1887

Chapter 14 : Conjugation in Gram-Positive Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Conjugation in Gram-Positive Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818982/9781555818975_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555818982/9781555818975_Chap14-2.gif

Abstract:

Conjugative transfer is an important driver in evolution, enabling bacteria to acquire new traits ( ). During conjugative transfer, DNA translocation across the cell envelopes of two cells forming a mating pair is mediated by two types of mobile genetic elements: conjugative plasmids and integrating conjugative elements (ICEs) ( ). Most conjugative plasmids apply a sophisticated multiprotein secretion apparatus, the so-called type IV secretion system (T4SS) to transfer DNA to a recipient cell ( ). Conjugative T4SSs of Gram-positive (G+) bacteria exhibit considerable similarities to their Gram-negative (G–) counterparts; the first steps processing the plasmid DNA to be transferred with the relaxase, covalently attached to its 5′ end, are virtually identical ( ). However, the actual DNA translocation process including the passage of the cell envelope of the donor and the recipient cell appears to differ considerably between G+ and G– bacteria. This might be due to the differences in the structure of the cell envelope: cytoplasmic membrane followed by a thick multilayered peptidoglycan (PG) in G+ bacteria versus a two-membrane configuration with periplasmic space and thin PG layer between the two membranes in G– bacteria. Therefore, it is not surprising that homologs of VirB7, VirB9, and VirB10 proteins identified as actual G– T4SS channel components ( ) have not been detected so far in G+ T4SSs.

Citation: Goessweiner-Mohr N, Arends K, Keller W, Grohmann E. 2015. Conjugation in Gram-Positive Bacteria, p 237-256. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0004-2013
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Genetic organization of the pIP501 operon. Proteins with sequence similarities with the corresponding Ti-plasmid VirB/D4, pCF10, and pCW3 T4SS proteins are in blue; the potential two-protein-coupling protein (consisting of TraI and TraJ) is indicated with brackets; relations based on structure (TraM C-terminal domain, VirB8-like [ ]) and domain prediction (TraL, VirB6-like) based similarities are in yellow; the gene encoding the putative relaxase is in green. The respective protein families are indicated. P, operon promoter. The genes of the pIP501 region are drawn to scale. Put., putative.

Citation: Goessweiner-Mohr N, Arends K, Keller W, Grohmann E. 2015. Conjugation in Gram-Positive Bacteria, p 237-256. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0004-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Model of the pIP501 DNA transfer pathway. First, is bound by the relaxase TraA. After being nicked, the single-stranded plasmid is recruited to the putative transfer channel (modified from reference 17) via the putative two-protein coupling protein TraJ. Decreased shading of PG symbolizes TraG-mediated local opening of PG. The localization and orientation of the T4SS proteins is based on predictions and localization studies ( ). The N terminus of the T4SS proteins is marked (N). Arrows indicate protein-protein interactions determined by yeast-two-hybrid studies and validated by pull-down assays ( ), as well as interactions found by using the Thermofluor method (Goessweiner-Mohr et al., unpublished data). The thickness of the arrows marks the strength of the detected interactions. The putative function of key members of the pIP501 operon in the DNA secretion process is indicated. PG, peptidoglycan; CM, cytoplasmic membrane; CP, cytoplasm.

Citation: Goessweiner-Mohr N, Arends K, Keller W, Grohmann E. 2015. Conjugation in Gram-Positive Bacteria, p 237-256. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0004-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Comparison of the domain arrangement and classification of putative lytic transglycosylases from G+ and G– putative T4SSs. TraG (pIP501), TcpG (pCW3), VirB1 (Ti-plasmid), and PrgK (pCF10) were chosen as representatives of their respective classes. The potential SLT and CHAP(-like) domains were assigned according to secondary structure predictions with PSIPred ( ). TMHs were annotated with HMMTOP ( ).

Citation: Goessweiner-Mohr N, Arends K, Keller W, Grohmann E. 2015. Conjugation in Gram-Positive Bacteria, p 237-256. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0004-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4a
Figure 4a

Secondary structure-based classification of lytic transglycosylases. A, class α, B, class β, C, class γ, D, class δ lytic transglycosylases. Secondary structure (PSIpred) and TM motif (HMMTOP) prediction for G– and G+ lytic transglycosylases from conjugative plasmids, transposons, ICEs, and GIs; alpha helices (blue), beta strands (red), and TM motifs (boxes) are highlighted; the putative N-terminal ends of the SLT and CHAP(-like) domains are indicated.

Citation: Goessweiner-Mohr N, Arends K, Keller W, Grohmann E. 2015. Conjugation in Gram-Positive Bacteria, p 237-256. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0004-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4b
Figure 4b

Secondary structure-based classification of lytic transglycosylases. A, class α, B, class β, C, class γ, D, class δ lytic transglycosylases. Secondary structure (PSIpred) and TM motif (HMMTOP) prediction for G– and G+ lytic transglycosylases from conjugative plasmids, transposons, ICEs, and GIs; alpha helices (blue), beta strands (red), and TM motifs (boxes) are highlighted; the putative N-terminal ends of the SLT and CHAP(-like) domains are indicated.

Citation: Goessweiner-Mohr N, Arends K, Keller W, Grohmann E. 2015. Conjugation in Gram-Positive Bacteria, p 237-256. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0004-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4c
Figure 4c

Secondary structure-based classification of lytic transglycosylases. A, class α, B, class β, C, class γ, D, class δ lytic transglycosylases. Secondary structure (PSIpred) and TM motif (HMMTOP) prediction for G– and G+ lytic transglycosylases from conjugative plasmids, transposons, ICEs, and GIs; alpha helices (blue), beta strands (red), and TM motifs (boxes) are highlighted; the putative N-terminal ends of the SLT and CHAP(-like) domains are indicated.

Citation: Goessweiner-Mohr N, Arends K, Keller W, Grohmann E. 2015. Conjugation in Gram-Positive Bacteria, p 237-256. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0004-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4d
Figure 4d

Secondary structure-based classification of lytic transglycosylases. A, class α, B, class β, C, class γ, D, class δ lytic transglycosylases. Secondary structure (PSIpred) and TM motif (HMMTOP) prediction for G– and G+ lytic transglycosylases from conjugative plasmids, transposons, ICEs, and GIs; alpha helices (blue), beta strands (red), and TM motifs (boxes) are highlighted; the putative N-terminal ends of the SLT and CHAP(-like) domains are indicated.

Citation: Goessweiner-Mohr N, Arends K, Keller W, Grohmann E. 2015. Conjugation in Gram-Positive Bacteria, p 237-256. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0004-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Comparison of the domain arrangement and classification of VirB6-like proteins from G+ and G– putative T4SSs. TraL (pIP501), PrgH (pCF10), TcpH (pCW3), VirB6 (Ti-plasmid), TraD (pKM101), TraG (R1 plasmid), and TrbP (pBP136) were selected as representatives of their respective classes. Predicted TMHs (HMMTOP [ ]) are represented as gray boxes.

Citation: Goessweiner-Mohr N, Arends K, Keller W, Grohmann E. 2015. Conjugation in Gram-Positive Bacteria, p 237-256. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0004-2013
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818982.chap14
1. Babic A,, Berkmen MB,, Lee CA,, Grossman AD . 2011. Efficient gene transfer in bacterial cell chains. mBio 2: e00027-11. doi:10.1128/mBio.00027-11. [PubMed] [CrossRef]
2. Frost LS,, Leplae R,, Summers AO,, Toussaint A . 2005. Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3 : 722 732.[PubMed] [CrossRef]
3. Ochman H,, Lawrence JG,, Groisman EA . 2000. Lateral gene transfer and the nature of bacterial innovation. Nature 405 : 299 304.[PubMed] [CrossRef]
4. Thomas CM,, Nielsen KM . 2005. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3 : 711 721.[PubMed] [CrossRef]
5. Wozniak RAF,, Waldor MK . 2010. Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol 8 : 552 563.[PubMed] [CrossRef]
6. Burrus V,, Pavlovic G,, Decaris B,, Guédon G . 2002. Conjugative transposons: the tip of the iceberg. Mol Microbiol 46 : 601 610.[PubMed] [CrossRef]
7. Burrus V,, Waldor MK . 2004. Shaping bacterial genomes with integrative and conjugative elements. Res Microbiol 155 : 376 386.[PubMed] [CrossRef]
8. Roberts AP,, Mullany P . 2009. A modular master on the move: the Tn 916 family of mobile genetic elements. Trends Microbiol 17 : 251 258.[PubMed] [CrossRef]
9. de la Cruz F,, Frost LS,, Meyer RJ,, Zechner EL . 2010. Conjugative DNA metabolism in Gram-negative bacteria. FEMS Microbiol Rev 34 : 18 40.[PubMed] [CrossRef]
10. Fernández-López R,, Garcillán-Barcia MP,, Revilla C,, Lázaro M,, Vielva L,, de la Cruz F . 2006. Dynamics of the IncW genetic backbone imply general trends in conjugative plasmid evolution. FEMS Microbiol Rev 30 : 942 966.[PubMed] [CrossRef]
11. Grohmann E,, Muth G,, Espinosa M . 2003. Conjugative plasmid transfer in gram-positive bacteria. Microbiol Mol Biol Rev 67 : 277 301.[PubMed] [CrossRef]
12. Schröder G,, Lanka E . 2005. The mating pair formation system of conjugative plasmids—a versatile secretion machinery for transfer of proteins and DNA. Plasmid 54 : 1 25.[PubMed] [CrossRef]
13. Smillie C,, Garcillan-Barcia MP,, Francia MV,, Rocha EPC,, de la Cruz F . 2010. Mobility of Plasmids. Microbiol Mol Biol Rev 74 : 434 452.[PubMed] [CrossRef]
14. Grohmann E,, Guzmán L,, Espinosa M . 1999. Mobilisation of the streptococcal plasmid pMV158: interactions of MobM protein with its cognate oriT DNA region. Mol Gen Genet 261 : 707 715.[PubMed] [CrossRef]
15. Guzman LM,, Espinosa M . 1997. The mobilization protein, MobM, of the streptococcal plasmid pMV158 specifically cleaves supercoiled DNA at the plasmid oriT . J Mol Biol 266 : 688 702.[PubMed] [CrossRef]
16. Zechner EL,, Lang S,, Schildbach JF . 2012. Assembly and mechanisms of bacterial type IV secretion machines. Philos Trans R Soc Lond B Biol Sci 367 : 1073 1087.[PubMed] [CrossRef]
17. Bhatty M,, Laverde Gomez JA,, Christie PJ . 2013. The expanding bacterial type IV secretion lexicon. Res Microbiol 164 : 620 639.[PubMed] [CrossRef]
18. Chandran V,, Fronzes R,, Duquerroy S,, Cronin N,, Navaza J,, Waksman G . 2009. Structure of the outer membrane complex of a type IV secretion system. Nature 462 : 1011 1015.[PubMed] [CrossRef]
19. Fronzes R,, Schafer E,, Wang L,, Saibil HR,, Orlova EV,, Waksman G . 2009. Structure of a type IV secretion system core complex. Science 323 : 266 268.[PubMed] [CrossRef]
20. Rivera-Calzada A,, Fronzes R,, Savva CG,, Chandran V,, Lian PW,, Laeremans T,, Pardon E,, Steyaert J,, Remaut H,, Waksman G,, Orlova EV . 2013. Structure of a bacterial type IV secretion core complex at subnanometer resolution. EMBO J 32 : 1195 1204.[PubMed] [CrossRef]
21. Vincent CD,, Friedman JR,, Jeong KC,, Buford EC,, Miller JL,, Vogel JP . 2006. Identification of the core transmembrane complex of the Legionella Dot/Icm type IV secretion system. Mol Microbiol 62 : 1278 1291.[PubMed] [CrossRef]
22. Waksman G,, Fronzes R . 2010. Molecular architecture of bacterial type IV secretion systems. Trends Biochem Sci 35 : 691 698.[PubMed] [CrossRef]
23. Wallden K,, Williams R,, Yan J,, Lian PW,, Wang L,, Thalassinos K,, Orlova EV,, Waksman G . 2012. Structure of the VirB4 ATPase, alone and bound to the core complex of a type IV secretion system. Proc Natl Acad Sci USA 109 : 11348 11353.[PubMed] [CrossRef]
24. Bordeleau E,, Ghinet MG,, Burrus V . 2012. Diversity of integrating conjugative elements in actinobacteria: coexistence of two mechanistically different DNA-translocation systems. Mob Genet Elements 2 : 119 124.[PubMed] [CrossRef]
25. Sepulveda E,, Vogelmann J,, Muth G . 2011. A septal chromosome segregator protein evolved into a conjugative DNA-translocator protein. Mob Genet Elements 1 : 225 229.[PubMed] [CrossRef]
26. Vogelmann J,, Ammelburg M,, Finger C,, Guezguez J,, Linke D,, Flötenmeyer M,, Stierhof Y-D,, Wohlleben W,, Muth G . 2011. Conjugal plasmid transfer in Streptomyces resembles bacterial chromosome segregation by FtsK/SpoIIIE. EMBO J 30 : 2246 2254.[PubMed] [CrossRef]
27. Abajy MY,, Kopec J,, Schiwon K,, Burzynski M,, Doring M,, Bohn C,, Grohmann E . 2007. A type IV-secretion-like system is required for conjugative DNA transport of broad-host-range plasmid pIP501 in gram-positive bacteria. J Bacteriol 189 : 2487 2496.[PubMed] [CrossRef]
28. Li J,, Adams V,, Bannam TL,, Miyamoto K,, Garcia JP,, Uzal FA,, Rood JI,, McClane BA . 2013. Toxin plasmids of Clostridium perfringens . Microbiol Mol Biol Rev 77 : 208 233.[PubMed] [CrossRef]
29. Steen JA,, Bannam TL,, Teng WL,, Devenish RJ,, Rood JI . 2009. The putative coupling protein TcpA interacts with other pCW3-encoded proteins to form an essential part of the conjugation complex. J Bacteriol 191 : 2926 2933.[PubMed] [CrossRef]
30. Brolle D-F,, Pape H,, Hopwood DA,, Kieser T . 1993. Analysis of the transfer region of the Streptomyces plasmid SCP2*. Mol Microbiol 10 : 157 170.[PubMed] [CrossRef]
31. Tiffert Y,, Gotz B,, Reuther J,, Wohlleben W,, Muth G . 2007. Conjugative DNA transfer in Streptomyces: SpdB2 involved in the intramycelial spreading of plasmid pSVH1 is an oligomeric integral membrane protein that binds to dsDNA. Microbiology 153 : 2976 2983.[PubMed] [CrossRef]
32. Brantl S,, Behnke D,, Alonso JC . 1990. Molecular analysis of the replication region of the conjugative Streptococcus agalactiae plasmid pIP501 in Bacillus subtilis. Comparison with plasmids pAMβ1 and pSM 19035. Nucleic Acids Res 18 : 4783 4790.[PubMed] [CrossRef]
33. Dunny GM . 2007. The peptide pheromone-inducible conjugation system of Enterococcus faecalis plasmid pCF10: cell-cell signalling, gene transfer, complexity and evolution. Philos Trans R Soc Lond B Biol Sci 362 : 1185 1193.[PubMed] [CrossRef]
34. Kozlowicz BK,, Shi K,, Gu Z-Y,, Ohlendorf DH,, Earhart CA,, Dunny GM . 2006. Molecular basis for control of conjugation by bacterial pheromone and inhibitor peptides. Mol Microbiol 62 : 958 969.[PubMed] [CrossRef]
35. Alvarez-Martinez CE,, Christie PJ . 2009. Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 73 : 775 808.[PubMed] [CrossRef]
36. Jacob A,, Hobbs S . 1974. Conjugal transfer of plasmid-borne multiple antibiotic resistance in Streptococcus faecalis var. zymogenes . J Bacteriol 117 : 360 372.[PubMed]
37. Kurenbach B,, Bohn C,, Prabhu J,, Abudukerim M,, Szewzyk U,, Grohmann E . 2003. Intergeneric transfer of the Enterococcus faecalis plasmid pIP501 to Escherichia coli and Streptomyces lividans and sequence analysis of its tra region. Plasmid 50 : 86 93.[PubMed] [CrossRef]
38. Kopec J,, Bergmann A,, Fritz G,, Grohmann E,, Keller W . 2005. TraA and its N-terminal relaxase domain of the Gram-positive plasmid pIP501 show specific oriT binding and behave as dimers in solution. Biochem J 387 : 401 409.[PubMed] [CrossRef]
39. Kurenbach B,, Grothe D,, Farias ME,, Szewzyk U,, Grohmann E . 2002. The tra region of the conjugative plasmid pIP501 is organized in an operon with the first gene encoding the relaxase. J Bacteriol 184 : 1801 1805.[PubMed] [CrossRef]
40. Kurenbach B,, Kopéc J,, Mägdefrau M,, Andreas K,, Keller W,, Bohn C,, Abajy MY,, Grohmann E . 2006. The TraA relaxase autoregulates the putative type IV secretion-like system encoded by the broad-host-range Streptococcus agalactiae plasmid pIP501. Microbiology 152 : 637 645.[PubMed] [CrossRef]
41. Chen Y,, Staddon JH,, Dunny GM . 2007. Specificity determinants of conjugative DNA processing in the Enterococcus faecalis plasmid pCF10 and the Lactococcus lactis plasmid pRS01. Mol Microbiol 63 : 1549 1564.[PubMed] [CrossRef]
42. Parker C,, Meyer RJ . 2007. The R1162 relaxase/primase contains two, type IV transport signals that require the small plasmid protein MobB. Mol Microbiol 66 : 252 261.[PubMed] [CrossRef]
43. Ragonese H,, Haisch D,, Villareal E,, Choi J-H,, Matson SW . 2007. The F plasmid-encoded TraM protein stimulates relaxosome-mediated cleavage at oriT through an interaction with TraI. Mol Microbiol 63 : 1173 1184.[PubMed] [CrossRef]
44. Dang TA,, Zhou XR,, Graf B,, Christie PJ . 1999. Dimerization of the Agrobacterium tumefaciens VirB4 ATPase and the effect of ATP-binding cassette mutations on the assembly and function of the T-DNA transporter. Mol Microbiol 32 : 1239 1253.[PubMed] [CrossRef]
45. Durand E,, Waksman G,, Receveur-Brechot V . 2011. Structural insights into the membrane-extracted dimeric form of the ATPase TraB from the Escherichia coli pKM101 conjugation system. BMC Struct Biol 11 : 4. doi:10.1186/1472-6807-11-4. [PubMed] [CrossRef]
46. Li F,, Alvarez-Martinez C,, Chen Y,, Choi K-J,, Yeo H-J,, Christie PJ . 2012. Enterococcus faecalis PrgJ, a VirB4-like ATPase, mediates pCF10 conjugative transfer through substrate binding. J Bacteriol 194 : 4041 4051.[PubMed] [CrossRef]
47. Pena A,, Matilla I,, Martin-Benito J,, Valpuesta JM,, Carrascosa JL,, de La Cruz F,, Cabezon E,, Arechaga I . 2012. The hexameric structure of a conjugative VirB4 protein ATPase provides new insights for a functional and phylogenetic relationship with DNA translocases. J Biol Chem 287 : 39925 39932.[PubMed] [CrossRef]
48. Gomis-Rüth FX,, Moncalían G,, de la Cruz F,, Coll M . 2001. Conjugative plasmid protein TrwB, an integral membrane type IV secretion system coupling protein. J Biol Chem 277 : 7556 7566.[PubMed] [CrossRef]
49. Gomis-Rüth FX,, Solà M,, de la Cruz F,, Coll M . 2004. Coupling factors in macromolecular type-IV secretion machineries. Curr Pharm Des 10 : 1551 1565.[PubMed] [CrossRef]
50. Haft RJF,, Gachelet EG,, Nguyen T,, Toussaint L,, Chivian D,, Traxler B . 2007. In vivo oligomerization of the F conjugative coupling protein TraD. J Bacteriol 189 : 6626 6634.[PubMed] [CrossRef]
51. Vecino AJ,, de La Arada I,, Segura RL,, Goñi FM,, de la Cruz F,, Arrondo JL,, Alkorta I . 2011. Membrane insertion stabilizes the structure of TrwB, the R388 conjugative plasmid coupling protein. Biochim Biophys Acta Biomembr 1808 : 1032 1039.[PubMed] [CrossRef]
52. Arends K,, Celik E-K,, Probst I,, Goessweiner-Mohr N,, Fercher C,, Grumet L,, Soellue C,, Abajy MY,, Sakinc T,, Broszat M,, Schiwon K,, Koraimann G,, Keller W,, Grohmann E . 2013. TraG encoded by the pIP501 type IV secretion system is a two domain peptidoglycan degrading enzyme essential for conjugative transfer. J Bacteriol 195 : 4436 4444.[PubMed] [CrossRef]
53. Tusnady GE,, Simon I . 2001. The HMMTOP transmembrane topology prediction server. Bioinformatics 17 : 849 850.[PubMed] [CrossRef]
54. Goessweiner-Mohr N,, Grumet L,, Arends K,, Pavkov-Keller T,, Gruber CC,, Gruber K,, Birner-Gruenberger R,, Kropec-Huebner A,, Huebner J,, Grohmann E,, Keller W . 2013. The 2.5 A structure of the Enterococcus conjugation protein TraM resembles VirB8 type IV secretion proteins. J Biol Chem 288 : 2018 2028.[PubMed] [CrossRef]
55. Bailey S,, Ward D,, Middleton R,, Grossmann JG,, Zambryski PC . 2006. Agrobacterium tumefaciens VirB8 structure reveals potential protein-protein interaction sites. Proc Natl Acad Sci USA 103 : 2582 2587.[PubMed] [CrossRef]
56. Terradot L,, Bayliss R,, Oomen C,, Leonard GA,, Baron C,, Waksman G . 2005. Structures of two core subunits of the bacterial type IV secretion system, VirB8 from Brucella suis and ComB10 from Helicobacter pylori . Proc Natl Acad Sci USA 102 : 4596 4601.[PubMed] [CrossRef]
57. Porter CJ,, Bantwal R,, Bannam TL,, Rosado CJ,, Pearce MC,, Adams V,, Lyras D,, Whisstock JC,, Rood JI . 2012. The conjugation protein TcpC from Clostridium perfringens is structurally related to the type IV secretion system protein VirB8 from Gram-negative bacteria. Mol Microbiol 83 : 275 288.[PubMed] [CrossRef]
58. Jakubowski SJ,, Cascales E,, Krishnamoorthy V,, Christie PJ . 2005. Agrobacterium tumefaciens VirB9, an outer-membrane-associated component of a type IV secretion system, regulates substrate selection and T-pilus biogenesis. J Bacteriol 187 : 3486 3495.[PubMed] [CrossRef]
59. Judd PK,, Kumar RB,, Das A . 2005. Spatial location and requirements for the assembly of the Agrobacterium tumefaciens type IV secretion apparatus. Proc Natl Acad Sci USA 102 : 11498 11503.[PubMed] [CrossRef]
60. Judd PK,, Mahli D,, Das A . 2005. Molecular characterization of the Agrobacterium tumefaciens DNA transfer protein VirB6. Microbiology 151 : 3483 3492.[PubMed] [CrossRef]
61. Judd PK,, Kumar RB,, Das A . 2005. The type IV secretion apparatus protein VirB6 of Agrobacterium tumefaciens localizes to a cell pole. Mol Microbiol 55 : 115 124.[PubMed] [CrossRef]
62. Villamil Giraldo AM,, Sivanesan D,, Carle A,, Paschos A,, Smith MA,, Plesa M,, Coulton J,, Baron C . 2012. Type IV secretion system core component VirB8 from Brucella binds to the globular domain of VirB5 and to a periplasmic domain of VirB6. Biochemistry 51 : 3881 3890.[PubMed] [CrossRef]
63. Wallden K,, Rivera-Calzada A,, Waksman G . 2010. Microreview: type IV secretion systems: versatility and diversity in function. Cell Microbiol 12 : 1203 1212.[PubMed] [CrossRef]
64. Navarre WW,, Schneewind O . 1999. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63 : 74 229.[PubMed]
65. Dawson P,, Clancy KW,, Melvin JA,, McCafferty DG . 2010. Sortase transpeptidases: insights into mechanism, substrate specificity, and inhibition. Biopolymers 94 : 385 396.[PubMed] [CrossRef]
66. Hendrickx AP,, Willems RJ,, Bonten MJ,, van Schaik W . 2009. LPxTG surface proteins of enterococci. Trends Microbiol 17 : 423 430.[PubMed] [CrossRef]
67. Krishnan V,, Narayana SV . 2011. Crystallography of gram-positive bacterial adhesins. Adv Exp Med Biol 715 : 175 195.[PubMed] [CrossRef]
68. Clewell DB . 2007. Properties of Enterococcus faecalis plasmid pAD1, a member of a widely disseminated family of pheromone-responding, conjugative, virulence elements encoding cytolysin. Plasmid 58 : 205 227.[PubMed] [CrossRef]
69. Francia MV,, Varsaki A,, Garcillán-Barcia MP,, Latorre A,, Drainas C,, de La Cruz F . 2004. A classification scheme for mobilization regions of bacterial plasmids. FEMS Microbiol Rev 28 : 79 100.[PubMed] [CrossRef]
70. Francia MV,, Clewell DB . 2002. Transfer origins in the conjugative Enterococcus faecalis plasmids pAD1 and pAM373: identification of the pAD1 nic site, a specific relaxase and a possible TraG-like protein. Mol Microbiol 45 : 375 395.[PubMed] [CrossRef]
71. Francia MV,, Clewell DB,, de La Cruz F,, Moncalian G . 2013. Catalytic domain of plasmid pAD1 relaxase TraX defines a group of relaxases related to restriction endonucleases. Proc Natl Acad Sci USA 110 : 13606 13611.[PubMed] [CrossRef]
72. Chen Y,, Zhang X,, Manias D,, Yeo H-J,, Dunny GM,, Christie PJ . 2008. Enterococcus faecalis PcfC, a spatially localized substrate receptor for type IV secretion of the pCF10 transfer intermediate. J Bacteriol 190 : 3632 3645.[PubMed] [CrossRef]
73. Staddon JH,, Bryan EM,, Manias DA,, Chen Y,, Dunny GM . 2006. Genetic characterization of the conjugative DNA processing system of enterococcal plasmid pCF10. Plasmid 56 : 102 111.[PubMed] [CrossRef]
74. Hirt H,, Manias DA,, Bryan EM,, Klein JR,, Marklund JK,, Staddon JH,, Paustian ML,, Kapur V,, Dunny GM . 2005. Characterization of the pheromone response of the Enterococcus faecalis conjugative plasmid pCF10: complete sequence and comparative analysis of the transcriptional and phenotypic responses of pCF10-containing cells to pheromone induction. J Bacteriol 187 : 1044 1054.[PubMed] [CrossRef]
75. Olmsted SB,, Kao S-M,, van Putte LJ,, Gallo JC,, Dunny GM . 1991. Role of the pheromone-inducible surface protein AsclO in mating aggregate formation and conjugal transfer of the Enterococcus faecalis plasmid pCF10. J Bacteriol 173 : 7665 7672.[PubMed]
76. Waters CM,, Dunny GM . 2001. Analysis of functional domains of the Enterococcus faecalis pheromone-induced surface protein aggregation substance. J Bacteriol 183 : 5659 5667.[PubMed] [CrossRef]
77. Waters CM,, Wells CL,, Dunny GM . 2003. The aggregation domain of aggregation substance, not the RGD motifs, is critical for efficient internalization by HT-29 enterocytes. Infect Immun 71 : 5682 5689.[PubMed] [CrossRef]
78. Olmsted SB,, Erlandsen SL,, Dunny GM,, Wells CL . 1993. High-resolution visualization by field emission scanning electron microscopy of Enterococcus faecalis surface proteins encoded by the pheromone-inducible conjugative plasmid pCF10. J Bacteriol 175 : 6229 6237.[PubMed]
79. Vollmer W,, Seligman SJ . 2010. Architecture of peptidoglycan: more data and more models. Trends Microbiol 18 : 59 66.[PubMed] [CrossRef]
80. Hoppner C . 2005. The putative lytic transglycosylase VirB1 from Brucella suis interacts with the type IV secretion system core components VirB8, VirB9 and VirB11. Microbiology 151 : 3469 3482.[PubMed] [CrossRef]
81. Hoppner C,, Liu Z,, Domke N,, Binns AN,, Baron C . 2004. VirB1 orthologs from Brucella suis and pKM101 complement defects of the lytic transglycosylase required for efficient type IV secretion from Agrobacterium tumefaciens . J Bacteriol 186 : 1415 1422.[CrossRef]
82. Cascales E,, Christie PJ . 2004. Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304 : 1170 1173.[PubMed] [CrossRef]
83. Jakubowski SJ,, Krishnamoorthy V,, Cascales E,, Christie PJ . 2004. Agrobacterium tumefaciens VirB6 domains direct the ordered export of a DNA substrate through a type IV secretion system. J Mol Biol 341 : 961 977.[PubMed] [CrossRef]
84. Anthony KG,, Klimke WA,, Manchak J,, Frost LS . 1999. Comparison of proteins involved in pilus synthesis and mating pair stabilization from the related plasmids F and R100-1: insights into the mechanism of conjugation. J Bacteriol 181 : 5149 5159.[PubMed]
85. Audette GF,, Manchak J,, Beatty P,, Klimke WA,, Frost LS . 2007. Entry exclusion in F-like plasmids requires intact TraG in the donor that recognizes its cognate TraS in the recipient. Microbiology 153 : 442 451.[PubMed] [CrossRef]
86. Firth N,, Skurray R . 1992. Characterization of the F plasmid bifunctional conjugation gene, traG . Mol Gen Genet 232 : 145 153.[PubMed] [CrossRef]
87. Manning PA,, Morelli G,, Achtman M . 1981. TraG protein of the F sex factor of Escherichia coli K-12 and its role in conjugation. Proc Natl Acad Sci USA 78 : 7487 7491.[PubMed] [CrossRef]
88. Thoma L,, Muth G . 2012. Conjugative DNA transfer in Streptomyces . FEMS Microbiol Lett 337 : 81 88.[PubMed] [CrossRef]
89. Wang J,, Pettis GS . 2010. The tra locus of streptomycete plasmid pIJ101 mediates efficient transfer of a circular but not a linear version of the same replicon. Microbiology 156 : 2723 2733.[PubMed] [CrossRef]
90. Possoz C,, Ribard C,, Gagnat J,, Pernodet J-L,, Guérineau M . 2001. The integrative element pSAM2 from Streptomyces: kinetics and mode of conjugal transfer. Mol Microbiol 42 : 159 166.[PubMed] [CrossRef]
91. Hopwood DA,, Kieser T, . 1993. Conjugative plasmids of Streptomyces , p 293 311. In Clewell DB (ed), Bacterial Conjugation. Plenum Press, New York. [CrossRef]
92. Kosono S,, Kataoka M,, Seki T,, Yoshida T . 1996. The TraB protein, which mediates the intermycelial transfer of the Streptomyces plasmid pSN22, has functional NTP-binding motifs and is localized to the cytoplasmic membrane. Mol Microbiol 19 : 397 405.[PubMed] [CrossRef]
93. Pettis GS,, Cohen SN . 1996. Plasmid transfer and expression of the transfer ( tra) gene product of plasmid pIJ101 are temporally regulated during the Streptomyces lividans life cycle. Mol Microbiol 19 : 1127 1135.[PubMed] [CrossRef]
94. Reuther J,, Gekeler C,, Tiffert Y,, Wohlleben W,, Muth G . 2006. Unique conjugation mechanism in mycelial Streptomycetes: a DNA-binding ATPase translocates unprocessed plasmid DNA at the hyphal tip. Mol Microbiol 61 : 436 446.[PubMed] [CrossRef]
95. Franco B,, Gonzalez-Ceron G,, Servin-Gonzalez L . 2003. Direct repeat sequences are essential for function of the cis-acting locus of transfer ( clt) of Streptomyces phaeochromogenes plasmid pJV1. Plasmid 50 : 242 247.[PubMed] [CrossRef]
96. Kataoka M,, Kiyose YM,, Michisuji Y,, Horiguchi T,, Seki T,, Yoshida T . 1994. Complete nucleotide sequence of the Streptomyces nigrifaciens plasmid, pSN22: genetic organization and correlation with genetic properties. Plasmid 32 : 55 69.[PubMed] [CrossRef]
97. Kieser T,, Hopwood DA,, Wright HM,, Thompson C . 1982. pIJ101, a multi-copy broad host-range Streptomyces plasmid: functional analysis and development of DNA cloning vectors. Mol Gen Genet 185 : 223 228.[PubMed] [CrossRef]
98. Reuther J,, Wohlleben W,, Muth G . 2006. Modular architecture of the conjugative plasmid pSVH1 from Streptomyces venezuelae . Plasmid 55 : 201 209.[PubMed] [CrossRef]
99. Servin-Gonzalez L,, Sampieri A,, Cabello J,, Galvan L,, Juarez V,, Castro C . 1995. Sequence and functional analysis of the Streptomyces phaeochromogenes plasmid pJV1 reveals a modular organization of Streptomyces plasmids that replicate by rolling circle. Microbiology 141 : 2499 2510.[PubMed] [CrossRef]
100. Xu M-X,, Zhu Y-M,, Shen M-J,, Jiang W-H,, Zhao G-P,, Qin Z-J . 2006. Characterization of the essential gene components for conjugal transfer of Streptomyces lividans linear plasmid SLP2. Prog Biochem Biophys 33 : 986 993.
101. Chen CW . 1996. Complications and implications of linear bacterial chromosomes. Trends Genet 12 : 192 196.[PubMed] [CrossRef]
102. Bentley SD,, Brown S,, Murphy LD,, Harris DE,, Quail MA,, Parkhill J,, Barrell BG,, McCormick JR,, Santamaria RI,, Losick R,, Yamasaki M,, Kinashi H,, Chen CW,, Chandra G,, Jakimowicz D,, Kieser HM,, Kieser T,, Chater KF . 2004. SCP1, a 356,023 bp linear plasmid adapted to the ecology and developmental biology of its host, Streptomyces coelicolor A3(2). Mol Microbiol 51 : 1615 1628.[PubMed] [CrossRef]
103. Huang C-H,, Chen C-Y,, Tsai H-H,, Chen C,, Lin Y-S,, Chen CW . 2003. Linear plasmid SLP2 of Streptomyces lividans is a composite replicon. Mol Microbiol 47 : 1563 1576.[PubMed] [CrossRef]
104. Bey S-J,, Tsou M-F,, Huang C-H,, Yang C-C,, Chen CW . 2000. The homologous terminal sequence of the Streptomyces lividans chromosome and SLP2 plasmid. Microbiology 146 : 911 922.[PubMed]
105. Costerton JW,, Stewart PS,, Greenberg EP . 1999. Bacterial biofilms: a common cause of persistent infections. Science 284 : 1318 1322.[PubMed] [CrossRef]
106. Hogan D,, Kolter R . 2002. Why are bacteria refractory to antimicrobials? Curr Opin Microbiol 5 : 472 477.[PubMed] [CrossRef]
107. Parsek MR,, Greenberg E . 2005. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13 : 27 33.[PubMed] [CrossRef]
108. Schuster M,, Sexton DJ,, Diggle SP,, Greenberg EP . 2012. Acyl-homoserine lactone quorum sensing: from evolution to application. Annu Rev Microbiol 67 : 43 63.[PubMed] [CrossRef]
109. Madsen JS,, Burmølle M,, Hansen LH,, Sørensen SJ . 2012. The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol Med Microbiol 65 : 183 195.[PubMed] [CrossRef]
110. D’Alvise PW,, Sjøholm OR,, Yankelevich T,, Jin Y,, Wuertz S,, Smets BF . 2010. TOL plasmid carriage enhances biofilm formation and increases extracellular DNA content in Pseudomonas putida KT2440. FEMS Microbiol Lett 312 : 84 92.[PubMed] [CrossRef]
111. May T,, Okabe S . 2008. Escherichia coli harboring a natural IncF conjugative F plasmid develops complex mature biofilms by stimulating synthesis of colanic acid and curli. J Bacteriol 190 : 7479 7490.[PubMed] [CrossRef]
112. Hausner M,, Wuertz S . 1999. High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Appl Environ Microbiol 65 : 3710 3713.[PubMed]
113. Ghigo J-M . 2001. Natural conjugative plasmids induce bacterial biofilm development. Nature 412 : 442 445.[PubMed] [CrossRef]
114. Sørensen SJ,, Bailey M,, Hansen LH,, Kroer N,, Wuertz S . 2005. Studying plasmid horizontal transfer in situ: a critical review. Nat Rev Microbiol 3 : 700 710.[PubMed] [CrossRef]
115. Cook L,, Chatterjee A,, Barnes A,, Yarwood J,, Hu W-S,, Dunny G . 2011. Biofilm growth alters regulation of conjugation by a bacterial pheromone. Mol Microbiol 81 : 1499 1510.[PubMed] [CrossRef]
116. Sedgley CM,, Lee EH,, Martin MJ,, Flannagan SE . 2008. Antibiotic resistance gene transfer between Streptococcus gordonii and Enterococcus faecalis in root canals of teeth ex vivo. J Endod 34 : 570 574.[PubMed] [CrossRef]
117. Merkey BV,, Lardon LA,, Seoane JM,, Kreft J-U,, Smets BF . 2011. Growth dependence of conjugation explains limited plasmid invasion in biofilms: an individual-based modelling study. Environ Microbiol 13 : 2435 2452.[PubMed] [CrossRef]
118. Krol JE,, Nguyen HD,, Rogers LM,, Beyenal H,, Krone SM,, Top EM . 2011. Increased transfer of a multidrug resistance plasmid in Escherichia coli biofilms at the air-liquid interface. Appl Environ Microbiol 77 : 5079 5088.[PubMed] [CrossRef]
119. Haug MC,, Tanner SA,, Lacroix C,, Meile L,, Stevens MJ . 2010. Construction and characterization of Enterococcus faecalis CG110/gfp/pRE25*, a tool for monitoring horizontal gene transfer in complex microbial ecosystems. FEMS Microbiol Lett 313 : 111 119.[PubMed] [CrossRef]
120. Teuber M,, Schwarz F,, Perreten V . 2003. Molecular structure and evolution of the conjugative multiresistance plasmid pRE25 of Enterococcus faecalis isolated from a raw-fermented sausage. Int J Food Microbiol 88 : 325 329.[PubMed] [CrossRef]
121. Reisner A,, Wolinski H,, Zechner EL . 2012. In situ monitoring of IncF plasmid transfer on semi-solid agar surfaces reveals a limited invasion of plasmids in recipient colonies. Plasmid 67 : 155 161.[PubMed] [CrossRef]
122. Christensen B,, Sternberg C,, Andersen J,, Eberl L,, Moller S,, Givskov M,, Molin S . 1998. Establishment of new genetic traits in a microbial biofilm community. Appl Environ Microbiol 64 : 2247 2255.[PubMed]
123. Fox RE,, Zhong X,, Krone SM,, Top EM . 2008. Spatial structure and nutrients promote invasion of IncP-1 plasmids in bacterial populations. ISME J 2 : 1024 1039.[PubMed] [CrossRef]
124. Krone SM,, Lu R,, Fox R,, Suzuki H,, Top EM . 2007. Modelling the spatial dynamics of plasmid transfer and persistence. Microbiology 153 : 2803 2816.[PubMed] [CrossRef]
125. Seoane J,, Yankelevich T,, Dechesne A,, Merkey B,, Sternberg C,, Smets BF . 2011. An individual-based approach to explain plasmid invasion in bacterial populations. FEMS Microbiol Ecol 75 : 17 27.[PubMed] [CrossRef]
126. Dahlberg C,, Bergström M,, Hermansson M . 1998. In situ detection of high levels of horizontal plasmid transfer in marine bacterial communities. Appl Environ Microbiol 64 : 2670 2675.[PubMed]
127. Normander B,, Christensen BB,, Molin S,, Kroer N . 1998. Effect of bacterial distribution and activity on conjugal gene transfer on the phylloplane of the bush bean ( Phaseolus vulgaris). Appl Environ Microbiol 64 : 1902 1909.[PubMed]
128. Nancharaiah YV,, Wattiau P,, Wuertz S,, Bathe S,, Mohan SV,, Wilderer PA,, Hausner M . 2003. Dual labeling of Pseudomonas putida with fluorescent proteins for in situ monitoring of conjugal transfer of the TOL Plasmid. Appl Environ Microbiol 69 : 4846 4852.[PubMed] [CrossRef]
129. Arends K,, Schiwon K,, Sakinc T,, Hubner J,, Grohmann E . 2012. Green fluorescent protein-labeled monitoring tool to quantify conjugative plasmid transfer between gram-positive and gram-negative bacteria. Appl Environ Microbiol 78 : 895 899.[PubMed] [CrossRef]
130. Zhang W,, Rong C,, Chen C,, Gao GF,, Schlievert PM . 2012. Type-IVC secretion system: a novel subclass of type IV secretion system (T4SS) common existing in gram-positive genus Streptococcus . PLoS One 7 : e46390. doi:10.1371/journal.pone.0046390. [PubMed] [CrossRef]
131. Jones DT . 1999. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292 : 195 202.[PubMed] [CrossRef]
132. Laverde Gomez JA,, Bhatty M,, Christie PJ . 2014. Prgk, a multidomain peptidoglycan hydrolase, is essential for conjugative transfer of the pheromone-responsive plasmid pCF10. J Bacteriol 196 : 527 539. [PubMed] [CrossRef]

Tables

Generic image for table
Table 1

Classification of TraG-like and other lytic transglycosylases

Citation: Goessweiner-Mohr N, Arends K, Keller W, Grohmann E. 2015. Conjugation in Gram-Positive Bacteria, p 237-256. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0004-2013

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error