autophagy during Mycobacterium tuberculosis infection. Methods Enzymol 452: 345361.[PubMed][CrossRef]
79. Foss MH,, Powers KM,, Purdy GE. 2012. Structural and functional characterization of mycobactericidal ubiquitin-derived peptides in model and bacterial membranes. Biochemistry 51: 99229929.[PubMed][CrossRef]
80. Purdy GE. 2011. Taking out TB-lysosomal trafficking and mycobactericidal ubiquitin-derived peptides. Front Microbiol 2:7. [PubMed][CrossRef]
81. Purdy GE,, Niederweis M,, Russell DG. 2009. Decreased outer membrane permeability protects mycobacteria from killing by ubiquitin-derived peptides. Mol Microbiol 73: 844857.[PubMed][CrossRef]
82. Jo EK. 2010. Innate immunity to mycobacteria: vitamin D and autophagy. Cell Microbiol 12: 10261035.[PubMed][CrossRef]
83. Yuk JM,, Shin DM,, Lee HM,, Yang CS,, Jin HS,, Kim KK,, Lee ZW,, Lee SH,, Kim JM,, Jo EK. 2009. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe 6: 231243.[PubMed][CrossRef]
84. Campbell GR,, Spector SA. 2012. Autophagy induction by vitamin D inhibits both Mycobacterium tuberculosis and human immunodeficiency virus type 1. Autophagy 8: 15231525.[PubMed][CrossRef]
85. Campbell GR,, Spector SA. 2012. Vitamin D inhibits human immunodeficiency virus type 1 and Mycobacterium tuberculosis infection in macrophages through the induction of autophagy. PLoS Pathog 8:e1002689. [PubMed][CrossRef]
86. Russell DG. 2007. Who puts the tubercle in tuberculosis? Nat Rev 5: 3947.[PubMed]
87. Russell DG,, Cardona PJ,, Kim MJ,, Allain S,, Altare F. 2009. Foamy macrophages and the progression of the human tuberculosis granuloma. Nat Immunol 10: 943948.[PubMed][CrossRef]
88. Kim MJ,, Wainwright HC,, Locketz M,, Bekker LG,, Walther GB,, Dittrich C,, Visser A,, Wang W,, Hsu FF,, Wiehart U,, Tsenova L,, Kaplan G,, Russell DG. 2010. Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol Med 2: 258274.[PubMed][CrossRef]
89. Daniel J,, Maamar H,, Deb C,, Sirakova TD,, Kolattukudy PE. 2011. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog 7:e1002093. [PubMed][CrossRef]
90. Podinovskaia M,, Lee W,, Caldwell S,, Russell DG. 2013. Infection of macrophages with Mycobacterium tuberculosis induces global modifications to phagosomal function. Cell Microbiol 15: 843859.[PubMed][CrossRef]
91. Peyron P,, Vaubourgeix J,, Poquet Y,, Levillain F,, Botanch C,, Bardou F,, Daffe M,, Emile JF,, Marchou B,, Cardona PJ,, de Chastellier C,, Altare F. 2008. Foamy macrophages from tuberculous patients’ granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathog 4:e1000204. [PubMed][CrossRef]
92. Geisel RE,, Sakamoto K,, Russell DG,, Rhoades ER. 2005. In vivo activity of released cell wall lipids of Mycobacterium bovis bacillus Calmette-Guerin is due principally to trehalose mycolates. J Immunol 174: 50075015.[PubMed][CrossRef]
93. Rhoades E,, Hsu F,, Torrelles JB,, Turk J,, Chatterjee D,, Russell DG. 2003. Identification and macrophage-activating activity of glycolipids released from intracellular Mycobacterium bovis BCG. Mol Microbiol 48: 875888.[PubMed][CrossRef]
94. Rhoades ER,, Geisel RE,, Butcher BA,, McDonough S,, Russell DG. 2005. Cell wall lipids from Mycobacterium bovis BCG are inflammatory when inoculated within a gel matrix: characterization of a new model of the granulomatous response to mycobacterial components. Tuberculosis (Edinb) 85: 159176.[PubMed][CrossRef]
95. Sakamoto K,, Kim MJ,, Rhoades ER,, Allavena RE,, Ehrt S,, Wainwright HC,, Russell DG,, Rohde KH. 2013. Mycobacterial trehalose dimycolate reprograms macrophage global gene expression and activates matrix metalloproteinases. Infect Immun 81: 764776.[PubMed][CrossRef]
96. Ishikawa E,, Ishikawa T,, Morita YS,, Toyonaga K,, Yamada H,, Takeuchi O,, Kinoshita T,, Akira S,, Yoshikai Y,, Yamasaki S. 2009. Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J Exp Med 206: 28792888.[PubMed][CrossRef]
97. Bowdish DM,, Sakamoto K,, Kim MJ,, Kroos M,, Mukhopadhyay S,, Leifer CA,, Tryggvason K,, Gordon S,, Russell DG. 2009. MARCO, TLR2, and CD14 are required for macrophage cytokine responses to mycobacterial trehalose dimycolate and Mycobacterium tuberculosis. PLoS Pathog 5:e1000474. [PubMed][CrossRef]
98. Desel C,, Werninghaus K,, Ritter M,, Jozefowski K,, Wenzel J,, Russkamp N,, Schleicher U,, Christensen D,, Wirtz S,, Kirschning C,, Agger EM,, da Costa CP,, Lang R. 2013. The Mincle-activating adjuvant TDB induces MyD88-dependent Th1 and Th17 responses through IL-1R signaling. PloS One 8:e53531. [PubMed][CrossRef]
99. Pandey AK,, Sassetti CM. 2008. Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci USA 105: 43764380.[PubMed][CrossRef]
100. McKinney JD,, Honer zu Bentrup K,, Munoz-Elias EJ,, Miczak A,, Chen B,, Chan WT,, Swenson D,, Sacchettini JC,, Jacobs WR Jr,, Russell DG. 2000. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406: 735738.[PubMed][CrossRef]
101. Savvi S,, Warner DF,, Kana BD,, McKinney JD,, Mizrahi V,, Dawes SS. 2008. Functional characterization of a vitamin B12-dependent methylmalonyl pathway in Mycobacterium tuberculosis: implications for propionate metabolism during growth on fatty acids. J Bacteriol 190: 38863895.[PubMed][CrossRef]
102. Lee W,, VanderVen BC,, Fahey RJ,, Russell DG. 2013. Intracellular Mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress. J Biol Chem 288: 67886800.[PubMed][CrossRef]
103. Liu K,, Yu J,, Russell DG. 2003. pckA-deficient Mycobacterium bovis BCG shows attenuated virulence in mice and in macrophages. Microbiology 149: 18291835.[PubMed][CrossRef]
104. Marrero J,, Rhee KY,, Schnappinger D,, Pethe K,, Ehrt S. 2010. Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proc Natl Acad Sci USA 107: 98199824.[PubMed][CrossRef]
105. Marrero J,, Trujillo C,, Rhee KY,, Ehrt S. 2013. Glucose phosphorylation is required for Mycobacterium tuberculosis persistence in mice. PLoS Pathog 9:e1003116. [PubMed][CrossRef]
106. Honer Zu Bentrup K,, Miczak A,, Swenson DL,, Russell DG. 1999. Characterization of activity and expression of isocitrate lyase in Mycobacterium avium and Mycobacterium tuberculosis. J Bacteriol 181: 71617167.[PubMed]
107. Gould TA,, van de Langemheen H,, Munoz-Elias EJ,, McKinney JD,, Sacchettini JC. 2006. Dual role of isocitrate lyase 1 in the glyoxylate and methylcitrate cycles in Mycobacterium tuberculosis. Mol Microbiol 61: 940947.[PubMed][CrossRef]
108. Munoz-Elias EJ,, McKinney JD. 2005. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med 11: 638644.[PubMed][CrossRef]
109. Eoh H,, Rhee KY. 2013. Multifunctional essentiality of succinate metabolism in adaptation to hypoxia in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 110: 65546559.[PubMed][CrossRef]
110. Watanabe S,, Zimmermann M,, Goodwin MB,, Sauer U,, Barry CE 3rd,, Boshoff HI. 2011. Fumarate reductase activity maintains an energized membrane in anaerobic Mycobacterium tuberculosis. PLoS Pathog 7:e1002287. [PubMed][CrossRef]
111. Russell DG. 2013. The evolutionary pressures that have molded Mycobacterium tuberculosis into an infectious adjuvant. Curr Opin Microbiol 16: 7884.[PubMed][CrossRef]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error