1887

Chapter 12 : Future Technologies

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Future Technologies, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818852/9781555818852_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555818852/9781555818852_Chap12-2.gif

Abstract:

Microbiome analysis of environmental samples may represent the next frontier in environmental microbial forensics. The microbiome, defined as the sum total of all the genetic material present in a sample, contains evidence of the microbial communities in the sample at the time of collection. As such, it contains clues to past environmental events until the time the sample was collected and processed. This attribute makes the analysis of microbiomes extremely important in identifying and demonstrating the occurrence of an environmental event, be it bioterrorism or a petroleum spill.

Citation: Cano R, Toranzos G. 2018. Future Technologies, p 277-285. In Cano R, Toranzos G (ed), Environmental Microbial Forensics. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.EMF-0015-2018
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Technical factors in microbiome research that influence results and conclusions.

Citation: Cano R, Toranzos G. 2018. Future Technologies, p 277-285. In Cano R, Toranzos G (ed), Environmental Microbial Forensics. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.EMF-0015-2018
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818852.chap12
1. Metcalf JL,, Xu ZZ,, Bouslimani A,, Dorrestein P,, Carter DO,, Knight R. 2017. Microbiome tools for forensic science. Trends Biotechnol 35:814823.[PubMed]
2. Stämmler F,, Gläsner J,, Hiergeist A,, Holler E,, Weber D,, Oefner PJ,, Gessner A,, Spang R. 2016. Adjusting microbiome profiles for differences in microbial load by spike-in bacteria. Microbiome 4:28.[PubMed]
3. Gorzelak MA,, Gill SK,, Tasnim N,, Ahmadi-Vand Z,, Jay M,, Gibson DL. 2015. Methods for improving human gut microbiome data by reducing variability through sample processing and storage of stool. PLoS One 10:e0134802.[PubMed]
4. Goodrich JK,, Di Rienzi SC,, Poole AC,, Koren O,, Walters WA,, Caporaso JG,, Knight R,, Ley RE. 2014. Conducting a microbiome study. Cell 158:250262.[PubMed]
5. La Rosa PS,, Brooks JP,, Deych E,, Boone EL,, Edwards DJ,, Wang Q,, Sodergren E,, Weinstock G,, Shannon WD. 2012. Hypothesis testing and power calculations for taxonomic-based human microbiome data. PLoS One 7:e52078.[PubMed]
6. Sinha R,, Abnet CC,, White O,, Knight R,, Huttenhower C. 2015. The microbiome quality control project: baseline study design and future directions. Genome Biol 16:276.[PubMed]
7. Hiergeist A,, Reischl U,, Gessner A, Priority Program 1656 Intestinal Microbiota Consortium/Quality Assessment Participants. 2016. Multicenter quality assessment of 16S ribosomal DNA-sequencing for microbiome analyses reveals high inter-center variability. Int J Med Microbiol 306:334342.[PubMed]
8. Kim D,, Hofstaedter CE,, Zhao C,, Mattei L,, Tanes C,, Clarke E,, Lauder A,, Sherrill-Mix S,, Chehoud C,, Kelsen J,, Conrad M,, Collman RG,, Baldassano R,, Bushman FD,, Bittinger K. 2017. Optimizing methods and dodging pitfalls in microbiome research. Microbiome 5:52.[PubMed]
9. Endrullat C,, Glökler J,, Franke P,, Frohme M. 2016. Standardization and quality management in next-generation sequencing. Appl Transl Genomics 10:29.[PubMed]
10. Tourlousse DM,, Yoshiike S,, Ohashi A,, Matsukura S,, Noda N,, Sekiguchi Y. 2017. Synthetic spike-in standards for high-throughput 16S rRNA gene amplicon sequencing. Nucleic Acids Res 45:e23e23.[PubMed]
11. Castillo-Peinado LS,, Luque de Castro MD. 2016. Present and foreseeable future of metabolomics in forensic analysis. Anal Chim Acta 925:115.[PubMed]
12. Alvarez AJ,, Khanna M,, Toranzos GA,, Stotzky G. 1998. Amplification of DNA bound on clay minerals. Mol Ecol 7:775778.
13. Alvarez AJ,, Yumet GM,, Santiago CL,, Toranzos GA. 1996. Stability of manipulated plasmid DNA in aquatic environments. Environ Toxicol Water Qual 11:129135.
14. Bohmann K,, Evans A,, Gilbert MT,, Carvalho GR,, Creer S,, Knapp M,, Yu DW,, de Bruyn M. 2014. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol Evol 29:358367. (Erratum, doi:10.1016/j.tree.2014.05.012.)
15. Budowle B,, Murch R,, Chakraborty R. 2005. Microbial forensics: the next forensic challenge. Int J Legal Med 119:317330.[PubMed]
16. Budowle B. 2003. Defining a new forensic discipline: microbial forensics. Profiles DNA 6:710.
17. Cano RJ,, Rivera-Perez J,, Toranzos GA,, Santiago-Rodriguez TM,, Narganes-Storde YM,, Chanlatte-Baik L,, García-Roldán E,, Bunkley-Williams L,, Massey SE. 2014. Paleomicrobiology: revealing fecal microbiomes of ancient indigenous cultures. PLoS One 9:e106833.[PubMed]
18. Toranzos GA,, Santiago-Rodriguez TM,, Cano RJ,, Fornaciari G. 2017. Proper authentication of ancient DNA is essential, yes; but so are undogmatic approaches. FEMS Microbiol Ecol 93:fix043.[PubMed]
19. Patrício AR,, Herbst LH,, Duarte A,, Vélez-Zuazo X,, Santos Loureiro N,, Pereira N,, Tavares L,, Toranzos GA. 2012. Global phylogeography and evolution of chelonid fibropapilloma-associated herpesvirus 1. J Gen Virol 93:10351045.[PubMed]
20. Piñar G,, Piombino-Mascali D,, Maixner F,, Zink A,, Sterflinger K. 2013. Microbial survey of the mummies from the Capuchin Catacombs of Palermo, Italy: biodeterioration risk and contamination of the indoor air. FEMS Microbiol Ecol 86:341356.[PubMed]
21. von Wintzingerode F,, Göbel UB,, Stackebrandt E. 1997. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213229.[PubMed]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error