1887

Chapter 37 : Mycobacterial Biofilms

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Mycobacterial Biofilms, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818845/9781555818838_Chap37-1.gif /docserver/preview/fulltext/10.1128/9781555818845/9781555818838_Chap37-2.gif

Abstract:

In a review published in 1896 on early bacteriological studies of the tubercle bacilli, , A. Coppen Jones ( ) wrote:

Citation: Richards J, Ojha A. 2014. Mycobacterial Biofilms, p 773-784. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0004-2013

Key Concept Ranking

Confocal Laser Scanning Microscopy
0.42057618
0.42057618
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

A schematic representation of distinct developmental stages of microbial biofilms. Transition from one stage has specific genetic requirements. This scheme was originally published by the authors in ( ) and is reproduced here in accordance with the publisher’s policy. doi:10.1128/microbiolspec.MGM2-0004-2013.f1

Citation: Richards J, Ojha A. 2014. Mycobacterial Biofilms, p 773-784. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0004-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Various models of mycobacterial biofilms grown in our laboratory. Pellicles biofilms of on air-liquid interface in a petri dish. Scanning electron micrograph of flow-cell biofilms of on silicon surface, developed against the shear fluid flow of 1 ml/minute. Pellicle biofilms of in syringes (marked by arrow). This technique is amenable to screening mutants that remain exclusively in planktonic suspension beneath biofilms. Pellicle biofilms of on liquid-air interface grown in a 12-well plate. Scanning electron micrograph of biofilms grown on the surface of a polycarbonate membrane. Images in panels and were generated with help from Curtis Larimer and Ian Nettleship from the Swanson School of Engineering, University of Pittsburgh. doi:10.1128/microbiolspec.MGM2-0004-2013.f2

Citation: Richards J, Ojha A. 2014. Mycobacterial Biofilms, p 773-784. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0004-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

A representative structure of methoxy-free mycolic acids, predominantly accumulated in the bioflms of . doi:10.1128/microbiolspec.MGM2-0004-2013.f3

Citation: Richards J, Ojha A. 2014. Mycobacterial Biofilms, p 773-784. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0004-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Biofilms of and harbor higher numbers of rifampin-tolerant persisters than their planktonic counterparts. The frequency of such persisters is diminished in the impaired biofilms of Δ. Data in panel were originally published in ( ) and reproduced here in accordance with the publisher’s policy. doi:10.1128/microbiolspec.MGM2-0004-2013.f4

Citation: Richards J, Ojha A. 2014. Mycobacterial Biofilms, p 773-784. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0004-2013
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818845.chap37
1. Jones AC. 1896. On the so-called tubercle bacilli. Report of the sixty-sixth meeting of the British Association for the Advancements of Science, p 10151016.
2. Kolter R,, Losick R. 1998. One for all and all for one. Science 280: 226227.[PubMed][CrossRef]
3. Stoodley P,, Sauer K,, Davies DG,, Costerton JW. 2002. Biofilms as complex differentiated communities. Annu Rev Microbiol 56: 187209.[PubMed][CrossRef]
4. Hoiby N,, Bjarnsholt T,, Givskov M,, Molin S,, Ciofu O. 2010. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35: 322332.[PubMed][CrossRef]
5. Prabhakara R,, Harro JM,, Leid JG,, Harris M,, Shirtliff ME. 2011. Murine immune response to a chronic Staphylococcus aureus biofilm infection. Infect Immun 79: 17891796.[PubMed][CrossRef]
6. Moser C,, Kjaergaard S,, Pressler T,, Kharazmi A,, Koch C,, Hoiby N. 2000. The immune response to chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients is predominantly of the Th2 type. APMIS 108: 329335.[PubMed][CrossRef]
7. Henrici AT. 1933. Studies of freshwater bacteria. I. A direct microscopic technique. J Bacteriol 25: 277287.[PubMed]
8. Zobell CE. 1943. The effect of solid surfaces upon bacterial activity. J Bacteriol 46: 3956.[PubMed]
9. Heukelekian H,, Heller A. 1940. Relation between food concentration and surface for bacterial growth. J Bacteriol 40: 547558.[PubMed]
10. Dubos RJ,, Middlebrook G. 1948. The effect of wetting agents on the growth of tubercle bacilli. J Exp Med 88: 8188.[PubMed][CrossRef]
11. Bloch H,, Noll H. 1953. Studies on the virulence of tubercle bacilli: variations in virulence effected by tween 80 and thiosemicarbazone. J Exp Med 97: 116.[PubMed][CrossRef]
12. Van Boxtel RM,, Lambrecht RS,, Collins MT. 1990. Effects of colonial morphology and tween 80 on antimicrobial susceptibility of Mycobacterium paratuberculosis. Antimicrob Agents Chemother 34: 23002303.[PubMed][CrossRef]
13. Lam J,, Chan R,, Lam K,, Costerton JW. 1980. Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect Immun 28: 546556.[PubMed]
14. Geesey GG,, Richardson WT,, Yeomans HG,, Irvin RT,, Costerton JW. 1977. Microscopic examination of natural sessile bacterial populations from an alpine stream. Can J Microbiol 23: 17331736.[PubMed][CrossRef]
15. Costerton JW,, Irvin RT,, Cheng KJ. 1981. The role of bacterial surface structures in pathogenesis. Crit Rev Microbiol 8: 303338.[PubMed][CrossRef]
16. Nickel JC,, Ruseska I,, Wright JB,, Costerton JW. 1985. Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob Agents Chemother 27: 619624.[PubMed][CrossRef]
17. Lawrence JR,, Korber DR,, Hoyle BD,, Costerton JW,, Caldwell DE. 1991. Optical sectioning of microbial biofilms. J Bacteriol 173: 65586567.[PubMed]
18. Stoodley P,, Debeer D,, Lewandowski Z. 1994. Liquid flow in biofilm systems. Appl Environ Microbiol 60: 27112716.[PubMed]
19. de Beer D,, Stoodley P,, Roe F,, Lewandowski Z. 1994. Effects of biofilm structures on oxygen distribution and mass transport. Biotechnol Bioeng 43: 11311138.[PubMed][CrossRef]
20. Branda SS,, Vik S,, Friedman L,, Kolter R. 2005. Biofilms: the matrix revisited. Trends Microbiol 13: 2026.[PubMed][CrossRef]
21. Whitchurch CB,, Tolker-Nielsen T,, Ragas PC,, Mattick JS. 2002. Extracellular DNA required for bacterial biofilm formation. Science 295:1487. [PubMed][CrossRef]
22. Rice KC,, Mann EE,, Endres JL,, Weiss EC,, Cassat JE,, Smeltzer MS,, Bayles KW. 2007. The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc Natl Acad Sci USA 104: 81138118.[PubMed][CrossRef]
23. Lasa I,, Penades JR. 2006. Bap: a family of surface proteins involved in biofilm formation. Res Microbiol 157: 99107.[PubMed][CrossRef]
24. Branda SS,, Chu F,, Kearns DB,, Losick R,, Kolter R. 2006. A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol 59: 12291238.[PubMed][CrossRef]
25. O’Toole GA,, Kolter R. 1998. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30: 295304.[PubMed][CrossRef]
26. Chapman MR,, Robinson LS,, Pinkner JS,, Roth R,, Heuser J,, Hammar M,, Normark S,, Hultgren SJ. 2002. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295: 851855.[PubMed][CrossRef]
27. Pratt LA,, Kolter R. 1998. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30: 285293.[PubMed][CrossRef]
28. O’Toole GA,, Kolter R. 1998. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28: 449461.[PubMed][CrossRef]
29. Davies DG,, Chakrabarty AM,, Geesey GG. 1993. Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa. Appl Environ Microbiol 59: 11811186.[PubMed]
30. Ogasawara H,, Yamamoto K,, Ishihama A. 2011. Role of the biofilm master regulator CsgD in cross-regulation between biofilm formation and flagellar synthesis. J Bacteriol 193: 25872597.[PubMed][CrossRef]
31. Cotter PA,, Stibitz S. 2007. c-di-GMP-mediated regulation of virulence and biofilm formation. Curr Opin Microbiol 10: 1723.[PubMed][CrossRef]
32. Sondermann H,, Shikuma NJ,, Yildiz FH. 2012. You’ve come a long way: c-di-GMP signaling. Curr Opin Microbiol 15: 140146.[PubMed][CrossRef]
33. Chen Y,, Chai Y,, Guo JH,, Losick R. 2012. Evidence for cyclic Di-GMP-mediated signaling in Bacillus subtilis. J Bacteriol 194: 50805090.[PubMed][CrossRef]
34. Waters CM,, Lu W,, Rabinowitz JD,, Bassler BL. 2008. Quorum sensing controls biofilm formation in Vibrio cholerae through modulation of cyclic di-GMP levels and repression of vpsT. J Bacteriol 190: 25272536.[PubMed][CrossRef]
35. Lopez D,, Vlamakis H,, Kolter R. 2010. Biofilms. Cold Spring Harbor Perspect Biol 2:a000398. [PubMed][CrossRef]
36. Novick RP,, Geisinger E. 2008. Quorum sensing in staphylococci. Annu Rev Genet 42: 541564.[PubMed][CrossRef]
37. Davies DG,, Parsek MR,, Pearson JP,, Iglewski BH,, Costerton JW,, Greenberg EP. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280: 295298.[PubMed][CrossRef]
38. Kearns DB,, Chu F,, Branda SS,, Kolter R,, Losick R. 2005. A master regulator for biofilm formation by Bacillus subtilis. Mol Microbiol 55: 739749.[PubMed][CrossRef]
39. Chu F,, Kearns DB,, Branda SS,, Kolter R,, Losick R. 2006. Targets of the master regulator of biofilm formation in Bacillus subtilis. Mol Microbiol 59: 12161228.[PubMed][CrossRef]
40. Chai Y,, Chu F,, Kolter R,, Losick R. 2008. Bistability and biofilm formation in Bacillus subtilis. Mol Microbiol 67: 254263.[PubMed][CrossRef]
41. Xu KD,, Stewart PS,, Xia F,, Huang CT,, McFeters GA. 1998. Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl Environ Microbiol 64: 40354039.[PubMed]
42. Rani SA,, Pitts B,, Beyenal H,, Veluchamy RA,, Lewandowski Z,, Davison WM,, Buckingham-Meyer K,, Stewart PS. 2007. Spatial patterns of DNA replication, protein synthesis, and oxygen concentration within bacterial biofilms reveal diverse physiological states. J Bacteriol 189: 42234233.[PubMed][CrossRef]
43. Vlamakis H,, Aguilar C,, Losick R,, Kolter R. 2008. Control of cell fate by the formation of an architecturally complex bacterial community. Genes Dev 22: 945953.[PubMed][CrossRef]
44. Werner E,, Roe F,, Bugnicourt A,, Franklin MJ,, Heydorn A,, Molin S,, Pitts B,, Stewart PS. 2004. Stratified growth in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 70: 61886196.[PubMed][CrossRef]
45. Purevdorj-Gage B,, Costerton WJ,, Stoodley P. 2005. Phenotypic differentiation and seeding dispersal in non-mucoid and mucoid Pseudomonas aeruginosa biofilms. Microbiology 151: 15691576.[PubMed][CrossRef]
46. McDougald D,, Rice SA,, Barraud N,, Steinberg PD,, Kjelleberg S. 2012. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol 10: 3950.[PubMed]
47. Kolodkin-Gal I,, Romero D,, Cao S,, Clardy J,, Kolter R,, Losick R. 2010. D-amino acids trigger biofilm disassembly. Science 328: 627629.[PubMed][CrossRef]
48. Hochbaum AI,, Kolodkin-Gal I,, Foulston L,, Kolter R,, Aizenberg J,, Losick R. 2011. Inhibitory effects of D-amino acids on Staphylococcus aureus biofilm development. J Bacteriol 193: 56165622.[PubMed][CrossRef]
49. Kolodkin-Gal I,, Cao S,, Chai L,, Bottcher T,, Kolter R,, Clardy J,, Losick R. 2012. A self-produced trigger for biofilm disassembly that targets exopolysaccharide. Cell 149: 684692.[PubMed][CrossRef]
50. Jensen PO,, Givskov M,, Bjarnsholt T,, Moser C. 2010. The immune system vs. Pseudomonas aeruginosa biofilms. FEMS Immunol Med Microbiol 59: 292305.[PubMed]
51. Leid JG,, Willson CJ,, Shirtliff ME,, Hassett DJ,, Parsek MR,, Jeffers AK. 2005. The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J Immunol 175: 75127518.[PubMed][CrossRef]
52. Matz C,, Kjelleberg S. 2005. Off the hook: how bacteria survive protozoan grazing. Trends Microbiol 13: 302307.[PubMed][CrossRef]
53. Mah TF,, O’Toole GA. 2001. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9: 3439.[PubMed][CrossRef]
54. Post JC,, Stoodley P,, Hall-Stoodley L,, Ehrlich GD. 2004. The role of biofilms in otolaryngologic infections. Curr Opin Otolaryngol Head Neck Surg 12: 185190.[PubMed][CrossRef]
55. Marrie TJ,, Nelligan J,, Costerton JW. 1982. A scanning and transmission electron microscopic study of an infected endocardial pacemaker lead. Circulation 66: 13391341.[PubMed][CrossRef]
56. Davis LE,, Cook G,, Costerton JW. 2002. Biofilm on ventriculo-peritoneal shunt tubing as a cause of treatment failure in coccidioidal meningitis. Emerg Infect Dis 8: 376379.[PubMed][CrossRef]
57. Anderson GG,, Palermo JJ,, Schilling JD,, Roth R,, Heuser J,, Hultgren SJ. 2003. Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301: 105107.[PubMed][CrossRef]
58. Anderson GG,, O’Toole GA. 2008. Innate and induced resistance mechanisms of bacterial biofilms. Curr Top Microbiol Immunol 322: 85105.[PubMed][CrossRef]
59. Spoering AL,, Lewis K. 2001. Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183: 67466751.[PubMed][CrossRef]
60. Van Gennip M,, Christensen LD,, Alhede M,, Phipps R,, Jensen PO,, Christophersen L,, Pamp SJ,, Moser C,, Mikkelsen PJ,, Koh AY,, Tolker-Nielsen T,, Pier GB,, Hoiby N,, Givskov M,, Bjarnsholt T. 2009. Inactivation of the rhlA gene in Pseudomonas aeruginosa prevents rhamnolipid production, disabling the protection against polymorphonuclear leukocytes. APMIS 117: 537546.[PubMed][CrossRef]
61. Schulze-Röbbecke R,, Janning B,, Fischeder R. 1992. Occurrence of mycobacteria in biofilm samples. Tuber Lung Dis 73: 141144.[PubMed][CrossRef]
62. Hall-Stoodley L,, Lappin-Scott H. 1998. Biofilm formation by the rapidly growing mycobacterial species Mycobacterium fortuitum. FEMS Microbiol Lett 168: 7784.[PubMed][CrossRef]
63. Falkinham JO,, Norton CD,, LeChevallier MW. 2001. Factors influencing numbers of Mycobacterium avium, Mycobacterium intracellulare, and other mycobacteria in drinking water distribution systems. Appl Environ Microbiol 67: 12251231.[PubMed][CrossRef]
64. Angenent LT,, Kelley ST,, Amand AS,, Pace NR,, Hernandez MT. 2005. Molecular identification of potential pathogens in water and air of a hospital therapy pool. Proc Natl Acad Sci USA 102: 48604865.[PubMed][CrossRef]
65. Dailloux M,, Albert M,, Laurain C,, Andolfatto S,, Lozniewski A,, Hartemann P,, Mathieu L. 2003. Mycobacterium xenopi and drinking water biofilms. Appl Environ Microbiol 69: 69466948.[PubMed][CrossRef]
66. Feazel LM,, Baumgartner LK,, Peterson KL,, Frank DN,, Harris JK,, Pace NR. 2009. Opportunistic pathogens enriched in showerhead biofilms. Proc Natl Acad Sci USA 106: 1639316399.[PubMed][CrossRef]
67. Steed KA,, Falkinham JO. 2006. Effect of growth in biofilms on chlorine susceptibility of Mycobacterium avium and Mycobacterium intracellulare. Appl Environ Microbiol 72: 40074011.[PubMed][CrossRef]
68. Vaerewijck MJ,, Huys G,, Palomino JC,, Swings J,, Portaels F. 2005. Mycobacteria in drinking water distribution systems: ecology and significance for human health. FEMS Microbiol Rev 29: 911934.[PubMed][CrossRef]
69. Recht J,, Kolter R. 2001. Glycopeptidolipid acetylation affects sliding motility and biofilm formation in Mycobacterium smegmatis. J Bacteriol 183: 57185724.[PubMed][CrossRef]
70. Yamazaki Y,, Danelishvili L,, Wu M,, Macnab M,, Bermudez LE. 2006. Mycobacterium avium genes associated with the ability to form a biofilm. Appl Environ Microbiol 72: 819825.[PubMed][CrossRef]
71. Geier H,, Mostowy S,, Cangelosi GA,, Behr MA,, Ford TE. 2008. Autoinducer-2 triggers the oxidative stress response in Mycobacterium avium, leading to biofilm formation. Appl Environ Microbiol 74: 17981804.[PubMed][CrossRef]
72. Schorey JS,, Sweet L. 2008. The mycobacterial glycopeptidolipids: structure, function, and their role in pathogenesis. Glycobiology 18: 832841.[PubMed][CrossRef]
73. Carter G,, Wu M,, Drummond DC,, Bermudez LE. 2003. Characterization of biofilm formation by clinical isolates of Mycobacterium avium. J Med Microbiol 52: 747752.[PubMed][CrossRef]
74. Marsollier L,, Aubry J,, Coutanceau E,, André J-PS,, Small PL,, Milon G,, Legras P,, Guadagnini S,, Carbonnelle B,, Cole ST. 2005. Colonization of the salivary glands of Naucoris cimicoides by Mycobacterium ulcerans requires host plasmatocytes and a macrolide toxin, mycolactone. Cell Microbiol 7: 935943.[PubMed][CrossRef]
75. Marsollier L,, Brodin P,, Jackson M,, Kordulakova J,, Tafelmeyer P,, Carbonnelle E,, Aubry J,, Milon G,, Legras P,, Andre JP,, Leroy C,, Cottin J,, Guillou ML,, Reysset G,, Cole ST. 2007. Impact of Mycobacterium ulcerans biofilm on transmissibility to ecological niches and Buruli ulcer pathogenesis. PLoS Pathog 3:e62. [PubMed][CrossRef]
76. Ojha A,, Anand M,, Bhatt A,, Kremer L,, Jacobs WR Jr,, Hatfull GF. 2005. GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123: 861873.[PubMed][CrossRef]
77. Ojha AK,, Trivelli X,, Guerardel Y,, Kremer L,, Hatfull GF. 2010. Enzymatic hydrolysis of trehalose dimycolate releases free mycolic acids during mycobacterial growth in biofilms. J Biol Chem 285: 1738017389.[PubMed][CrossRef]
78. Ojha AK,, Baughn AD,, Sambandan D,, Hsu T,, Trivelli X,, Guerardel Y,, Alahari A,, Kremer L,, Jacobs WR Jr,, Hatfull GF. 2008. Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol Microbiol 69: 164174.[PubMed][CrossRef]
79. Takayama K,, Wang C,, Besra GS. 2005. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev 18: 81101.[PubMed][CrossRef]
80. Chen JM,, German GJ,, Alexander DC,, Ren H,, Tan T,, Liu J. 2006. Roles of Lsr2 in colony morphology and biofilm formation of Mycobacterium smegmatis. J Bacteriol 188: 633641.[PubMed][CrossRef]
81. Pang JM,, Layre E,, Sweet L,, Sherrid A,, Moody DB,, Ojha A,, Sherman DR. 2012. The polyketide Pks1 contributes to biofilm formation in Mycobacterium tuberculosis. J Bacteriol 194: 715721.[PubMed][CrossRef]
82. Ghosh S,, Indi SS,, Nagaraja V. 2013. Regulation of lipid biosynthesis, sliding motility and biofilm formation by a membrane-anchored nucleoid associated protein of Mycobacterium tuberculosis. J Bacteriol 195: 17691778.[PubMed][CrossRef]
83. Ortalo-Magne A,, Dupont MA,, Lemassu A,, Andersen AB,, Gounon P,, Daffe M. 1995. Molecular composition of the outermost capsular material of the tubercle bacillus. Microbiology 141(Pt 7): 16091620.[PubMed][CrossRef]
84. Sani M,, Houben EN,, Geurtsen J,, Pierson J,, de Punder K,, van Zon M,, Wever B,, Piersma SR,, Jimenez CR,, Daffe M,, Appelmelk BJ,, Bitter W,, van der Wel N,, Peters PJ. 2010. Direct visualization by cryo-EM of the mycobacterial capsular layer: a labile structure containing ESX-1-secreted proteins. PLoS Pathog 6:e1000794. [PubMed][CrossRef]
85. Ren H,, Dover LG,, Islam ST,, Alexander DC,, Chen JM,, Besra GS,, Liu J. 2007. Identification of the lipooligosaccharide biosynthetic gene cluster from Mycobacterium marinum. Mol Microbiol 63: 13451359.[PubMed][CrossRef]
86. Ojha A,, Hatfull GF. 2007. The role of iron in Mycobacterium smegmatis biofilm formation: the exochelin siderophore is essential in limiting iron conditions for biofilm formation but not for planktonic growth. Mol Microbiol 66: 468483.[PubMed][CrossRef]
87. Mathew R,, Mukherjee R,, Balachandar R,, Chatterji D. 2006. Deletion of the rpoZ gene, encoding the omega subunit of RNA polymerase, results in pleiotropic surface-related phenotypes in Mycobacterium smegmatis. Microbiology 152: 17411750.[PubMed][CrossRef]
88. McNabe M,, Tennant R,, Danelishvili L,, Young L,, Bermudez LE. 2011. Mycobacterium avium ssp. hominissuis biofilm is composed of distinct phenotypes and influenced by the presence of antimicrobials. Clin Microbiol Infect 17: 697703.[PubMed][CrossRef]
89. Nguyen KT,, Piastro K,, Gray TA,, Derbyshire KM. 2010. Mycobacterial biofilms facilitate horizontal DNA transfer between strains of Mycobacterium smegmatis. J Bacteriol 192: 51345142.[PubMed][CrossRef]
90. Teng R,, Dick T. 2003. Isoniazid resistance of exponentially growing Mycobacterium smegmatis biofilm culture. FEMS Microbiol Lett 227: 171174.[PubMed][CrossRef]
91. McNabe M,, Tennant R,, Danelishvili L,, Young L,, Bermudez LE. 2011. Mycobacterium avium ssp. hominissuis biofilm is composed of distinct phenotypes and influenced by the presence of antimicrobials. Clin Microbiol Infect 17: 697703.[PubMed][CrossRef]
92. Gengenbacher M,, Rao SP,, Pethe K,, Dick T. 2010. Nutrient-starved, non-replicating Mycobacterium tuberculosis requires respiration, ATP synthase and isocitrate lyase for maintenance of ATP homeostasis and viability. Microbiology 156: 8187.[PubMed][CrossRef]
93. Wayne LG,, Hayes LG. 1996. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun 64: 20622069.[PubMed]
94. Aldridge BB,, Fernandez-Suarez M,, Heller D,, Ambravaneswaran V,, Irimia D,, Toner M,, Fortune SM. 2012. Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility. Science 335: 100104.[PubMed][CrossRef]
95. Wakamoto Y,, Dhar N,, Chait R,, Schneider K,, Signorino-Gelo F,, Leibler S,, McKinney JD. 2013. Dynamic persistence of antibiotic-stressed mycobacteria. Science 339: 9195.[PubMed][CrossRef]
96. Canetti G. 1955. Tubercle Bacillus in the Pulmonary Lesion of Man: Histobacteriology and Its Bearing on the Therapy of Pulmonary Tuberculosis. Springer Publishing Company, New York, NY.
97. WHO. 2012. The burden of diseases caused by TB. Global Tuberculosis Report:828.
98. Jindani A,, Dore CJ,, Mitchison DA. 2003. Bactericidal and sterilizing activities of antituberculosis drugs during the first 14 days. Am J Respir Crit Care Med 167: 13481354.[PubMed][CrossRef]
99. Lenaerts AJ,, Hoff D,, Aly S,, Ehlers S,, Andries K,, Cantarero L,, Orme IM,, Basaraba RJ. 2007. Location of persisting mycobacteria in a guinea pig model of tuberculosis revealed by r207910. Antimicrob Agents Chemother 51: 33383345.[PubMed][CrossRef]
100. Parrish NM,, Dick JD,, Bishai WR. 1998. Mechanisms of latency in Mycobacterium tuberculosis. Trends Microbiol 6: 107112.[PubMed][CrossRef]
101. Ulrichs T,, Kosmiadi GA,, Jorg S,, Pradl L,, Titukhina M,, Mishenko V,, Gushina N,, Kaufmann SH. 2005. Differential organization of the local immune response in patients with active cavitary tuberculosis or with nonprogressive tuberculoma. J Infect Dis 192: 8997.[PubMed][CrossRef]
102. Barry CE 3rd,, Boshoff HI,, Dartois V,, Dick T,, Ehrt S,, Flynn J,, Schnappinger D,, Wilkinson RJ,, Young D. 2009. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol 7: 845855.[PubMed]
103. Park IN,, Ryu JS,, Shim TS. 2008. Evaluation of therapeutic response of tuberculoma using F-18 FDG positron emission tomography. Clin Nucl Med 33: 13.[PubMed][CrossRef]
104. Ford CB,, Lin PL,, Chase MR,, Shah RR,, Iartchouk O,, Galagan J,, Mohaideen N,, Ioerger TR,, Sacchettini JC,, Lipsitch M,, Flynn JL,, Fortune SM. 2011. Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nat Genet 43: 482486.[PubMed][CrossRef]
105. Lin PL,, Rodgers M,, Smith L,, Bigbee M,, Myers A,, Bigbee C,, Chiosea I,, Capuano SV,, Fuhrman C,, Klein E,, Flynn JL. 2009. Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model. Infect Immun 77: 46314642.[PubMed][CrossRef]
106. Islam MS,, Richards JP,, Ojha AK. 2012. Targeting drug tolerance in mycobacteria: a perspective from mycobacterial biofilms. Expert Rev Anti Infect Ther 10: 10551066.[PubMed][CrossRef]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error