1887

Chapter 27 : Virulence Plasmids of Spore-Forming Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Virulence Plasmids of Spore-Forming Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818982/9781555818975_Chap27-1.gif /docserver/preview/fulltext/10.1128/9781555818982/9781555818975_Chap27-2.gif

Abstract:

Spore-forming bacteria cause some of the most significant diseases of both humans and animals, including tetanus, botulism, gas gangrene, anthrax, and many different enteric or gastroenteritis syndromes. The pathogenesis of most of these diseases involves the production of potent protein toxins, including tetanus and botulinum toxins, anthrax toxin, and alpha-toxin, epsilon-toxin (ETX), and enterotoxin (CPE) from . The genes for many of these toxins, as well as other virulence factors such as the capsule biosynthesis genes of , are located on plasmids, with examples including the tetanus toxin plasmid, the conjugative toxin plasmids of , and the pXO1 and pXO2 virulence plasmids from ( ). In this chapter we will review our knowledge of these plasmids, the virulence factors that they encode, and their role in disease.

Citation: Adams V, Li J, Wisniewski J, Uzal F, Moore R, McClane B, Rood J. 2015. Virulence Plasmids of Spore-Forming Bacteria, p 533-557. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0024-2014

Key Concept Ranking

Mobile Genetic Elements
0.5115948
Two-Component Signal Transduction Systems
0.44440088
Type IV Secretion Systems
0.40939614
0.5115948
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Comparative alignment of plasmids. Open reading frames (ORFs) are indicated by arrows as follows: red, the locus; dark blue, other shared ORFs; light purple, tetracycline resistance genes; green, the toxin gene; purple, the toxin gene; pink, the gene; gray, the gene; dark gray, the iota-toxin gene; yellow, plasmid replication region; light blue, regions unique to each plasmid. Asterisks denote a toxin gene. Reproduced with permission from reference . doi:10.1128/microbiolspec.PLAS-0024-2014.f1

Citation: Adams V, Li J, Wisniewski J, Uzal F, Moore R, McClane B, Rood J. 2015. Virulence Plasmids of Spore-Forming Bacteria, p 533-557. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0024-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Phylogenetic analysis of ParM variants. The phylogenetic tree was constructed using the amino acid sequences of ParM proteins identified using BlastP searches of the nonredundant NCBI protein database. The phylogenetic tree was constructed using the phylogeny analysis software: http://www.phylogeny.fr/version2_cgi/index.cgi ( ). The JGS1495, JGS1987, and ATCC3626 sequences are from genome sequencing projects and yielded multiple ParM homologues from putative plasmid sequences; each ParM homologue was named according to its ParM group. doi:10.1128/microbiolspec.PLAS-0024-2014.f2

Citation: Adams V, Li J, Wisniewski J, Uzal F, Moore R, McClane B, Rood J. 2015. Virulence Plasmids of Spore-Forming Bacteria, p 533-557. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0024-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Plasmid maps of toxin plasmids from spore-forming bacteria. The circular maps of the toxin plasmids, pXO1 (AF065404) and pXO2 (AF188935), the neurotoxin plasmid pE88 (AF528077), and the conjugative group I (pCLJ, CP001081) and group II (pCLL, CP001057) neurotoxin plasmids are shown. Predicted ORFs are depicted as black arrows or bars along the circular maps. Regions of interest are indicated inside the plasmid circles, such as the pathogenicity islands present on pXO1 and pXO2. Genes of interest are indicated on the outside of the plasmid maps. Gene names are italicized, while ORFs with similarity to known proteins (such as IS elements) are not italicized. The two neurotoxin loci encoded on the pCLJ plasmid are enlarged showing an example of an neurotoxin locus ( region, top) and a neurotoxin locus ( region, bottom); see text. doi:10.1128/microbiolspec.PLAS-0024-2014.f3

Citation: Adams V, Li J, Wisniewski J, Uzal F, Moore R, McClane B, Rood J. 2015. Virulence Plasmids of Spore-Forming Bacteria, p 533-557. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0024-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Genetic organization of the gene regions. Organization of plasmid-borne and chromosomal loci from . genes are indicated by red arrows, and genes by purple arrows, and genes by yellow arrows. Related IS elements are indicated by identical colors. Reproduced with permission from reference . doi:10.1128/microbiolspec.PLAS-0024-2014.f4

Citation: Adams V, Li J, Wisniewski J, Uzal F, Moore R, McClane B, Rood J. 2015. Virulence Plasmids of Spore-Forming Bacteria, p 533-557. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0024-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Comparative alignment of loci. The two (yellow arrows) loci from plasmid pCP8533etx and strain CN1675 are compared to the location of the (yellow arrow) gene and surrounding sequences in plasmid pCPF5603. The aligned region begins with the gene (left side) found downstream of the locus in all sequenced plasmids. Genes (or DNA sequences) with greater than 90% nucleotide identity are colored alike (except for the and genes; both are in yellow but are not related). The genes inside the green boxes appear to have been duplicated and flank the locus in plasmid pCP8533etx. Numbers are the CDS designations from the respective sequences: pCPF5603 (accession number: NC_007773), pCP8533etx (accession number: NC_011412), and CN1675 (accession number: EU852100). Arrows without numbers represent pseudogenes. doi:10.1128/microbiolspec.PLAS-0024-2014.f5

Citation: Adams V, Li J, Wisniewski J, Uzal F, Moore R, McClane B, Rood J. 2015. Virulence Plasmids of Spore-Forming Bacteria, p 533-557. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0024-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Genetic conservation of locus. Labeled arrows indicate the locus from pCP8533etx: encoding a putative resolvase, encoding a putative signal peptidase I, the gene, two hypothetical genes (H1 and H2), and a conserved hypothetical (pCW3_08). Below the locus are heavy lines indicating nucleotide sequence homology of 68% (pCP13) or >95% (all others). The gray lines indicate gaps in the sequence alignment where the sequence is absent from that particular plasmid sequence. Whether the gene is present in each plasmid is indicated on the right. doi:10.1128/microbiolspec.PLAS-0024-2014.f6

Citation: Adams V, Li J, Wisniewski J, Uzal F, Moore R, McClane B, Rood J. 2015. Virulence Plasmids of Spore-Forming Bacteria, p 533-557. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0024-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Comparative genetic organization of pXO2, pAW63, and pBT9727. Shared regions are indicated by shaded segments. The pathogenicity island on pXO2 is raised above the map. Reproduced from reference with permission of the authors. doi:10.1128/microbiolspec.PLAS-0024-2014.f7

Citation: Adams V, Li J, Wisniewski J, Uzal F, Moore R, McClane B, Rood J. 2015. Virulence Plasmids of Spore-Forming Bacteria, p 533-557. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0024-2014
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818982.chap27
1. Rood JI, . 2004. Virulence plasmids of spore-forming bacteria, p 413422. In Funnell BE,, Phillips GJ (ed), The Biology of Plasmids. ASM Press, Washington, DC. [CrossRef]
2. Rood JI . 1998. Virulence genes of Clostridium perfringens . Annu Rev Microbiol 52 : 333360.[PubMed] [CrossRef]
3. Petit L,, Gibert M,, Popoff MR . 1999. Clostridium perfringens: toxinotype and genotype. Trends Microbiol 7 : 104110.[PubMed] [CrossRef]
4. Li J,, Adams V,, Bannam TL,, Miyamoto K,, Garcia JP,, Uzal FA,, Rood JI,, McClane BA . 2013. Toxin plasmids of Clostridium perfringens . Microbiol Mol Biol Rev 77 : 208233.[PubMed] [CrossRef]
5. Bannam TL,, Teng WL,, Bulach D,, Lyras D,, Rood JI . 2006. Functional identification of conjugation and replication regions of the tetracycline resistance plasmid pCW3 from Clostridium perfringens . J Bacteriol 188 : 49424951.[PubMed] [CrossRef]
6. Miyamoto K,, Fisher DJ,, Li J,, Sayeed S,, Akimoto S,, McClane BA . 2006. Complete sequencing and diversity analysis of the enterotoxin-encoding plasmids in Clostridium perfringens type A non-food-borne human gastrointestinal disease isolates. J Bacteriol 188 : 15851598.[PubMed] [CrossRef]
7. Gerdes K,, Howard M,, Szardenings F . 2010. Pushing and pulling in prokaryotic DNA segregation. Cell 141 : 927942.[PubMed] [CrossRef]
8. Salje J,, Gayathri P,, Lowe J . 2010. The ParMRC system: molecular mechanisms of plasmid segregation by actin-like filaments. Nat Rev Microbiol 8 : 683692.[PubMed] [CrossRef]
9. Bannam TL,, Yan XX,, Harrison PF,, Seemann T,, Keyburn AL,, Stubenrauch C,, Weeramantri LH,, Cheung JK,, McClane BA,, Boyce JD,, Moore RJ,, Rood JI . 2011. Necrotic enteritis-derived Clostridium perfringens strain with three closely related independently conjugative toxin and antibiotic resistance plasmids. mBio 2 : e00190-00111.[PubMed] [CrossRef]
10. Parreira VR,, Costa M,, Eikmeyer F,, Blom J,, Prescott JF . 2012. Sequence of two plasmids from Clostridium perfringens chicken necrotic enteritis isolates and comparison with C. perfringens conjugative plasmids. PLoS One 7 : e49753. [PubMed] [CrossRef]
11. Popp D,, Narita A,, Lee LJ,, Ghoshdastider U,, Xue B,, Srinivasan R,, Balasubramanian MK,, Tanaka T,, Robinson RC . 2012. Novel actin-like filament structure from Clostridium tetani . J Biol Chem 287 : 2112121129.[PubMed] [CrossRef]
12. Derman AI,, Becker EC,, Truong BD,, Fujioka A,, Tucey TM,, Erb ML,, Patterson PC,, Pogliano J . 2009. Phylogenetic analysis identifies many uncharacterized actin-like proteins (Alps) in bacteria: regulated polymerization, dynamic instability and treadmilling in Alp7A. Mol Microbiol 73 : 534552.[PubMed] [CrossRef]
13. Brefort G,, Magot M,, Ionesco H,, Sebald M . 1977. Characterization and transferability of Clostridium perfringens plasmids. Plasmid 1 : 5266.[PubMed] [CrossRef]
14. Rood JI,, Maher EA,, Somers EB,, Campos E,, Duncan CL . 1978. Isolation and characterization of multiple antibiotic-resistant Clostridium perfringens strains from porcine feces. Antimicrob Agents Chemother 13 : 871880.[PubMed] [CrossRef]
15. Brynestad S,, Sarker MR,, McClane BA,, Granum PE,, Rood JI . 2001. Enterotoxin plasmid from Clostridium perfringens is conjugative. Infect Immun 69 : 34833487.[PubMed] [CrossRef]
16. Hughes ML,, Poon R,, Adams V,, Sayeed S,, Saputo S,, Uzal FA,, McClane BA,, Rood JI . 2007. Epsilon toxin plasmids of Clostridium perfringens type D are conjugative. J Bacteriol 189 : 75317538.[PubMed] [CrossRef]
17. Lyras D,, Adams V,, Ballard SA,, Teng WL,, Howarth PM,, Crellin PK,, Bannam TL,, Songer JG,, Rood JI . 2009. tISCpe8, an IS1595-family lincomycin resistance element located on a conjugative plasmid in Clostridium perfringens . J Bacteriol 191 : 63456351.[PubMed] [CrossRef]
18. Abraham LJ,, Rood JI . 1985. Molecular analysis of transferable tetracycline resistance plasmids from Clostridium perfringens . J Bacteriol 161 : 636640.[PubMed]
19. Abraham LJ,, Wales AJ,, Rood JI . 1985. Worldwide distribution of the conjugative Clostridium perfringens tetracycline resistance plasmid, pCW3. Plasmid 14 : 3746.[PubMed] [CrossRef]
20. Miyamoto K,, Li J,, Sayeed S,, Akimoto S,, McClane BA . 2008. Sequencing and diversity analyses reveal extensive similarities between some epsilon-toxin-encoding plasmids and the pCPF5603 Clostridium perfringens enterotoxin plasmid. J Bacteriol 190 : 71787188.[PubMed] [CrossRef]
21. Miyamoto K,, Yumine N,, Mimura K,, Nagahama M,, Li J,, McClane BA,, Akimoto S . 2011. Identification of novel Clostridium perfringens type E strains that carry an iota toxin plasmid with a functional enterotoxin gene. PLoS One 6 : e20376. [PubMed] [CrossRef]
22. Bantwal R,, Bannam TL,, Porter CJ,, Quinsey NS,, Lyras D,, Adams V,, Rood JI . 2012. The peptidoglycan hydrolase TcpG is required for efficient conjugative transfer of pCW3 in Clostridium perfringens . Plasmid 67 : 139147.[PubMed] [CrossRef]
23. Parsons JA,, Bannam TL,, Devenish RJ,, Rood JI . 2007. TcpA, an FtsK/SpoIIIE homolog, is essential for transfer of the conjugative plasmid pCW3 from Clostridium perfringens . J Bacteriol 189 : 77827790.[PubMed] [CrossRef]
24. Porter CJ,, Bantwal R,, Bannam TL,, Rosado CJ,, Pearce MC,, Adams V,, Lyras D,, Whisstock JC,, Rood JI . 2012. The conjugation protein TcpC from Clostridium perfringens is structurally related to the type IV secretion system protein VirB8 from Gram-negative bacteria. Mol Microbiol 83 : 275288.[PubMed] [CrossRef]
25. Steen JA,, Bannam TL,, Teng WL,, Devenish RJ,, Rood JI . 2009. The putative coupling protein TcpA interacts with other pCW3-encoded proteins to form an essential part of the conjugation complex. J Bacteriol 191 : 29262933.[PubMed] [CrossRef]
26. Goessweiner-Mohr N,, Arends K,, Keller W,, Grohmann E . 2013. Conjugative type IV secretion systems in Gram-positive bacteria. Plasmid 70 : 289302.[PubMed] [CrossRef]
27. Gomis-Rüth FX,, Coll M . 2001. Structure of TrwB, a gatekeeper in bacterial conjugation. Int J Biochem Cell Biol 33 : 839843.[PubMed] [CrossRef]
28. Fronzes R,, Christie PJ,, Waksman G . 2009. The structural biology of type IV secretion systems. Nat Rev Microbiol 7 : 703714.[PubMed] [CrossRef]
29. Teng WL,, Bannam TL,, Parsons JA,, Rood JI . 2008. Functional characterization and localization of the TcpH conjugation protein from Clostridium perfringens . J Bacteriol 190 : 50755086.[PubMed] [CrossRef]
30. de la Cruz F,, Frost LS,, Meyer RJ,, Zechner EL . 2010. Conjugative DNA metabolism in Gram-negative bacteria. FEMS Microbiol Rev 34 : 1840.[PubMed] [CrossRef]
31. McClane BA,, Robertson SL,, Li J, . 2013. Clostridium perfringens , p 465490. In Doyle MP,, Buchanan RA (ed), Food Microbiology: Fundamentals and Frontiers. ASM Press, Washington, DC.
32. Huang IH,, Waters M,, Grau RR,, Sarker MR . 2004. Disruption of the gene (spo0A) encoding sporulation transcription factor blocks endospore formation and enterotoxin production in enterotoxigenic Clostridium perfringens type A. FEMS Microbiol Lett 233 : 233240.[PubMed] [CrossRef]
33. Harry KH,, Zhou R,, Kroos L,, Melville SB . 2009. Sporulation and enterotoxin (CPE) synthesis are controlled by the sporulation-specific sigma factors SigE and SigK in Clostridium perfringens . J Bacteriol 191 : 27282742.[PubMed] [CrossRef]
34. Li J,, McClane BA . 2010. Evaluating the involvement of alternative sigma factors SigF and SigG in Clostridium perfringens sporulation and enterotoxin synthesis. Infect Immun 78 : 42864293.[PubMed] [CrossRef]
35. Briggs DC,, Naylor CE,, Smedley JG 3rd,, Lukoyanova N,, Robertson S,, Moss DS,, McClane BA,, Basak AK . 2011. Structure of the food-poisoning Clostridium perfringens enterotoxin reveals similarity to the aerolysin-like pore-forming toxins. J Mol Biol 413 : 138149.[PubMed] [CrossRef]
36. Kitadokoro K,, Nishimura K,, Kamitani S,, Fukui-Miyazaki A,, Toshima H,, Abe H,, Kamata Y,, Sugita-Konishi Y,, Yamamoto S,, Karatani H,, Horiguchi Y . 2011. Crystal structure of Clostridium perfringens enterotoxin displays features of beta-pore-forming toxins. J Biol Chem 286 : 1954919555.[PubMed] [CrossRef]
37. Katahira J,, Sugiyama H,, Inoue N,, Horiguchi Y,, Matsuda M,, Sugimoto N . 1997. Clostridium perfringens enterotoxin utilizes two structurally related membrane proteins as functional receptors in vivo . J Biol Chem 272 : 2665226658.[PubMed] [CrossRef]
38. Hanna PC,, Mietzner TA,, Schoolnick GK,, McClane BA . 1991. Localization of the receptor-binding region of Clostridium perfringens enterotoxin utilizing cloned toxin fragments and synthetic peptides. The 30 C-terminal amino acids define a functional binding region. J Biol Chem 266 : 1103711043.[PubMed]
39. Kokai-Kun JF,, Benton K,, Wieckowski EU,, McClane BA . 1999. Identification of a Clostridium perfringens enterotoxin region required for large complex formation and cytotoxicity by random mutagenesis. Infect Immun 67 : 56345641.[PubMed]
40. Sayeed S,, Li J,, McClane BA . 2007. Virulence plasmid diversity in Clostridium perfringens type D isolates. Infect Immun 75 : 23912398.[PubMed] [CrossRef]
41. Sayeed S,, Li J,, McClane BA . 2010. Characterization of virulence plasmid diversity among Clostridium perfringens type B isolates. Infect Immun 78 : 495504.[PubMed] [CrossRef]
42. Fisher DJ,, Fernandez-Miyakawa ME,, Sayeed S,, Poon R,, Adams V,, Rood JI,, Uzal FA,, McClane BA . 2006. Dissecting the contributions of Clostridium perfringens type C toxins to lethality in the mouse intravenous injection model. Infect Immun 74 : 52005210.[PubMed] [CrossRef]
43. Collie R,, McClane B . 1998. Phenotypic characterization of enterotoxigenic Clostridium perfringens isolates associated with nonfoodborne human gastrointestinal diseases. Anaerobe 4 : 6979.[PubMed] [CrossRef]
44. Fernandez-Miyakawa ME,, Sayeed S,, Fisher DJ,, Poon R,, Adams V,, Rood JI,, McClane BA,, Saputo J,, Uzal FA . 2007. Development and application of an oral challenge mouse model for studying Clostridium perfringens type D infection. Infect Immun 75 : 42824288.[PubMed] [CrossRef]
45. Kokai-Kun JF,, Songer JG,, Czeczulin JR,, Chen F,, McClane BA . 1994. Comparison of Western immunoblots and gene detection assays for identification of potentially enterotoxigenic isolates of Clostridium perfringens . J Clin Microbiol 32 : 25332539.[PubMed]
46. Sarker MR,, Carman RJ,, McClane BA . 1999. Inactivation of the gene (cpe) encoding Clostridium perfringens enterotoxin eliminates the ability of two cpe-positive C. perfringens type A human gastrointestinal disease isolates to affect rabbit ileal loops. Mol Microbiol 33 : 946958.[PubMed] [CrossRef]
47. Scallan E,, Griffin PM,, Angulo FJ,, Tauxe RV,, Hoekstra RM . 2011. Foodborne illness acquired in the United States: unspecified agents. Emerg Infect Dis 17 : 1622.[PubMed] [CrossRef]
48. Carman RJ . 1997. Clostridium perfringens in spontaneous and antibiotic-associated diarrhoea of man and other animals. Rev Med Microbiol 8(Suppl. 1): S43S45.[CrossRef]
49. Bos J,, Smithee L,, McClane B,, Distefano R,, Uzal F,, Songer JG,, Mallonee S,, Crutcher JM . 2005. Fatal necrotizing enteritis following a foodborne outbreak of enterotoxigenic Clostridium perfringens type A infection. Clin Infect Dis 15 : e78e83.[PubMed] [CrossRef]
50. Marks SL,, Kather EJ,, Kass PH,, Melli AC . 2002. Genotypic and phenotypic characterization of Clostridium perfringens and Clostridium difficile in diarrheic and healthy dogs. J Vet Intern Med 16 : 533540.[PubMed] [CrossRef]
51. Brynestad S,, Synstad B,, Granum PE . 1997. The Clostridium perfringens enterotoxin gene is on a transposable genetic element in type A human food poisoning strains. Microbiology 143 : 21092115.[PubMed] [CrossRef]
52. Ma M,, Li J,, McClane BA . 2012. Genotypic and phenotypic characterization of Clostridium perfringens isolates from darmbrand cases in post-World War II Germany. Infect Immun 80 : 43544363.[PubMed] [CrossRef]
53. Li J,, Miyamoto K,, Sayeed S,, McClane BA . 2010. Organization of the cpe locus in CPE-positive Clostridium perfringens type C and D isolates. PLoS One 5 : e10932. [PubMed] [CrossRef]
54. Billington SJ,, Wieckowski EU,, Sarkar MR,, Bueschel D,, Songer JG,, McClane BA . 1998. Clostridium perfringens type E animal enteritis isolates with highly conserved, silent enterotoxin gene sequences. Infect Immun 66 : 45314536.[PubMed]
55. Gurjar A,, Li J,, McClane BA . 2010. Characterization of toxin plasmids in Clostridium perfringens type C isolates. Infect Immun 78 : 48604869.[PubMed] [CrossRef]
56. Lawrence G . 2005. The pathogenesis of pig-bel in Papua New Guinea. P N G Med J 48 : 3949.[PubMed]
57. Murrell TG,, Walker PD . 1991. The pigbel story of Papua New Guinea. Trans R Soc Trop Med Hyg 85 : 119122.[PubMed] [CrossRef]
58. McClane BA,, Uzal FA,, Fernandez Miyakawa ME,, Lyerly D,, Wilkins TD, . 2006. The enterotoxic clostridia, p 698752. In Dworkin M,, Falkow S,, Rosenberg E,, Schleifer K,, Stackebrandt E (ed), The Prokaryotes. Springer, New York, NY. [CrossRef]
59. Fernandez-Miyakawa ME,, Fisher DJ,, Poon R,, Sayeed S,, Adams V,, Rood JI,, McClane BA,, Uzal FA . 2007. Both epsilon-toxin and beta-toxin are important for the lethal properties of Clostridium perfringens type B isolates in the mouse intravenous injection model. Infect Immun 75 : 14431452.[PubMed] [CrossRef]
60. Sayeed S,, Uzal FA,, Fisher DJ,, Saputo J,, Vidal JE,, Chen Y,, Gupta P,, Rood JI,, McClane BA . 2008. Beta toxin is essential for the intestinal virulence of Clostridium perfringens type C disease isolate CN3685 in a rabbit ileal loop model. Mol Microbiol 67 : 1530.[PubMed] [CrossRef]
61. Vidal JE,, Ohtani K,, Shimizu T,, McClane BA . 2009. Contact with enterocyte-like Caco-2 cells induces rapid upregulation of toxin production by Clostridium perfringens type C isolates. Cell Microbiol 11 : 13061328.[PubMed] [CrossRef]
62. Garcia JP,, Beingesser J,, Fisher DJ,, Sayeed S,, McClane BA,, Posthaus H,, Uzal FA . 2012. The effect of Clostridium perfringens type C strain CN3685 and its isogenic beta toxin null mutant in goats. Vet Microbiol 157 : 412419.[PubMed] [CrossRef]
63. Hunter SEC,, Brown JE,, Oyston PCF,, Sakurai J,, Titball RW . 1993. Molecular genetic analysis of beta-toxin of Clostridium perfringens reveals sequence homology with alpha-toxin, gamma-toxin, and leukocidin of Staphylococcus aureus . Infect Immun 61 : 39583965.[PubMed]
64. Keyburn AL,, Bannam TL,, Moore RJ,, Rood JI . 2010. NetB, a pore-forming toxin from necrotic enteritis strains of Clostridium perfringens . Toxins 2 : 19131927.[PubMed] [CrossRef]
65. Manich M,, Knapp O,, Gibert M,, Maier E,, Jolivet-Reynaud C,, Geny B,, Benz R,, Popoff MR . 2008. Clostridium perfringens delta toxin is sequence related to beta toxin, NetB, and Staphylococcus pore-forming toxins, but shows functional differences. PLoS One 3 : e3764. [PubMed] [CrossRef]
66. Shatursky O,, Bayles R,, Rogers M,, Jost BH,, Songer JG,, Tweten RK . 2000. Clostridium perfringens beta-toxin forms potential-dependent, cation-selective channels in lipid bilayers. Infect Immun 68 : 55465551.[PubMed] [CrossRef]
67. Vidal JE,, McClane BA,, Saputo J,, Parker J,, Uzal FA . 2008. Effects of Clostridium perfringens beta-toxin on the rabbit small intestine and colon. Infect Immun 76 : 43964404.[PubMed] [CrossRef]
68. Ma M,, Vidal J,, Saputo J,, McClane BA,, Uzal F . 2011. The VirS/VirR two-component system regulates the anaerobic cytotoxicity, intestinal pathogenicity, and enterotoxemic lethality of Clostridium perfringens type C isolate CN3685. MBio 2 : e00338-00310.[PubMed] [CrossRef]
69. Vidal JE,, Ma M,, Saputo J,, Garcia J,, Uzal FA,, McClane BA . 2012. Evidence that the Agr-like quorum sensing system regulates the toxin production, cytotoxicity and pathogenicity of Clostridium perfringens type C isolate CN3685. Mol Microbiol 83 : 179194.[PubMed] [CrossRef]
70. Chen J,, McClane BA . 2012. Role of the Agr-like quorum-sensing system in regulating toxin production by Clostridium perfringens type B strains CN1793 and CN1795. Infect Immun 80 : 30083017.[PubMed] [CrossRef]
71. Amimoto K,, Noro T,, Oishi E,, Shimizu M . 2007. A novel toxin homologous to large clostridial cytotoxins found in culture supernatant of Clostridium perfringens type C. Microbiology 153 : 11981206.[PubMed] [CrossRef]
72. Gibert M,, Jolivet-Renaud C,, Popoff MR . 1997. Beta2 toxin, a novel toxin produced by Clostridium perfringens . Gene 203 : 6573.[PubMed] [CrossRef]
73. Popoff MR,, Bouvet P . 2009. Clostridial toxins. Future Microbiol 4 : 10211064.[PubMed] [CrossRef]
74. Uzal FA,, Songer JG . 2008. Diagnosis of Clostridium perfringens intestinal infections in sheep and goats. J Vet Diagn Invest 20 : 253265.[PubMed] [CrossRef]
75. Garcia JP,, Adams V,, Beingesser J,, Hughes ML,, Poon R,, Lyras D,, Hill A,, McClane BA,, Rood JI,, Uzal FA . 2013. Epsilon toxin is essential for the virulence of Clostridium perfringens type D infection in sheep, goats, and mice. Infect Immun 81 : 24052414.[PubMed] [CrossRef]
76. Chen J,, Rood JI,, McClane BA . 2011. Epsilon toxin production by Clostridium perfringens type D strain CN3718 is dependent on the agr operon but not the VirS/VirR two component regulatory system. MBio 2 : e00275-00211.[PubMed] [CrossRef]
77. Li J,, Ma M,, Sarker MR,, McClane BA . 2013. CodY is a global regulator of virulence-associated properties for Clostridium perfringens type D strain CN3718. MBio 4 : e00770-00713.[PubMed] [CrossRef]
78. Stiles BG,, Wigelsworth DJ,, Popoff MR,, Barth H . 2011. Clostridial binary toxins: iota and C2 family portraits. Front Cell Infect Microbiol 1 : 11. [PubMed] [CrossRef]
79. Aktories K,, Schwan C,, Papatheodorou P,, Lang AE . 2012. Bidirectional attack on the actin cytoskeleton. Bacterial protein toxins causing polymerization or depolymerization of actin. Toxicon 60 : 572581.[PubMed] [CrossRef]
80. Sakurai J,, Nagahama M,, Oda M,, Tsuge H,, Kobayashi K . 2009. Clostridium perfringens iota-toxin: structure and function. Toxins 1 : 208228.[PubMed] [CrossRef]
81. Papatheodorou P,, Carette JE,, Bell GW,, Schwan C,, Guttenberg G,, Brummelkamp TR,, Aktories K . 2011. Lipolysis-stimulated lipoprotein receptor (LSR) is the host receptor for the binary toxin Clostridium difficile transferase (CDT). Proc Natl Acad Sci USA 108 : 1642216427.[PubMed] [CrossRef]
82. Papatheodorou P,, Wilczek C,, Nolke T,, Guttenberg G,, Hornuss D,, Schwan C,, Aktories K . 2012. Identification of the cellular receptor of Clostridium spiroforme toxin. Infect Immun 80 : 14181423.[PubMed] [CrossRef]
83. Wigelsworth DJ,, Ruthel G,, Schnell L,, Herrlich P,, Blonder J,, Veenstra TD,, Carman RJ,, Wilkins TD,, Van Nhieu GT,, Pauillac S,, Gibert M,, Sauvonnet N,, Stiles BG,, Popoff MR,, Barth H . 2012. CD44 promotes intoxication by the clostridial iota-family toxins. PLoS One 7 : e51356. [PubMed] [CrossRef]
84. Li J,, Miyamoto K,, McClane BA . 2007. Comparison of virulence plasmids among Clostridium perfringens type E isolates. Infect Immun 75 : 18111819.[PubMed] [CrossRef]
85. Keyburn AL,, Boyce JD,, Vaz P,, Bannam TL,, Ford ME,, Parker D,, Di Rubbo A,, Rood JI,, Moore RJ . 2008. NetB, a new toxin that is associated with avian necrotic enteritis caused by Clostridium perfringens . PLoS Pathog 4 : e26. [PubMed] [CrossRef]
86. van der Sluis W . 2000. Clostridial enteritis is an often underestimated problem. World Poultry 16 : 4243.
87. Yan X,, Porter CJ,, Hardy SP,, Steer D,, Smith AI,, Quinsey NS,, Hughes V,, Cheung JK,, Keyburn AL,, Kaldhusdal M,, Moore RJ,, Bannam TL,, Whisstock JC,, Rood JI . 2013. Structural and functional analysis of the pore-forming toxin NetB from Clostridium perfringens . mBio 4 : e00019-00013.[PubMed] [CrossRef]
88. Savva CG,, Fernandes da Costa SP,, Bokori-Brown M,, Naylor CE,, Cole AR,, Moss DS,, Titball RW,, Basak AK . 2013. Molecular architecture and functional analysis of NetB, a pore-forming toxin from Clostridium perfringens . J Biol Chem 288 : 35123522.[PubMed] [CrossRef]
89. Fernandes da Costa SP,, Savva CG,, Bokori-Brown M,, Naylor CE,, Moss DS,, Basak AK,, Titball RW . 2014. Identification of a key residue for oligomerisation and pore-formation of Clostridium perfringens NetB. Toxins 6 : 10491061.[PubMed] [CrossRef]
90. Keyburn AL,, Portela RW,, Ford ME,, Bannam TL,, Yan XX,, Rood JI,, Moore RJ . 2013. Maternal immunization with vaccines containing recombinant NetB toxin partially protects progeny chickens from necrotic enteritis. Vet Res 44 : 108. [PubMed] [CrossRef]
91. Keyburn AL,, Portela RW,, Sproat K,, Ford ME,, Bannam TL,, Yan X,, Rood JI,, Moore RJ . 2013. Vaccination with recombinant NetB toxin partially protects broiler chickens from necrotic enteritis. Vet Res 44 : 54. [PubMed] [CrossRef]
92. Jang SI,, Lillehoj HS,, Lee SH,, Lee KW,, Lillehoj EP,, Hong YH,, An DJ,, Jeong W,, Chun JE,, Bertrand F,, Dupuis L,, Deville S,, Arous JB . 2012. Vaccination with Clostridium perfringens recombinant proteins in combination with Montanide ISA 71 VG adjuvant increases protection against experimental necrotic enteritis in commercial broiler chickens. Vaccine 30 : 54015406.[PubMed] [CrossRef]
93. Keyburn AL,, Yan XX,, Bannam TL,, Van Immerseel F,, Rood JI,, Moore RJ . 2010. Association between avian necrotic enteritis and Clostridium perfringens strains expressing NetB toxin. Vet Res 41 : 21. [PubMed] [CrossRef]
94. Martin TG,, Smyth JA . 2009. Prevalence of netB among some clinical isolates of Clostridium perfringens from animals in the United States. Vet Microbiol 136 : 202205.[PubMed] [CrossRef]
95. Smyth JA,, Martin TG . 2010. Disease producing capability of netB positive isolates of C. perfringens recovered from normal chickens and a cow, and netB positive and negative isolates from chickens with necrotic enteritis. Vet Microbiol 146 : 7684.[PubMed] [CrossRef]
96. Lepp D,, Roxas B,, Parreira VR,, Marri PR,, Rosey EL,, Gong J,, Songer JG,, Vedantam G,, Prescott JF . 2010. Identification of novel pathogenicity loci in Clostridium perfringens strains that cause avian necrotic enteritis. PLoS One 5 : e10795. [PubMed] [CrossRef]
97. Cheung JK,, Low L-Y,, Hiscox TJ,, Rood JI, . 2013. Regulation of extracellular toxin production in Clostridium perfringens , p 281294. In Vasil ML,, Darwin AJ (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC.
98. Lepp D,, Gong J,, Songer JG,, Boerlin P,, Parreira VR,, Prescott JF . 2013. Identification of accessory genome regions in poultry Clostridium perfringens isolates carrying the NetB plasmid. J Bacteriol 195 : 11521166.[PubMed] [CrossRef]
99. Hibberd MC,, Neumann AP,, Rehberger TG,, Siragusa GR . 2011. Multilocus sequence typing subtypes of poultry Clostridium perfringens isolates demonstrate disease niche partitioning. J Clin Microbiol 49 : 15561567.[PubMed] [CrossRef]
100. Manteca C,, Daube G,, Jauniaux T,, Linden A,, Pirson V,, Detilleux J,, Ginter A,, Coppe P,, Kaeckenbeeck A,, Mainil JG . 2002. A role for the Clostridium perfringens beta2 toxin in bovine enterotoxaemia? Vet Microbiol 86 : 191202.[PubMed] [CrossRef]
101. Dray T . 2004. Clostridium perfringens type A and beta2 toxin associated with enterotoxemia in a 5-week-old goat. Can Vet J 45 : 251253.[PubMed]
102. Uzal FA,, Vidal JE,, McClane BA,, Gurjar AA . 2010. Clostridium perfringens toxins involved in mammalian veterinary diseases. Open Toxinology J 2 : 2442.[PubMed] [CrossRef]
103. Fisher DJ,, Miyamoto K,, Harrison B,, Akimoto S,, Sarker MR,, McClane BA . 2005. Association of beta2 toxin production with Clostridium perfringens type A human gastrointestinal disease isolates carrying a plasmid enterotoxin gene. Mol Microbiol 56 : 747762.[PubMed] [CrossRef]
104. Harrison B,, Raju D,, Garmory HS,, Brett MM,, Titball RW,, Sarker MR . 2005. Molecular characterization of Clostridium perfringens isolates from humans with sporadic diarrhea: evidence for transcriptional regulation of the beta2-toxin-encoding gene. Appl Environ Microbiol 71 : 83628370.[PubMed] [CrossRef]
105. Shimizu T,, Ohtani K,, Hirakawa H,, Ohshima K,, Yamashita A,, Shiba T,, Ogasawara N,, Hattori M,, Kuhara S,, Hayashi H . 2002. Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc Natl Acad Sci USA 99 : 9961001.[PubMed] [CrossRef]
106. Nowell VJ,, Kropinski AM,, Songer JG,, MacInnes JI,, Parreira VR,, Prescott JF . 2012. Genome sequencing and analysis of a type A Clostridium perfringens isolate from a case of bovine clostridial abomasitis. PLoS One 7 : e32271. [PubMed] [CrossRef]
107. Shimizu T,, Shima K,, Yoshino K,, Yonezawa K,, Hayashi H . 2002. Proteome and transcriptome analysis of the virulence genes regulated by the VirR/VirS system in Clostridium perfringens . J Bacteriol 184 : 25872594.[PubMed] [CrossRef]
108. Ohtani K,, Kawsar HI,, Okumura K,, Hayashi H,, Shimizu T . 2003. The VirR/VirS regulatory cascade affects transcription of plasmid-encoded putative virulence genes in Clostridium perfringens strain 13. FEMS Microbiol Lett 222 : 137141.[PubMed] [CrossRef]
109. Li J,, Chen J,, Vidal JE,, McClane BA . 2011. The Agr-like quorum-sensing system regulates sporulation and production of enterotoxin and beta2 toxin by Clostridium perfringens type A non-food-borne human gastrointestinal disease strain F5603. Infect Immun 79 : 24512459.[PubMed] [CrossRef]
110. Caleo M,, Schiavo G . 2009. Central effects of tetanus and botulinum neurotoxins. Toxicon 54 : 593599.[PubMed] [CrossRef]
111. Finn C Jr,, Silver R,, Habig W,, Hardegree M,, Zon G,, Garon C . 1984. The structural gene for tetanus neurotoxin is on a plasmid. Science 224 : 881884.[PubMed] [CrossRef]
112. Brüggemann H,, Bäumer S,, Fricke WF,, Wiezer A,, Liesegang H,, Decker I,, Herzberg C,, Martinez-Arias R,, Merkl R,, Henne A,, Gottschalk G . 2003. The genome sequence of Clostridium tetani, the causative agent of tetanus disease. Proc Natl Acad Sci USA 100 : 13161321.[PubMed] [CrossRef]
113. Bruggemann H,, Bauer R,, Raffestin S,, Gottschalk G . 2004. Characterization of a heme oxygenase of Clostridium tetani and its possible role in oxygen tolerance. Arch Microbiol 182 : 259263.[PubMed] [CrossRef]
114. Raffestin S,, Dupuy B,, Marvaud JC,, Popoff MR . 2005. BotR/A and TetR are alternative RNA polymerase sigma factors controlling the expression of the neurotoxin and associated protein genes in Clostridium botulinum type A and Clostridium tetani . Mol Microbiol 55 : 235249.[PubMed] [CrossRef]
115. Zhang Z,, Korkeala H,, Dahlsten E,, Sahala E,, Heap JT,, Minton NP,, Lindstrom M . 2013. Two-component signal transduction system CBO0787/CBO0786 represses transcription from botulinum neurotoxin promoters in Clostridium botulinum ATCC 3502. PLoS Pathog 9 : e1003252. [PubMed] [CrossRef]
116. Connan C,, Brueggemann H,, Mazuet C,, Raffestin S,, Cayet N,, Popoff MR . 2012. Two-component systems are involved in the regulation of botulinum neurotoxin synthesis in Clostridium botulinum type A strain Hall. PLoS One 7 : e41848. [PubMed] [CrossRef]
117. Cooksley CM,, Davis IJ,, Winzer K,, Chan WC,, Peck MW,, Minton NP . 2010. Regulation of neurotoxin production and sporulation by a putative agrBD signaling system in proteolytic Clostridium botulinum . Appl Environ Microbiol 76 : 44484460.[PubMed] [CrossRef]
118. Connan C,, Deneve C,, Mazuet C,, Popoff MR . 2013. Regulation of toxin synthesis in Clostridium botulinum and Clostridium tetani . Toxicon 75 : 90100.[PubMed] [CrossRef]
119. Hill KK,, Smith TJ,, Helma CH,, Ticknor LO,, Foley BT,, Svensson RT,, Brown JL,, Johnson EA,, Smith LA,, Okinaka RT,, Jackson PJ,, Marks JD . 2007. Genetic diversity among botulinum neurotoxin-producing clostridial strains. J Bacteriol 189 : 818832.[PubMed] [CrossRef]
120. Hill KK,, Xie G,, Foley BT,, Smith TJ,, Munk AC,, Bruce D,, Smith LA,, Brettin TS,, Detter JC . 2009. Recombination and insertion events involving the botulinum neurotoxin complex genes in Clostridium botulinum types A, B, E and F and Clostridium butyricum type E strains. BMC Biol 7 : 66. [PubMed] [CrossRef]
121. Barash JR,, Arnon SS . 2014. A novel strain of Clostridium botulinum that produces type B and type H botulinum toxins. J Infect Dis 209 : 183191.[PubMed] [CrossRef]
122. Dover N,, Barash JR,, Hill KK,, Xie G,, Arnon SS . 2014. Molecular characterization of a novel botulinum neurotoxin type H gene. J Infect Dis 209 : 192202.[PubMed] [CrossRef]
123. Hill KK,, Smith TJ . 2013. Genetic diversity within Clostridium botulinum serotypes, botulinum neurotoxin gene clusters and toxin subtypes. Curr Top Microbiol Immunol 364 : 120.[PubMed] [CrossRef]
124. Popoff MR,, Bouvet P . 2013. Genetic characteristics of toxigenic clostridia and toxin gene evolution. Toxicon 75 : 6389.[PubMed] [CrossRef]
125. Skarin H,, Segerman B . 2011. Horizontal gene transfer of toxin genes in Clostridium botulinum: involvement of mobile elements and plasmids. Mobile Genetic Elements 1 : 213215.[PubMed] [CrossRef]
126. Sakaguchi Y,, Hayashi T,, Kurokawa K,, Nakayama K,, Oshima K,, Fujinaga Y,, Ohnishi M,, Ohtsubo E,, Hattori M,, Oguma K . 2005. The genome sequence of Clostridium botulinum type C neurotoxin-converting phage and the molecular mechanisms of unstable lysogeny. Proc Natl Acad Sci USA 102 : 1747217477.[PubMed] [CrossRef]
127. Sakaguchi Y,, Hayashi T,, Yamamoto Y,, Nakayama K,, Zhang K,, Ma S,, Arimitsu H,, Oguma K . 2009. Molecular analysis of an extrachromosomal element containing the C2 toxin gene discovered in Clostridium botulinum type C. J Bacteriol 191 : 32823291.[PubMed] [CrossRef]
128. Sebaihia M,, Peck MW,, Minton NP,, Thomson NR,, Holden MT,, Mitchell WJ,, Carter AT,, Bentley SD,, Mason DR,, Crossman L,, Paul CJ,, Ivens A,, Wells-Bennik MH,, Davis IJ,, Cerdeno-Tarraga AM,, Churcher C,, Quail MA,, Chillingworth T,, Feltwell T,, Fraser A,, Goodhead I,, Hance Z,, Jagels K,, Larke N,, Maddison M,, Moule S,, Mungall K,, Norbertczak H,, Rabbinowitsch E,, Sanders M,, Simmonds M,, White B,, Whithead S,, Parkhill J . 2007. Genome sequence of a proteolytic (group I) Clostridium botulinum strain Hall A and comparative analysis of the clostridial genomes. Genome Res 17 : 10821092.[PubMed] [CrossRef]
129. Marshall KM,, Bradshaw M,, Pellett S,, Johnson EA . 2007. Plasmid encoded neurotoxin genes in Clostridium botulinum serotype A subtypes. Biochem Biophys Res Commun 361 : 4954.[PubMed] [CrossRef]
130. Zhang Z,, Hintsa H,, Chen Y,, Korkeala H,, Lindstrom M . 2013. Plasmid-borne type E neurotoxin gene clusters in Clostridium botulinum strains. Appl Environ Microbiol 79 : 38563859.[PubMed] [CrossRef]
131. Franciosa G,, Maugliani A,, Scalfaro C,, Aureli P . 2009. Evidence that plasmid-borne botulinum neurotoxin type B genes are widespread among Clostridium botulinum serotype B strains. PLoS One 4 : e4829. [PubMed] [CrossRef]
132. Wang X,, Maegawa T,, Karasawa T,, Kozaki S,, Tsukamoto K,, Gyobu Y,, Yamakawa K,, Oguma K,, Sakaguchi Y,, Nakamura S . 2000. Genetic analysis of type E botulinum toxin-producing Clostridium butyricum strains. Appl Environ Microbiol 66 : 49924997.[PubMed] [CrossRef]
133. Marshall KM,, Bradshaw M,, Johnson EA . 2010. Conjugative botulinum neurotoxin-encoding plasmids in Clostridium botulinum . PLoS One 5 : e11087. [PubMed] [CrossRef]
134. Pilo P,, Frey J . 2011. Bacillus anthracis: molecular taxonomy, population genetics, phylogeny and patho-evolution. Infect Genet Evol 11 : 12181224.[PubMed] [CrossRef]
135. Koehler TM . 2009. Bacillus anthracis physiology and genetics. Mol Aspects Med 30 : 386396.[PubMed] [CrossRef]
136. Fouet A . 2009. The surface of Bacillus anthracis . Mol Aspects Med 30 : 374385.[PubMed] [CrossRef]
137. Bradley KA,, Mogridge J,, Mourez M,, Collier RJ,, Young JA . 2001. Identification of the cellular receptor for anthrax toxin. Nature 414 : 225229.[PubMed] [CrossRef]
138. Scobie HM,, Rainey GJ,, Bradley KA,, Young JA . 2003. Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor. Proc Natl Acad Sci USA 100 : 51705174.[PubMed] [CrossRef]
139. Young JA,, Collier RJ . 2007. Anthrax toxin: receptor binding, internalization, pore formation, and translocation. Annu Rev Biochem 76 : 243265.[PubMed] [CrossRef]
140. Collier RJ . 2009. Membrane translocation by anthrax toxin. Mol Aspects Med 30 : 413422.[PubMed] [CrossRef]
141. Okinaka R,, Cloud K,, Hampton O,, Hoffmaster A,, Hill K,, Keim P,, Koehler T,, Lamke G,, Kumano S,, Manter D,, Martinez Y,, Ricke D,, Svensson R,, Jackson P . 1999. Sequence, assembly and analysis of pX01 and pX02. J Appl Bacteriol 87 : 261262.[PubMed] [CrossRef]
142. Okinaka RT,, Cloud K,, Hampton O,, Hoffmaster AR,, Hill KK,, Keim P,, Koehler TM,, Lamke G,, Kumano S,, Mahillon J,, Manter D,, Martinez Y,, Ricke D,, Svensson R,, Jackson PJ . 1999. Sequence and organization of pXO1, the large Bacillus anthracis plasmid harboring the anthrax toxin genes. J Bacteriol 181 : 65096515.[PubMed]
143. Van der Auwera G,, Mahillon J . 2005. TnXO1, a germination-associated class II transposon from Bacillus anthracis . Plasmid 53 : 251257.[PubMed] [CrossRef]
144. Bourgogne A,, Drysdale M,, Hilsenbeck SG,, Peterson SN,, Koehler TM . 2003. Global effects of virulence gene regulators in a Bacillus anthracis strain with both virulence plasmids. Infect Immun 71 : 27362743.[PubMed] [CrossRef]
145. Mignot T,, Mock M,, Fouet A . 2003. A plasmid-encoded regulator couples the synthesis of toxins and surface structures in Bacillus anthracis . Mol Microbiol 47 : 917927.[PubMed] [CrossRef]
146. Kern JW,, Schneewind O . 2008. BslA, a pXO1-encoded adhesin of Bacillus anthracis . Mol Microbiol 68 : 504515.[PubMed] [CrossRef]
147. Candela T,, Mock M,, Fouet A . 2005. CapE, a 47-amino-acid peptide, is necessary for Bacillus anthracis polyglutamate capsule synthesis. J Bacteriol 187 : 77657772.[PubMed] [CrossRef]
148. Van der Auwera GA,, Andrup L,, Mahillon J . 2005. Conjugative plasmid pAW63 brings new insights into the genesis of the Bacillus anthracis virulence plasmid pXO2 and of the Bacillus thuringiensis plasmid pBT9727. BMC Genomics 6 : 103. [PubMed] [CrossRef]
149. Kolstø A,, Tourasse NJ,, Økstad OA . 2009. What sets Bacillus anthracis apart from other Bacillus species? Annu Rev Microbiol 63 : 451476.[PubMed] [CrossRef]
150. Hoffmaster AR,, Ravel J,, Rasko DA,, Chapman GD,, Chute MD,, Marston CK,, De BK,, Sacchi CT,, Fitzgerald C,, Mayer LW,, Maiden MC,, Priest FG,, Barker M,, Jiang L,, Cer RZ,, Rilstone J,, Peterson SN,, Weyant RS,, Galloway DR,, Read TD,, Popovic T,, Fraser CM . 2004. Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proc Natl Acad Sci USA 101 : 84498454.[PubMed] [CrossRef]
151. Wilson MK,, Vergis JM,, Alem F,, Palmer JR,, Keane-Myers AM,, Brahmbhatt TN,, Ventura CL,, O’Brien AD . 2011. Bacillus cereus G9241 makes anthrax toxin and capsule like highly virulent B. anthracis Ames but behaves like attenuated toxigenic nonencapsulated B. anthracis Sterne in rabbits and mice. Infect Immun 79 : 30123019.[PubMed] [CrossRef]
152. Klee SR,, Brzuszkiewicz EB,, Nattermann H,, Bruggemann H,, Dupke S,, Wollherr A,, Franz T,, Pauli G,, Appel B,, Liebl W,, Couacy-Hymann E,, Boesch C,, Meyer FD,, Leendertz FH,, Ellerbrok H,, Gottschalk G,, Grunow R,, Liesegang H . 2010. The genome of a Bacillus isolate causing anthrax in chimpanzees combines chromosomal properties of B. cereus with B. anthracis virulence plasmids. PLoS One 5 : e10986. [PubMed] [CrossRef]
153. Leendertz FH,, Ellerbrok H,, Boesch C,, Couacy-Hymann E,, Matz-Rensing K,, Hakenbeck R,, Bergmann C,, Abaza P,, Junglen S,, Moebius Y,, Vigilant L,, Formenty P,, Pauli G . 2004. Anthrax kills wild chimpanzees in a tropical rainforest. Nature 430 : 451452.[PubMed] [CrossRef]
154. Grynberg M,, Li Z,, Szczurek E,, Godzik A . 2007. Putative type IV secretion genes in Bacillus anthracis . Trends Microbiol 15 : 191195.[PubMed] [CrossRef]
155. Green BD,, Battisti L,, Koehler TM,, Thorne CB,, Ivins BE . 1985. Demonstration of a capsule plasmid in Bacillus anthracis . Infect Immun 49 : 291297.[PubMed]
156. Reddy A,, Battisti L,, Thorne CB . 1987. Identification of self-transmissible plasmids in four Bacillus thuringiensis subspecies. J Bacteriol 169 : 52635270.[PubMed]
157. Stenfors Arnesen LP,, Fagerlund A,, Granum PE . 2008. From soil to gut: Bacillus cereus and its food poisoning toxin. FEMS Microbiol Rev 32 : 579606.[PubMed] [CrossRef]
158. Bravo A,, Gill SS,, Soberon M . 2007. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49 : 423435.[PubMed] [CrossRef]
159. Schnepf E,, Crickmore N,, Van Rie J,, Lereclus D,, Baum J,, Feitelson J,, Zeigler DR,, Dean DH . 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62 : 775806.[PubMed]
160. Lereclus D,, Agaisse H,, Grandvalet C,, Salamitou S,, Gominet M . 2000. Regulation of toxin and virulence gene transcription in Bacillus thuringiensis . Int J Med Microbiol 290 : 295299.[PubMed] [CrossRef]
161. Pardo-Lopez L,, Soberon M,, Bravo A . 2013. Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol Rev 37 : 322.[PubMed] [CrossRef]
162. Soberon M,, Lopez-Diaz JA,, Bravo A . 2013. Cyt toxins produced by Bacillus thuringiensis: a protein fold conserved in several pathogenic microorganisms. Peptides 41 : 8793.[PubMed] [CrossRef]
163. Doggett NA,, Stubben CJ,, Chertkov O,, Bruce DC,, Detter JC,, Johnson SL,, Han CS . 2013. Complete genome sequence of Bacillus thuringiensis serovar israelensis strain HD-789. Genome Announc 1 : e01023-13.[PubMed] [CrossRef]
164. Baum JA,, Malvar T . 1995. Regulation of insecticidal crystal protein production in Bacillus thuringiensis . Mol Microbiol 18 : 112.[PubMed] [CrossRef]
165. Reyes-Ramirez A,, Ibarra JE . 2008. Plasmid patterns of Bacillus thuringiensis type strains. Appl Environ Microbiol 74 : 125129.[PubMed] [CrossRef]
166. Gonzalez JM Jr,, Brown BJ,, Carlton BC . 1982. Transfer of Bacillus thuringiensis plasmids coding for delta-endotoxin among strains of B. thuringiensis and B. cereus . Proc Natl Acad Sci USA 79 : 69516955.[PubMed] [CrossRef]
167. Gammon K,, Jones GW,, Hope SJ,, de Oliveira CM,, Regis L,, Silva Filha MH,, Dancer BN,, Berry C . 2006. Conjugal transfer of a toxin-coding megaplasmid from Bacillus thuringiensis subsp. israelensis to mosquitocidal strains of Bacillus sphaericus . Appl Environ Microbiol 72 : 17661770.[PubMed] [CrossRef]
168. Wang P,, Zhang C,, Zhu Y,, Deng Y,, Guo S,, Peng D,, Ruan L,, Sun M . 2013. The resolution and regeneration of a cointegrate plasmid reveals a model for plasmid evolution mediated by conjugation and oriT site-specific recombination. Environ Microbiol 15 : 33053318.[PubMed] [CrossRef]
169. Hu X,, Hansen BM,, Yuan Z,, Johansen JE,, Eilenberg J,, Hendriksen NB,, Smidt L,, Jensen GB . 2005. Transfer and expression of the mosquitocidal plasmid pBtoxis in Bacillus cereus group strains. FEMS Microbiol Lett 245 : 239247.[PubMed] [CrossRef]
170. Huang T,, Liu J,, Song F,, Shu C,, Qiu J,, Guan X,, Huang D,, Zhang J . 2004. Identification, distribution pattern of IS231 elements in Bacillus thuringiensis and their phylogenetic analysis. FEMS Microbiol Lett 241 : 2732.[PubMed] [CrossRef]
171. Dereeper A,, Guignon V,, Blanc G,, Audic S,, Buffet S,, Chevenet F,, Dufayard JF,, Guindon S,, Lefort V,, Lescot M,, Claverie JM,, Gascuel O . 2008. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36 : W465W469.[PubMed] [CrossRef]
172. Dereeper A,, Audic S,, Claverie JM,, Blanc G . 2010. BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol Biol 10 : 8. [PubMed] [CrossRef]
173.</