Chapter 1 : Historical Events That Spawned the Field of Plasmid Biology

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Historical Events That Spawned the Field of Plasmid Biology, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818982/9781555818975_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555818982/9781555818975_Chap01-2.gif


Extrachromosomal genetic elements, now widely known as plasmids, were recognized over 60 years ago. Historically, extrachromosomal genetic elements that transferred antibiotic resistance to recipient pathogenic bacteria were called R factors, and those that were conjugative were called T factors ( ). Bacteria, particularly strains harboring R and T factors, were found in 1951 in Japan, then in Taiwan and Israel in 1960 ( ), and in the United States and Europe in 1963 to 1968 ( ). The F factor (for fertility) was the genetic element, also called the “sex factor,” that was required for bacterial conjugation ( ). The sex factor determined the ability of strain K12 to conjugate and transfer genes to recipients.

Citation: Kado C. 2015. Historical Events That Spawned the Field of Plasmid Biology, p 3-11. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0019-2013
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Joshua Lederberg.

Citation: Kado C. 2015. Historical Events That Spawned the Field of Plasmid Biology, p 3-11. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0019-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Purified F pili bearing spherical RNA MS2 phages. Electron micrograph courtesy of Professor Manabu Inuzuka, Fukui Medical University, Fukui, Japan. Bar = 2000 Å.

Citation: Kado C. 2015. Historical Events That Spawned the Field of Plasmid Biology, p 3-11. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0019-2013
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Mitsuhashi S,, Kameda M,, Harada K,, Suzuki M . 1969. Formation of recombinants between non-transmissible drug-resistance determinants and transfer factors. J Bacteriol 97 : 15201521.[PubMed]
2. Nakaya R,, Nakamura A,, Murata Y . 1960. Resistance transfer agents in Shigella . Biochem Biophys Res Commun 3 : 654659.[PubMed] [CrossRef]
3. Mitsuhashi S, . 1977. Epidemiology of R factors, p 2543. In Mitsuhashi S (ed), R Factor, Drug Resistance Plasmid. University Park Press, Baltimore, MD.
4. Hayes W . 1952. Recombination in Bact. coli K12: unidirectional transfer of genetic material. Nature (London) 169 : 118119.[PubMed] [CrossRef]
5. Hayes W . 1953. Observations on a transmissible agent determining sexual differentiation in Bact. coli . J Gen Microbiol 8 : 7288.[PubMed] [CrossRef]
6. Lederberg J,, Tatum EL . 1946. Novel genotypes in mixed cultures of biochemical mutants of bacteria. Cold Spring Harbor Symp Quant Biol 11 : 113114.[CrossRef]
7. Lederberg J,, Tatum EL . 1946. Gene recombination in Escherichia coli . Nature (London) 158 : 558. [PubMed] [CrossRef]
8. Lederberg J,, Cavalli LL,, Lederberg EM . 1952. Sex compatibility in Escherichia coli . Genetics 37 : 720730.[PubMed]
9. Jacob F,, Wollman EL . 1958. Les épisomes, elements génétiques ajoutés. C R Hebd. Seances Acad Sci 247 : 154156.[PubMed]
10. Lederberg J . 1952. Cell genetics and hereditary symbiosis. Physiol Rev 32 : 403430.[PubMed]
11. Lederberg J . 1998. Plasmid (1952–1997). Plasmid 39 : 19.[PubMed] [CrossRef]
12. Bukhari AI,, Shapiro JA,, Adhya SL (ed). 1977. DNA Insertion Elements, Plasmids, and Episomes. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
13. Zhou Y,, Call DR,, Broschat SL . 2012. Genetic relationships among 527 Gram-negative bacterial plasmids. Plasmid 68 : 133141.[PubMed] [CrossRef]
14. Novick RP . 1987. Plasmid incompatibility. Microbiol Rev 51 : 381395.[PubMed]
15. Kado CI,, Helinski DR . 2007. Proceedings of the international symposium on plasmid biology. Plasmid 57 : 182243.[CrossRef]
16. Radloff R,, Bauer W,, Vinograd J . 1967. A dye-buoyant-density method for the detection and isolation of closed circular duplex DNA: the closed circular DNA in HeLa cells. Proc Natl Acad Sci USA 57 : 15141521.[PubMed] [CrossRef]
17. Marmur J,, Rownd R,, Falkow S,, Baron LS,, Schildkraut C,, Doty P . 1961. The nature of intergeneric episomal infection. Proc Natl Acad Sci USA 47 : 972979.[PubMed] [CrossRef]
18. Fiers W,, Sinsheimer RL . 1962. The structure of the DNA of bacteriophage ɸX174 III. Ultracentrifugal evidence for a ring structure. J Mol Biol 5 : 424434.[PubMed] [CrossRef]
19. Kleinschmidt AK,, Burton A,, Sinsheimer RL . 1963. Electron microscopy of the replicative form of the DNA of the bacteriophage phi-X174. Science 142 : 961. [PubMed] [CrossRef]
20. Espejo RT,, Canelo ES,, Sinsheimer RL . 1969. DNA of bacteriophage PM2: a closed circular double-stranded molecule. Proc Natl Acad Sci USA 63 : 11641168.[PubMed] [CrossRef]
21. Bramhill D,, Kornberg A . 1988. Duplex opening by dnaA protein at novel sequences in initiation of replication at the origin of the E. coli chromosome. Cell 52 : 743755.[PubMed] [CrossRef]
22. Gerdes K,, Møller-Jensen J,, Bugge Jensen R . 2000. Plasmid and chromosome partitioning: surprises from phylogeny. Mol Microbiol 37 : 455466.[PubMed] [CrossRef]
23. Nordström K,, Austin SJ . 1989. Mechanisms that contribute to the stable segregation of plasmids. Annu Rev Genet 23 : 3769.[PubMed] [CrossRef]
24. Meacock PA,, Cohen SN . 1980. Partitioning of bacterial plasmids during cell division: a cis-acting locus that accomplishes stable plasmid inheritance. Cell 20 : 529542.[PubMed] [CrossRef]
25. Ogura T,, Hiraga S . 1983. Partition mechanism of F plasmid: two plasmid gene-encoded products and a cis-acting region are involved in partition. Cell 32 : 351360.[PubMed] [CrossRef]
26. Ah-Seng Y,, Lopez F,, Pasta F,, Lane D,, Bouet J-Y . 2009. Dual role of DNA in regulating ATP hydrolysis by the SopA partition protein. J Biol Chem 284 : 3006730075.[PubMed] [CrossRef]
27. Mori H,, Kondo A,, Ohshima A,, Ogura T,, Hiraga S . 1986. Structure and function of F plasmid genes essential for partitioning. J Mol Biol 192 : 115.[PubMed] [CrossRef]
28. Hayakawa Y,, Murotsu T,, Matsubara K . 1985. Mini-F protein that binds to a unique region for partition of mini-F plasmid DNA. J Bacteriol 163 : 349354.[PubMed]
29. Abeles AL,, Snyder KM,, Chattoraj DK . 1984. P1 plasmid replication: replicon structure. J Mol Biol 173 : 307324.[PubMed] [CrossRef]
30. Summers DK,, Sherratt DJ . 1984. Multimerization of high copy number plasmids causes instability: ColE1 encodes a determinant essential for plasmid monomerization and stability. Cell 36 : 10971103.[PubMed] [CrossRef]
31. Jaffé A,, Ogura T,, Hiraga S . 1985. Effects of the ccd function of the F plasmid on bacterial growth. J Bacteriol 163 : 841849.[PubMed]
32. Lederberg J,, Tatum EL . 1953. Sex in bacteria: genetic studies, 1945–1952. Science 118 : 169175.[PubMed] [CrossRef]
33. Harden V,, Meynell E . 1972. Inhibition of gene transfer by antiserum and identification of serotypes of sex pili. J Bacteriol 109 : 10671074.[PubMed]
34. Tomoeda M,, Inuzuka M,, Date T . 1975. Bacterial sex pili. Prog Biophys Mol Biol 30 : 2356.[PubMed] [CrossRef]
35. Brinton CC Jr . 1965. The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in Gram negative bacteria. Trans NY Acad Sci 27 : 10031054.[PubMed] [CrossRef]
36. Curtiss R . 1969. Bacterial conjugation. Annu Rev Microbiol 23 : 69136.[PubMed] [CrossRef]
37. Marvin DA,, Hohn B . 1969. Filamentous bacterial viruses. Bacteriol Rev 33 : 172209.[PubMed]
38. Achtman M,, Morelli G,, Schwuchow S . 1978. Cell-cell interactions in conjugating Escherichia coli: role of F pili and fate of mating aggregates. J Bacteriol 135 : 10531061.[PubMed]
39. Achtman M,, Kennedy N,, Skurray R . 1977. Cell-cell interactions in conjugating Escherichia coli: role of traT protein in surface exclusion. Proc Natl Acad Sci USA 74 : 51045108.[PubMed] [CrossRef]
40. Durrenberger MB,, Villiger W,, Bachi T . 1991. Conjugational junctions: morphology of specific contacts in conjugating Escherichia coli bacteria. J Struct Biol 107 : 146156.[PubMed] [CrossRef]
41. Harrington LC,, Rogerson AC . 1990. The F pilus of Escherichia coli appears to support stable DNA transfer in the absence of wall-to-wall contact between cells. J Bacteriol 172 : 72637264.[PubMed]
42. Ou JT,, Anderson TF . 1970. Role of pili in bacterial conjugation. J Bacteriol 102 : 648654.[PubMed]
43. Babic A,, Lindner AB,, Vulic M,, Stewart EJ,, Radman M . 2008. Direct visualization of horizontal gene transfer. Science 319 : 15331536.[PubMed] [CrossRef]
44. Frost LS,, Ippen-Ihler K,, Skurray RA . 1994. Analysis of the sequence and gene products of the transfer region of the F sex factor. Microbiol Rev 58 : 162210.[PubMed]
45. Frost LS,, Finlay BB,, Opgenorth A,, Paranchych W,, Lee JS . 1985. Characterization and sequence analysis of pilin from F-like plasmids. J Bacteriol 164 : 12381247.[PubMed]
46. Kado CI . 1994. Promiscuous DNA transfer system of Agrobacterium tumefaciens: role of the virB operon in sex pilus assembly and synthesis. Mol Microbiol 12 : 1722.[PubMed] [CrossRef]
47. Shirasu K,, Kado CI . 1993. The virB operon of the Agrobacterium tumefaciens virulence regulon has sequence similarities to B, C and D open reading frames downstream of the pertussis toxin-operon and to the DNA transfer-operons of broad-host-range conjugative plasmids. Nucleic Acids Res 21 : 353354.[CrossRef]
48. Cascales E,, Christie PJ . 2003. The versatile bacterial type IV secretion systems. Nat Rev Microbiol 1 : 137149.[PubMed] [CrossRef]
49. Lawley TD,, Klimke WA,, Gubbin MJ,, Frost LS . 2003. F factor conjugation is a true type IV secretion system. FEMS Microbiol Lett 224 : 115.[PubMed] [CrossRef]
50. Jones AL,, Lai EM,, Shirasu K,, Kado CI . 1996. VirB2 is a processed pilin-like protein encoded by the Agrobacterium Ti plasmid. J Bacteriol 178 : 57065711.[PubMed]
51. Lai EM,, Kado CI . 1998. Processed VirB2 is the major subunit of the promiscuous pilus of Agrobacterium tumefaciens . J Bacteriol 180 : 27112717.[PubMed]
52. Lai EM,, Eisenbrandt R,, Kalkum M,, Lanka E,, Kado CI . 2002. Biogenesis of T pili in Agrobacterium tumefaciens requires precise VirB2 propilin cleavage and cyclization. J Bacteriol 184 : 327330.[PubMed] [CrossRef]
53. Shirasu K,, Kado CI . 1993. Membrane location of the Ti plasmid VirB proteins involved in the biosynthesis of a pilin-like conjugative structure on Agrobacterium tumefaciens . FEMS Microbiol Lett 111 : 287294.[PubMed] [CrossRef]
54. Lai EM,, Kado CI . 2000. The T-pilus of Agrobacterium tumefaciens . Trends Microbiol 8 : 361369.[PubMed] [CrossRef]
55. Zupan JR,, Ward D,, Zambryski P . 1998. Assembly of the VirB transport complex for DNA transfer from Agrobacterium tumefaciens to plant cells. Curr Opin Microbiol 1 : 649655.[PubMed] [CrossRef]
56. Kado CI . 2009. Horizontal gene transfer: sustaining pathogenicity and optimizing host-pathogen interactions. Mol Plant Pathol 10 : 143150.[PubMed] [CrossRef]
57. Novick RP . 1969. Extrachromosomal inheritance in bacteria. Bacteriol Rev 33 : 210235.[PubMed]
58. Phillips G,, Funnel B . 2004. Plasmid Biology. ASM Press, Washington, DC.
59. Kado CI . 1998. Origin and evolution of plasmids. Antonie van Leeuwenhoek 73 : 117126.[PubMed] [CrossRef]
60. Williams PA,, Murray K . 1974. Metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid. J Bacteriol 120 : 416423.[PubMed]
61. Burlage RS,, Hooper SW,, Sayler GS . 1989. The TOL (pWW0) catabolic plasmid. Appl Environ Microbiol 55 : 13231328.[PubMed]
62. Staudenbauer WL . 1978. Structure and replication of the colicin E1 plasmid. Curr Top Microbiol Immunol 83 : 93156.[PubMed] [CrossRef]
63. Van Tiel-Menkvled GJ,, Rezee A,, De Graaf FK . 1979. Production and excretion of cloacin DF13 by Escherichia coli harboring plasmid CloDF13. J Bacteriol 140 : 415423.[PubMed]
64. De Kwaadsteniet M,, ten Doeschate K,, Dicks LMT . 2007. Characterization of the structural gene encoding Nisin F, a new lantibiotic produced by a Lactococcus lactis subsp. lactis isolate from freshwater catfish (Claria gariepinus). Appl Environ Microbiol 74 : 547549.[PubMed] [CrossRef]
65. Johnson TJ,, Nolan LK . 2009. Pathogenomics of the virulence plasmids of Escherichia coli . Microbiol Molec Biol Rev 73 : 750774.[PubMed] [CrossRef]
66. Sansonetti PJ,, Kopecko DJ,, Formal SB . 1982. Involvement of a plasmid in the invasive ability of Shigella flexneri . Infect Immun 35 : 852860.[PubMed]
67. McCarthy AJ,, Lindsay JA . 2012. The distribution of plasmids that carry virulence and resistance genes in Staphylococcus aureus is lineage associated. BMC Microbiol 12 : 104. doi:10.1186/1471-2180-12-104. [PubMed] [CrossRef]
68. Kado CI . 2010. Plant Bacteriology. APS Press, St. Paul, MN.
69. Lobban P,, Kaiser AD . 1973. Enzymatic end-to-end joining of DNA molecules. J Mol Biol 79 : 453471.[PubMed] [CrossRef]
70. Rodriguez RL,, Denhardt DT (ed). 1988. Vectors: A Survey of Molecular Cloning Vectors and Their Use. Butterworths, London.
71. Kaufman RJ . 2000. Overview of vector design for mammalian gene expression. Mol Biotechnol 16 : 151160.[PubMed] [CrossRef]
72. Lee LY,, Gelvin SB . 2008. T-DNA binary vectors and systems. Plant Physiol 146 : 325332.[PubMed] [CrossRef]
73. Tolmachov OE . 2011. Building mosaics of therapeutic plasmid gene vectors. Curr Gene Ther 11 : 466478.[PubMed] [CrossRef]
74. Masai H,, Kaziro Y,, Arai K . 1983. Definition of oriR, the minimum DNA segment essential for initiation of R1 plasmid replication in vitro . Proc Natl Acad Sci USA 80 : 68146818.[PubMed] [CrossRef]
75. Rosen J,, Ryder T,, Inokuchi H,, Ohtsubo H,, Ohtsubo E . 1980. Genes and sites involved in replication and incompatibility of an R100 plasmid derivative based on nucleotide sequence analysis. Mol Gen Genet 179 : 527537.[PubMed] [CrossRef]
76. Song H,, Phillips SE,, Parsons MR,, Maas R . 1996. Crystallization and preliminary crystallographic analysis of RepA1, a replication control protein of the RepFIC replicon of enterotoxin plasmid EntP307. Proteins 25 : 137138.[PubMed] [CrossRef]
77. Churchward G,, Linder P,, Caro L . 1983. The nucleotide sequence of replication and maintenance functions encoded by plasmid pSC101. Nucleic Acids Res 11 : 56455659.[PubMed] [CrossRef]
78. Vocke C,, Bastia D . 1983. DNA-protein interaction at the origin of DNA replication of the plasmid pSC101. Cell 35 : 495502.[PubMed] [CrossRef]
79. Scherzinger E,, Haring V,, Lurz R,, Otto S . 1991. Plasmid RSF1010 DNA replication in vitro promoted by purified RSF1010 RepA, RepB and RepC proteins. Nucleic Acids Res 19 : 12031211.[PubMed] [CrossRef]
80. Komori H,, Matsunaga F,, Higuchi Y,, Ishiai M,, Wada C,, Miki K . 1999. Crystal structure of a prokaryotic replication initiator protein bound to DNA at 2.6 Å resolution. EMBO J 18 : 45974607.[PubMed] [CrossRef]
81. Kongsuwan K,, Josh P,, Picault MJ,, Wijffels G,, Dalrymple B . 2006. The plasmid RK2 replication initiator protein (TrfA) binds to the sliding clamp beta subunit of DNA derived from the amino-terminal portion of 33-kilodalton TrfA. J Bacteriol 188 : 55015509.[PubMed] [CrossRef]
82. Germino J,, Bastia D . 1983. Interaction of the plasmid R6K-encoded replication initiator protein with its binding sites on DNA. Cell 34 : 125134.[PubMed] [CrossRef]
83. Vuicic M,, Topisirovic L . 1993. Molecular analysis of the rolling-circle replicating plasmid pA1 of Lactobacillus plantarum A112. Appl Environ Microbiol 59 : 274280.[PubMed]
84. De la Campa AG,, del Solar GH,, Espinosa M . 1990. Initiation of replication of plasmid pLS1: the initiator protein RepB acts on two distant DNA regions. J Mol Biol 213 : 247262.[PubMed] [CrossRef]
85. Koepsel RR,, Murray RW,, Rosenblum WD,, Khan SA . 1985. Purification of pT181-encoded RepC protein required for the initiation of plasmid replication. J Biol Chem 260 : 85718577.[PubMed]
86. Thomas CD,, Baison DF,, Shaw WV . 1990. In vitro studies of the initiation of staphyloccal plasmid replication. Specificity of RepD for its origin (oriD) and characterization of the Rep-ori tyrosyl ester intermediate. J Biol Chem 265 : 55195530.[PubMed]
87. Balbás P,, Soberón X,, Merino E,, Zurita M,, Lomeli H,, Valle F,, Flores N,, Bolivar F . 1986. Plasmid vector pBR322 and its special-purpose derivatives: a review. Gene 50 : 340.[PubMed] [CrossRef]
88. Messing J, . 1983. New M13 vectors for cloning, p 2078. In Wu R,, Grossman L,, Moldave K (ed), Methods in Enzymology, Academic Press, Orlando, FL. [PubMed]
89. Norrander J,, Kempe T,, Messing J . 1983. Construction of improved M13 vectors using oligo-deoxynucleotide-directed mutagenesis. Gene 16 : 101106.[PubMed] [CrossRef]
90. Vieira J,, Messing J . 1982. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19 : 259268.[PubMed] [CrossRef]
91. Stewart GSAB,, Lubinsky-Mink S,, Jackson CG,, Cassel A,, Kuhn J . 1986. pHG165: a pBR322 copy number derivative of pUC8 for cloning and expression. Plasmid 15 : 172181.[PubMed] [CrossRef]
92. Peeters BPH,, Schoenmakers JGG,, Konings RNH . 1986. Plasmid pKUN9, a versatile vector for the selective packaging of both DNA strands into single-stranded DNA-containing phage-like particles. Gene 41 : 3946.[PubMed] [CrossRef]
93. Zyprian E,, Kado CI . 1990. Agrobacterium-mediated plant transformation by novel mini-T vectors in conjunction with a high-copy vir region helper plasmid. Plant Mol Biol 15 : 245256.[PubMed] [CrossRef]
94. Shaw JJ,, Kado CI . 1986. Development of a Vibrio bioluminescence gene-set to monitor phytopathogenic bacteria during the ongoing disease process in a non-disruptive manner. Nat Biotechnol 4 : 560564.[CrossRef]
95. Gay P,, LeCoq D,, Steinmetz M,, Berkelman T,, Kado CI . 1985. Positive selection procedure for entrapment of insertion sequence elements in Gram-negative bacteria. J Bacteriol 164 : 918921.[PubMed]
96. Okumura K,, Chlumsky L,, Baldwin TO,, Kado CI . 1992. Enhanced stable expression of a Vibrio luciferase under the control of the Ω-3 translational enhancer in transgenic plants. World J Microbiol Biotechnol 8 : 638644.[PubMed] [CrossRef]
97. Selbitschka W,, Niemann S,, Pühler A . 1993. Construction of gene replacement vectors for Gram- bacteria using a genetically modified sacRB gene as a positive selection marker. Appl Microbiol Biotechnol 38 : 615618.[CrossRef]
98. Kamoun S,, Tola E,, Kamdar H,, Kado CI . 1992. Rapid generation of directed and unmarked deletions in Xanthomonas . Mol Microbiol 6 : 809816.[PubMed] [CrossRef]
99. Kumar G . 1992. Two cat expression vectors for cloning and generation of 3′- and 5′-deletion mutants. Gene 110 : 101103.[CrossRef]
100. Crouzet J,, Lévy-Schil S,, Cauchois L,, Cameron B . 1992. Construction of a broad-host-range non-mobilizable stable vector carrying RP4 par-region. Gene 110 : 105108.[PubMed] [CrossRef]
101. Quandt J,, Hynes MF . 1993. Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria. Gene 127 : 1521.[PubMed] [CrossRef]
102. Kurata H,, Furusaki S,, Kado CI . 1998. Light-enhanced target gene expression in tobacco BY-2 by the combination of overexpressed phytochrome and rbcS3A promoter. Biotechnol Lett 20 : 463468.[CrossRef]
103. Godiska R,, Dhodda V,, Gilbert V,, Ravin N,, Mead D . 2007. Proceedings of the International Symposium on Plasmid Biology. Plasmid 57 : 182243.[CrossRef]
104. Prentki P,, Krisch HM . 1984. In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29 : 303313.[PubMed] [CrossRef]


Generic image for table
Table 1

Plasmid initiator proteins

Citation: Kado C. 2015. Historical Events That Spawned the Field of Plasmid Biology, p 3-11. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0019-2013
Generic image for table
Table 2

Examples of plasmid vector systems and their uses

Citation: Kado C. 2015. Historical Events That Spawned the Field of Plasmid Biology, p 3-11. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0019-2013

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error