1887

Chapter 28 : Virulence Plasmids of Nonsporulating Gram-Positive Pathogens

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Virulence Plasmids of Nonsporulating Gram-Positive Pathogens, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818982/9781555818975_Chap28-1.gif /docserver/preview/fulltext/10.1128/9781555818982/9781555818975_Chap28-2.gif

Abstract:

Infection with can result in a wide variety of diseases, including wound infections, toxic shock, food poisoning, endocarditis, pneumonia, and septicemia ( ). Virulence and drug resistance often occur together, as recent outbreak strains of methicillin-resistant also produce a number of different virulence factors ( ). It is perhaps not surprising that a bacterium capable of causing such a wide array of diseases possesses a diverse repertoire of virulence factors. A consequence of this versatility is that the pathogenesis of is usually multifactorial ( ).

Citation: Van Tyne D, Gilmore M. 2015. Virulence Plasmids of Nonsporulating Gram-Positive Pathogens, p 559-576. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0002-2013

Key Concept Ranking

Mobile Genetic Elements
0.589495
Bacterial Mobile Genetic Elements
0.559427
0.589495
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Plasmid map of pIB485, encoding staphylococcal enterotoxins SED () and SEJ (). Toxin genes are colored red. Genes encoding resistance to cadmium sulfate () as well as resistance to beta-lactams () are colored dark blue. doi:10.1128/microbiolspec.PLAS-0002-2013.f1

Citation: Van Tyne D, Gilmore M. 2015. Virulence Plasmids of Nonsporulating Gram-Positive Pathogens, p 559-576. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0002-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Plasmid map of a representative staphylococcal enterotoxin B (ETB)-expressing plasmid, TY825 pETB. The outer circle shows genes that are transcribed clockwise; genes in the inner circle are transcribed counterclockwise. Genes in red are pathogenic factors; genes in green encode antibiotic resistances; genes in blue are involved in DNA replication, recombination, and repair; genes in light blue are transcriptional regulators; genes in purple are transposases; genes in yellow are involved in conjugal transfer; genes in orange encode the BacR1/C55 lantibiotic operon; and genes in gray are conserved ORFs. Structural comparison of TY4 pETB and TY825 pETB plasmids of . Shading indicates homologous regions. Figure is adapted from reference . doi:10.1128/microbiolspec.PLAS-0002-2013.f2

Citation: Van Tyne D, Gilmore M. 2015. Virulence Plasmids of Nonsporulating Gram-Positive Pathogens, p 559-576. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0002-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Schematic showing the principal events during pheromone-responsive plasmid transfer between cells. doi:10.1128/microbiolspec.PLAS-0002-2013.f3

Citation: Van Tyne D, Gilmore M. 2015. Virulence Plasmids of Nonsporulating Gram-Positive Pathogens, p 559-576. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0002-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Pheromone-response regulation and virulence factors encoded on plasmid pAD1 Genes encoded by pAD1 that are involved in plasmid transfer and pheromone sensing. Blue genes are involved in replication and maintenance, red genes are negative regulators of pheromone response, and green genes are positive regulators of pheromone response. Detail of the postsegregation killing (PSK) locus of pAD1, which encodes the Fst toxin. Detailed schematic of individual genes within the cytolysin operon. doi:10.1128/microbiolspec.PLAS-0002-2013.f4

Citation: Van Tyne D, Gilmore M. 2015. Virulence Plasmids of Nonsporulating Gram-Positive Pathogens, p 559-576. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0002-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Regulation of pheromone sensing and plasmid transfer by the enterococcal Tra regulon. Genes encoding surface exclusion protein () and aggregation substance () are shown in dark blue. Positive regulators are shown in green, and negative regulators are shown in red. Straight arrows below the genes indicate transcripts detected in the uninduced and induced states, and arrow thickness indicates relative transcript abundance. (Adapted in part from , 9–12, 1993, with permission from Elsevier [ ], and from the , 3816–3825, 2000, with permission from ASM [ ].) doi:10.1128/microbiolspec.PLAS-0002-2013.f5

Citation: Van Tyne D, Gilmore M. 2015. Virulence Plasmids of Nonsporulating Gram-Positive Pathogens, p 559-576. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0002-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Schematic of cytolysin expression, posttranslational modification, processing, and export. CylL and CylL precursor peptides are synthesized and are intracellularly modified by CylM to create CylL* and CylL*. CylL* and CylL* are secreted and further modified by CylB, resulting in CylL′ and CylL′, which are cleaved extracellularly by CylA to form the active cytolysin components CylL″ and CylL″. CylL″ and CylL″ are capable of forming aggregates and are prevented from lysing cytolysin-expressing cells via CylI . doi:10.1128/microbiolspec.PLAS-0002-2013.f6

Citation: Van Tyne D, Gilmore M. 2015. Virulence Plasmids of Nonsporulating Gram-Positive Pathogens, p 559-576. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0002-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Plasmid map of the virulence plasmid p33701 of . Genes believed to be involved in plasmid maintenance and conjugation are shown in red, genes encoding Vaps are shown in blue, and putative genes within the proposed pathogenicity island are depicted in yellow. Figure is adapted from reference . doi:10.1128/microbiolspec.PLAS-0002-2013.f7

Citation: Van Tyne D, Gilmore M. 2015. Virulence Plasmids of Nonsporulating Gram-Positive Pathogens, p 559-576. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0002-2013
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818982.chap28
1. Novick RP, . 2000. Pathogenicity factors and their regulation, p 392407. In Fischetti V (ed), Gram-Positive Pathogens. American Society for Microbiology, Washington, DC.
2. Otto M . 2012. MRSA virulence and spread. Cell Microbiol 14 : 15131521.[PubMed] [CrossRef]
3. Projan SJ,, Novick RP, . 1997. The molecular basis of virulence, p 5581. In Archer G,, Crossley K (ed), Staphylococci in Human Disease. Churchill Livingstone, New York, NY.
4. Balaban N,, Rasooly A . 2000. Staphylococcal enterotoxins. Int J Food Microbiol 61 : 110.[CrossRef]
5. Argudin MA,, Mendoza MC,, Rodicio MR . 2010. Food poisoning and Staphylococcus aureus enterotoxins. Toxins (Basel) 2 : 17511773.[PubMed] [CrossRef]
6. Lowney ED,, Baublis JV,, Kreye GM,, Harrell ER,, McKenzie AR . 1967. The scalded skin syndrome in small children. Arch Dermatol 95 : 359369.[PubMed] [CrossRef]
7. Melish ME,, Glasgow LA . 1970. The staphylococcal scalded-skin syndrome. N Engl J Med 282 : 11141119.[PubMed] [CrossRef]
8. Melish ME,, Glasgow LA,, Turner MD,, Lillibridge CB . 1974. The staphylococcal epidermolytic toxin: its isolation, characterization, and site of action. Ann NY Acad Sci 236 : 317342.[PubMed] [CrossRef]
9. Bukowski M,, Wladyka B,, Dubin G . 2010. Exfoliative toxins of Staphylococcus aureus . Toxins (Basel) 2 : 11481165.[PubMed] [CrossRef]
10. Choi YW,, Herman A,, DiGiusto D,, Wade T,, Marrack P,, Kappler J . 1990. Residues of the variable region of the T-cell-receptor beta-chain that interact with S. aureus toxin superantigens. Nature 346 : 471473.[PubMed] [CrossRef]
11. Chintagumpala MM,, Mollick JA,, Rich RR . 1991. Staphylococcal toxins bind to different sites on HLA-DR. J Immunol 147 : 38763881.[PubMed]
12. Mollick JA,, Chintagumpala M,, Cook RG,, Rich RR . 1991. Staphylococcal exotoxin activation of T cells. Role of exotoxin-MHC class II binding affinity and class II isotype. J Immunol 146 : 463468.[PubMed]
13. Monday SR,, Bohach GA, . 1999. Properties of Staphylococcus aureus enterotoxins and toxic shock syndrome toxin-1, p 589610. In Alouf J,, Freer J (ed), The Comprehensive Sourcebook of Bacterial Protein Toxins. Academic Press, London, England.
14. Rajagopalan G,, Sen MM,, Singh M,, Murali NS,, Nath KA,, Iijima K,, Kita H,, Leontovich AA,, Gopinathan U,, Patel R,, David CS . 2006. Intranasal exposure to staphylococcal enterotoxin B elicits an acute systemic inflammatory response. Shock 25 : 647656.[PubMed] [CrossRef]
15. Spaulding AR,, Salgado-Pabon W,, Kohler PL,, Horswill AR,, Leung DY,, Schlievert PM . 2013. Staphylococcal and streptococcal superantigen exotoxins. Clin Microbiol Rev 26 : 422447.[PubMed] [CrossRef]
16. Ladhani S,, Joannou CL,, Lochrie DP,, Evans RW,, Poston SM . 1999. Clinical, microbial, and biochemical aspects of the exfoliative toxins causing staphylococcal scalded-skin syndrome. Clin Microbiol Rev 12 : 224242.[PubMed]
17. Wieneke AA,, Roberts D,, Gilbert RJ . 1993. Staphylococcal food poisoning in the United Kingdom, 1969–90. Epidemiol Infect 110 : 519531.[PubMed] [CrossRef]
18. Holmberg SD,, Blake PA . 1984. Staphylococcal food poisoning in the United States. New facts and old misconceptions. JAMA 251 : 487489.[PubMed] [CrossRef]
19. Casman EP . 1965. Staphylococcal enterotoxin. Ann NY Acad Sci 128 : 124131.[PubMed] [CrossRef]
20. Bergdoll MS,, Czop JK,, Gould SS . 1974. Enterotoxin synthesis by the staphylococci. Ann NY Acad Sci 236 : 307316.[PubMed] [CrossRef]
21. Bayles KW,, Iandolo JJ . 1989. Genetic and molecular analyses of the gene encoding staphylococcal enterotoxin D. J Bacteriol 171 : 47994806.[PubMed]
22. Kornblum J,, Kreiswirth BN,, Projan SJ,, Ross H,, Novick RP, . 1991. Agr: a polycistronic locus regulating exoprotein synthesis in Staphylococcus aureus , p 373402. In Novick RP (ed), Molecular Biology of the Staphylococci. VCH Publishers, New York, NY.
23. Zhang S,, Iandolo JJ,, Stewart GC . 1998. The enterotoxin D plasmid of Staphylococcus aureus encodes a second enterotoxin determinant (sej). FEMS Microbiol Lett 168 : 227233.[PubMed] [CrossRef]
24. Tseng CW,, Zhang S,, Stewart GC . 2004. Accessory gene regulator control of staphyloccoccal enterotoxin d gene expression. J Bacteriol 186 : 17931801.[PubMed] [CrossRef]
25. Omoe K,, Hu DL,, Takahashi-Omoe H,, Nakane A,, Shinagawa K . 2003. Identification and characterization of a new staphylococcal enterotoxin-related putative toxin encoded by two kinds of plasmids. Infect Immun 71 : 60886094.[PubMed] [CrossRef]
26. Dajani AS . 1972. The scalded-skin syndrome: relation to phage-group II staphylococci. J Infect Dis 125 : 548551.[PubMed] [CrossRef]
27. Kondo I,, Sakurai S,, Sarai Y . 1973. Purification of exfoliatin produced by Staphylococcus aureus of bacteriophage group 2 and its physicochemical properties. Infect Immun 8 : 156164.[PubMed]
28. Iwatsuki K,, Yamasaki O,, Morizane S,, Oono T . 2006. Staphylococcal cutaneous infections: invasion, evasion and aggression. J Dermatol Sci 42 : 203214.[PubMed] [CrossRef]
29. Nishifuji K,, Sugai M,, Amagai M . 2008. Staphylococcal exfoliative toxins: “molecular scissors” of bacteria that attack the cutaneous defense barrier in mammals. J Dermatol Sci 49 : 2131.[PubMed] [CrossRef]
30. Sato H,, Matsumori Y,, Tanabe T,, Saito H,, Shimizu A,, Kawano J . 1994. A new type of staphylococcal exfoliative toxin from a Staphylococcus aureus strain isolated from a horse with phlegmon. Infect Immun 62 : 37803785.[PubMed]
31. Melish ME,, Glasgow LA . 1971. Staphylococcal scalded skin syndrome: the expanded clinical syndrome. J Pediatr 78 : 958967.[CrossRef]
32. Miller MM,, Kapral FA . 1972. Neutralization of Staphylococcus aureus exfoliatin by antibody. Infect Immun 6 : 561563.[PubMed]
33. Elias PM,, Fritsch P,, Tappeiner G,, Mittermayer H,, Wolff K . 1974. Experimental staphylococcal toxic epidermal necrolysis (TEN) in adult humans and mice. J Lab Clin Med 84 : 414424.[PubMed]
34. McLay AL,, Arbuthnott JP,, Lyell A . 1975. Action of staphylococcal epidermolytic toxin on mouse skin: an electron microscopic study. J Invest Dermatol 65 : 423428.[PubMed] [CrossRef]
35. Wiley BB,, Glasgow LA,, Rogolsky M . 1976. Staphylococcal scalded-skin syndrome: development of a primary binding assay for human antibody to the exfoliative toxin. Infect Immun 13 : 513520.[PubMed]
36. Kapral FA . 1974. Staphylococcus aureus: some host-parasite interactions. Ann NY Acad Sci 236 : 267276.[PubMed] [CrossRef]
37. Todd JK . 1985. Staphylococcal toxin syndromes. Annu Rev Med 36 : 337347.[PubMed] [CrossRef]
38. Dancer SJ,, Noble WC . 1991. Nasal, axillary, and perineal carriage of Staphylococcus aureus among women: identification of strains producing epidermolytic toxin. J Clin Pathol 44 : 681684.[CrossRef]
39. Becker K,, Friedrich AW,, Lubritz G,, Weilert M,, Peters G,, Von Eiff C . 2003. Prevalence of genes encoding pyrogenic toxin superantigens and exfoliative toxins among strains of Staphylococcus aureus isolated from blood and nasal specimens. J Clin Microbiol 41 : 14341439.[PubMed] [CrossRef]
40. Lee CY,, Schmidt JJ,, Johnson-Winegar AD,, Spero L,, Iandolo JJ . 1987. Sequence determination and comparison of the exfoliative toxin A and toxin B genes from Staphylococcus aureus . J Bacteriol 169 : 39043909.[PubMed]
41. Yamaguchi T,, Hayashi T,, Takami H,, Nakasone K,, Ohnishi M,, Nakayama K,, Yamada S,, Komatsuzawa H,, Sugai M . 2000. Phage conversion of exfoliative toxin A production in Staphylococcus aureus . Mol Microbiol 38 : 694705.[PubMed] [CrossRef]
42. Yamaguchi T,, Nishifuji K,, Sasaki M,, Fudaba Y,, Aepfelbacher M,, Takata T,, Ohara M,, Komatsuzawa H,, Amagai M,, Sugai M . 2002. Identification of the Staphylococcus aureus etd pathogenicity island which encodes a novel exfoliative toxin, ETD, and EDIN-B. Infect Immun 70 : 58355845.[PubMed] [CrossRef]
43. Yamasaki O,, Tristan A,, Yamaguchi T,, Sugai M,, Lina G,, Bes M,, Vandenesch F,, Etienne J . 2006. Distribution of the exfoliative toxin D gene in clinical Staphylococcus aureus isolates in France. Clin Microbiol Infect 12 : 585588.[PubMed] [CrossRef]
44. Warren R,, Rogolsky M,, Wiley BB,, Glasgow LA . 1974. Effect of ethidium bromide on elimination of exfoliative toxin and bacteriocin production in Staphylococcus aureus . J Bacteriol 118 : 980985.[PubMed]
45. Rogolsky M,, Warren R,, Wiley BB,, Nakamura HT,, Glasgow LA . 1974. Nature of the genetic determinant controlling exfoliative toxin production in Staphylococcus aureus . J Bacteriol 117 : 157165.[PubMed]
46. Jackson MP,, Iandolo JJ . 1986. Cloning and expression of the exfoliative toxin B gene from Staphylococcus aureus . J Bacteriol 166 : 574580.[PubMed]
47. Jackson MP,, Iandolo JJ . 1986. Sequence of the exfoliative toxin B gene of Staphylococcus aureus . J Bacteriol 167 : 726728.[PubMed]
48. Yamaguchi T,, Hayashi T,, Takami H,, Ohnishi M,, Murata T,, Nakayama K,, Asakawa K,, Ohara M,, Komatsuzawa H,, Sugai M . 2001. Complete nucleotide sequence of a Staphylococcus aureus exfoliative toxin B plasmid and identification of a novel ADP-ribosyltransferase, EDIN-C. Infect Immun 69 : 77607771.[PubMed] [CrossRef]
49. Sato H,, Tanabe T,, Kuramoto M,, Tanaka K,, Hashimoto T,, Saito H . 1991. Isolation of exfoliative toxin from Staphylococcus hyicus subsp. hyicus and its exfoliative activity in the piglet. Vet Microbiol 27 : 263275.[PubMed] [CrossRef]
50. Sato H,, Watanabe T,, Murata Y,, Ohtake A,, Nakamura M,, Aizawa C,, Saito H,, Maehara N . 1999. New exfoliative toxin produced by a plasmid-carrying strain of Staphylococcus hyicus . Infect Immun 67 : 40144018.[PubMed]
51. Navaratna MA,, Sahl HG,, Tagg JR . 1999. Identification of genes encoding two-component lantibiotic production in Staphylococcus aureus C55 and other phage group II S. aureus strains and demonstration of an association with the exfoliative toxin B gene. Infect Immun 67 : 42684271.[PubMed]
52. Rogolsky M,, Wiley BB . 1977. Production and properties of a staphylococcin genetically controlled by the staphylococcal plasmid for exfoliative toxin synthesis. Infect Immun 15 : 726732.[PubMed]
53. Crupper SS,, Gies AJ,, Iandolo JJ . 1997. Purification and characterization of staphylococcin BacR1, a broad-spectrum bacteriocin. Appl Environ Microbiol 63 : 41854190.[PubMed]
54. Aktories K . 1997. Rho proteins: targets for bacterial toxins. Trends Microbiol 5 : 282288.[PubMed] [CrossRef]
55. Sugai M,, Enomoto T,, Hashimoto K,, Matsumoto K,, Matsuo Y,, Ohgai H,, Hong YM,, Inoue S,, Yoshikawa K,, Suginaka H . 1990. A novel epidermal cell differentiation inhibitor (EDIN): purification and characterization from Staphylococcus aureus . Biochem Biophys Res Commun 173 : 9298.[PubMed] [CrossRef]
56. Munro P,, Benchetrit M,, Nahori MA,, Stefani C,, Clement R,, Michiels JF,, Landraud L,, Dussurget O,, Lemichez E . 2010. The Staphylococcus aureus epidermal cell differentiation inhibitor toxin promotes formation of infection foci in a mouse model of bacteremia. Infect Immun 78 : 34043411.[PubMed] [CrossRef]
57. Inoue S,, Sugai M,, Murooka Y,, Paik SY,, Hong YM,, Ohgai H,, Suginaka H . 1991. Molecular cloning and sequencing of the epidermal cell differentiation inhibitor gene from Staphylococcus aureus . Biochem Biophys Res Commun 174 : 459464.[PubMed] [CrossRef]
58. Aktories K . 2011. Bacterial protein toxins that modify host regulatory GTPases. Nat Rev Microbiol 9 : 487498.[PubMed] [CrossRef]
59. Munro P,, Clement R,, Lavigne JP,, Pulcini C,, Lemichez E,, Landraud L . 2011. High prevalence of edin-C encoding RhoA-targeting toxin in clinical isolates of Staphylococcus aureus . Eur J Clin Microbiol Infect Dis 30 : 965972.[PubMed] [CrossRef]
60. McCarthy AJ,, Lindsay JA . 2012. The distribution of plasmids that carry virulence and resistance genes in Staphylococcus aureus is lineage associated. BMC Microbiol 12 : 104. [PubMed] [CrossRef]
61. Lindsay JA,, Knight GM,, Budd EL,, McCarthy AJ . 2012. Shuffling of mobile genetic elements (MGEs) in successful healthcare-associated MRSA (HA-MRSA). Mob Genet Elements 2 : 239243.[PubMed] [CrossRef]
62. Mundt JO . 1963. Occurrence of enterococci in animals in a wild environment. Appl Microbiol 11 : 136140.[PubMed]
63. Murray BE . 1990. The life and times of the Enterococcus . Clin Microbiol Rev 3 : 4665.[PubMed]
64. Jett BD,, Huycke MM,, Gilmore MS . 1994. Virulence of enterococci. Clin Microbiol Rev 7 : 462478.[PubMed]
65. Moellering R, . 1995. Enterococcus species, Streptococcus bovis, and Leuconostac species, p 18261835. In Mandell G,, Bennett J,, Dolin R (ed), Principles and Practices of Infectious Diseases, 4th ed. Churchill Livingston, New York, NY.
66. Huycke MM,, Sahm DF,, Gilmore MS . 1998. Multiple-drug resistant enterococci: the nature of the problem and an agenda for the future. Emerg Infect Dis 4 : 239249.[PubMed] [CrossRef]
67. Willems RJ,, van Schaik W . 2009. Transition of Enterococcus faecium from commensal organism to nosocomial pathogen. Future Microbiol 4 : 11251135.[PubMed] [CrossRef]
68. Gilmore MS,, Lebreton F,, van Schaik W . 2013. Genomic transition of enterococci from gut commensals to leading causes of multidrug-resistant hospital infection in the antibiotic era. Curr Opin Microbiol 16 : 1016.[PubMed] [CrossRef]
69. Hollenbeck BL,, Rice LB . 2012. Intrinsic and acquired resistance mechanisms in enterococcus. Virulence 3 : 421433.[PubMed] [CrossRef]
70. Flahaut S,, Frere J,, Boutibonnes P,, Auffray Y . 1996. Comparison of the bile salts and sodium dodecyl sulfate stress responses in Enterococcus faecalis . Appl Environ Microbiol 62 : 24162420.[PubMed]
71. Flahaut S,, Hartke A,, Giard JC,, Benachour A,, Boutibonnes P,, Auffray Y . 1996. Relationship between stress response toward bile salts, acid and heat treatment in Enterococcus faecalis . FEMS Microbiol Lett 138 : 4954.[PubMed] [CrossRef]
72. Flahaut S,, Hartke A,, Giard JC,, Auffray Y . 1997. Alkaline stress response in Enterococcus faecalis: adaptation, cross-protection, and changes in protein synthesis. Appl Environ Microbiol 63 : 812814.[PubMed]
73. Arias CA,, Murray BE . 2012. The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol 10 : 266278.[PubMed] [CrossRef]
74. Mundy LM,, Sahm DF,, Gilmore M . 2000. Relationships between enterococcal virulence and antimicrobial resistance. Clin Microbiol Rev 13 : 513522.[PubMed] [CrossRef]
75. Maekawa S,, Yoshioka M,, Kumamoto Y . 1992. Proposal of a new scheme for the serological typing of Enterococcus faecalis strains. Microbiol Immunol 36 : 671681.[PubMed] [CrossRef]
76. Thurlow LR,, Thomas VC,, Fleming SD,, Hancock LE . 2009. Enterococcus faecalis capsular polysaccharide serotypes C and D and their contributions to host innate immune evasion. Infect Immun 77 : 55515557.[PubMed] [CrossRef]
77. Hufnagel M,, Hancock LE,, Koch S,, Theilacker C,, Gilmore MS,, Huebner J . 2004. Serological and genetic diversity of capsular polysaccharides in Enterococcus faecalis . J Clin Microbiol 42 : 25482557.[PubMed] [CrossRef]
78. Hancock LE,, Gilmore MS . 2002. The capsular polysaccharide of Enterococcus faecalis and its relationship to other polysaccharides in the cell wall. Proc Natl Acad Sci USA 99 : 15741579.[PubMed] [CrossRef]
79. Teng F,, Singh KV,, Bourgogne A,, Zeng J,, Murray BE . 2009. Further characterization of the epa gene cluster and Epa polysaccharides of Enterococcus faecalis . Infect Immun 77 : 37593767.[PubMed] [CrossRef]
80. Shankar N,, Lockatell CV,, Baghdayan AS,, Drachenberg C,, Gilmore MS,, Johnson DE . 2001. Role of Enterococcus faecalis surface protein Esp in the pathogenesis of ascending urinary tract infection. Infect Immun 69 : 43664372.[PubMed] [CrossRef]
81. Shankar N,, Baghdayan AS,, Gilmore MS . 2002. Modulation of virulence within a pathogenicity island in vancomycin-resistant Enterococcus faecalis . Nature 417 : 746750.[PubMed] [CrossRef]
82. Willems RJ,, Homan W,, Top J,, van Santen-Verheuvel M,, Tribe D,, Manzioros X,, Gaillard C,, Vandenbroucke-Grauls CM,, Mascini EM,, van Kregten E,, van Embden JD,, Bonten MJ . 2001. Variant esp gene as a marker of a distinct genetic lineage of vancomycin-resistant Enterococcus faecium spreading in hospitals. Lancet 357 : 853855.[PubMed] [CrossRef]
83. Toledo-Arana A,, Valle J,, Solano C,, Arrizubieta MJ,, Cucarella C,, Lamata M,, Amorena B,, Leiva J,, Penades JR,, Lasa I . 2001. The enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation. Appl Environ Microbiol 67 : 45384545.[PubMed] [CrossRef]
84. Foulquie Moreno MR,, Sarantinopoulos P,, Tsakalidou E,, De Vuyst L . 2006. The role and application of enterococci in food and health. Int J Food Microbiol 106 : 124.[PubMed] [CrossRef]
85. Borgmann S,, Niklas DM,, Klare I,, Zabel LT,, Buchenau P,, Autenrieth IB,, Heeg P . 2004. Two episodes of vancomycin-resistant Enterococcus faecium outbreaks caused by two genetically different clones in a newborn intensive care unit. Int J Hyg Environ Health 207 : 386389.[PubMed] [CrossRef]
86. Kreft B,, Marre R,, Schramm U,, Wirth R . 1992. Aggregation substance of Enterococcus faecalis mediates adhesion to cultured renal tubular cells. Infect Immun 60 : 2530.[PubMed]
87. Clewell DB . 1993. Bacterial sex pheromone-induced plasmid transfer. Cell 73 : 912.[PubMed] [CrossRef]
88. Chow JW,, Thal LA,, Perri MB,, Vazquez JA,, Donabedian SM,, Clewell DB,, Zervos MJ . 1993. Plasmid-associated hemolysin and aggregation substance production contribute to virulence in experimental enterococcal endocarditis. Antimicrob Agents Chemother 37 : 24742477.[PubMed] [CrossRef]
89. Olmsted SB,, Dunny GM,, Erlandsen SL,, Wells CL . 1994. A plasmid-encoded surface protein on Enterococcus faecalis augments its internalization by cultured intestinal epithelial cells. J Infect Dis 170 : 15491556.[PubMed] [CrossRef]
90. Schlievert PM,, Gahr PJ,, Assimacopoulos AP,, Dinges MM,, Stoehr JA,, Harmala JW,, Hirt H,, Dunny GM . 1998. Aggregation and binding substances enhance pathogenicity in rabbit models of Enterococcus faecalis endocarditis. Infect Immun 66 : 218223.[PubMed]
91. Hirt H,, Schlievert PM,, Dunny GM . 2002. In vivo induction of virulence and antibiotic resistance transfer in Enterococcus faecalis mediated by the sex pheromone-sensing system of pCF10. Infect Immun 70 : 716723.[PubMed] [CrossRef]
92. Chuang-Smith ON,, Wells CL,, Henry-Stanley MJ,, Dunny GM . 2010. Acceleration of Enterococcus faecalis biofilm formation by aggregation substance expression in an ex vivo model of cardiac valve colonization. PLoS One 5 : e15798. [PubMed] [CrossRef]
93. Todd E . 1934. A comparative serological study of streptolysins derived from human and from animal infections, with notes on pneumococcal haemolysin, tetanolysin and staphylococcus toxin. J Pathol Bacteriol 39 : 299321.[CrossRef]
94. Sherwood N,, Russell B,, Jay A,, Bowman K . 1949. Studies on streptococci. III. New antibiotic substances produced by beta hemolytic streptococci. J Infect Dis 84 : 8891.[PubMed] [CrossRef]
95. Ike Y,, Clewell DB,, Segarra RA,, Gilmore MS . 1990. Genetic analysis of the pAD1 hemolysin/bacteriocin determinant in Enterococcus faecalis: Tn917 insertional mutagenesis and cloning. J Bacteriol 172 : 155163.[PubMed]
96. Wirth R . 1994. The sex pheromone system of Enterococcus faecalis. More than just a plasmid-collection mechanism? Eur J Biochem 222 : 235246.[PubMed] [CrossRef]
97. Dunny GM,, Leonard BA,, Hedberg PJ . 1995. Pheromone-inducible conjugation in Enterococcus faecalis: interbacterial and host-parasite chemical communication. J Bacteriol 177 : 871876.[PubMed]
98. Clewell D, . 1999. Sex pheromone systems in enterococci, p 4765. In Dunny G,, Winans S (ed), Cell-Cell Signaling in Bacteria. American Society for Microbiology, Washington, DC.
99. Wirth R . 2000. Sex pheromones and gene transfer in Enterococcus faecalis . Res Microbiol 151 : 493496.[PubMed] [CrossRef]
100. Palmer KL,, Kos VN,, Gilmore MS . 2010. Horizontal gene transfer and the genomics of enterococcal antibiotic resistance. Curr Opin Microbiol 13 : 632639.[PubMed] [CrossRef]
101. Wardal E,, Sadowy E,, Hryniewicz W . 2010. Complex nature of enterococcal pheromone-responsive plasmids. Pol J Microbiol 59 : 7987.[PubMed]
102. Galli D,, Wirth R,, Wanner G . 1989. Identification of aggregation substances of Enterococcus faecalis cells after induction by sex pheromones. An immunological and ultrastructural investigation. Arch Microbiol 151 : 486490.[PubMed] [CrossRef]
103. Ehrenfeld EE,, Kessler RE,, Clewell DB . 1986. Identification of pheromone-induced surface proteins in Streptococcus faecalis and evidence of a role for lipoteichoic acid in formation of mating aggregates. J Bacteriol 168 : 612.[PubMed]
104. Bensing BA,, Dunny GM . 1993. Cloning and molecular analysis of genes affecting expression of binding substance, the recipient-encoded receptor(s) mediating mating aggregate formation in Enterococcus faecalis . J Bacteriol 175 : 74217429.[PubMed]
105. Waters CM,, Hirt H,, McCormick JK,, Schlievert PM,, Wells CL,, Dunny GM . 2004. An amino-terminal domain of Enterococcus faecalis aggregation substance is required for aggregation, bacterial internalization by epithelial cells and binding to lipoteichoic acid. Mol Microbiol 52 : 11591171.[PubMed] [CrossRef]
106. Ike Y,, Clewell DB . 1984. Genetic analysis of the pAD1 pheromone response in Streptococcus faecalis, using transposon Tn917 as an insertional mutagen. J Bacteriol 158 : 777783.[PubMed]
107. Cook L,, Chatterjee A,, Barnes A,, Yarwood J,, Hu WS,, Dunny G . 2011. Biofilm growth alters regulation of conjugation by a bacterial pheromone. Mol Microbiol 81 : 14991510.[PubMed] [CrossRef]
108. Hirt H,, Wirth R,, Muscholl A . 1996. Comparative analysis of 18 sex pheromone plasmids from Enterococcus faecalis: detection of a new insertion element on pPD1 and implications for the evolution of this plasmid family. Mol Gen Genet 252 : 640647.[PubMed]
109. Francia MV,, Haas W,, Wirth R,, Samberger E,, Muscholl-Silberhorn A,, Gilmore MS,, Ike Y,, Weaver KE,, An FY,, Clewell DB . 2001. Completion of the nucleotide sequence of the Enterococcus faecalis conjugative virulence plasmid pAD1 and identification of a second transfer origin. Plasmid 46 : 117127.[PubMed] [CrossRef]
110. Rakita RM,, Vanek NN,, Jacques-Palaz K,, Mee M,, Mariscalco MM,, Dunny GM,, Snuggs M,, Van Winkle WB,, Simon SI . 1999. Enterococcus faecalis bearing aggregation substance is resistant to killing by human neutrophils despite phagocytosis and neutrophil activation. Infect Immun 67 : 60676075.[PubMed]
111. Fisher K,, Phillips C . 2009. The ecology, epidemiology and virulence of Enterococcus . Microbiology 155 : 17491757.[PubMed] [CrossRef]
112. Clewell DB . 2007. Properties of Enterococcus faecalis plasmid pAD1, a member of a widely disseminated family of pheromone-responding, conjugative, virulence elements encoding cytolysin. Plasmid 58 : 205227.[PubMed] [CrossRef]
113. Mori M,, Sakagami Y,, Narita M,, Isogai A,, Fujino M,, Kitada C,, Craig RA,, Clewell DB,, Suzuki A . 1984. Isolation and structure of the bacterial sex pheromone, cAD1, that induces plasmid transfer in Streptococcus faecalis . FEBS Lett 178 : 97100.[PubMed] [CrossRef]
114. de Freire Bastos MC,, Tanimoto K,, Clewell DB . 1997. Regulation of transfer of the Enterococcus faecalis pheromone-responding plasmid pAD1: temperature-sensitive transfer mutants and identification of a new regulatory determinant, traD. J Bacteriol 179 : 32503259.[PubMed]
115. Tanimoto K,, Clewell DB . 1993. Regulation of the pAD1-encoded sex pheromone response in Enterococcus faecalis: expression of the positive regulator TraE1. J Bacteriol 175 : 10081018.[PubMed]
116. An FY,, Clewell DB . 1994. Characterization of the determinant (traB) encoding sex pheromone shutdown by the hemolysin/bacteriocin plasmid pAD1 in Enterococcus faecalis . Plasmid 31 : 215221.[PubMed] [CrossRef]
117. Muscholl-Silberhorn AB . 2000. Pheromone-regulated expression of sex pheromone plasmid pAD1-encoded aggregation substance depends on at least six upstream genes and a cis-acting, orientation-dependent factor. J Bacteriol 182 : 38163825.[PubMed] [CrossRef]
118. Weaver KE,, Clewell DB . 1988. Regulation of the pAD1 sex pheromone response in Enterococcus faecalis: construction and characterization of lacZ transcriptional fusions in a key control region of the plasmid. J Bacteriol 170 : 43434352.[PubMed]
119. Tanimoto K,, An FY,, Clewell DB . 1993. Characterization of the traC determinant of the Enterococcus faecalis hemolysin-bacteriocin plasmid pAD1: binding of sex pheromone. J Bacteriol 175 : 52605264.[PubMed]
120. Mori M,, Tanaka H,, Sakagami Y,, Isogai A,, Fujino M,, Kitada C,, White BA,, An FY,, Clewell DB,, Suzuki A . 1986. Isolation and structure of the Streptococcus faecalis sex pheromone, cAM373. FEBS Lett 206 : 6972.[PubMed] [CrossRef]
121. Weaver KE,, Jensen KD,, Colwell A,, Sriram SI . 1996. Functional analysis of the Enterococcus faecalis plasmid pAD1-encoded stability determinant par. Mol Microbiol 20 : 5363.[PubMed] [CrossRef]
122. Weaver K, . 2000. Enterococcal genetics, p 259271. In Fischetti V,, Novick R,, Ferretti J,, Portnoy D,, Rood J (ed), Gram-Positive Pathogens. American Society for Microbiology, Washington, DC.
123. Weaver KE,, Clewell DB . 1989. Construction of Enterococcus faecalis pAD1 miniplasmids: identification of a minimal pheromone response regulatory region and evaluation of a novel pheromone-dependent growth inhibition. Plasmid 22 : 106119.[PubMed] [CrossRef]
124. Weaver KE,, Clewell DB,, An F . 1993. Identification, characterization, and nucleotide sequence of a region of Enterococcus faecalis pheromone-responsive plasmid pAD1 capable of autonomous replication. J Bacteriol 175 : 19001909.[PubMed]
125. Tomita H,, Clewell DB . 2000. A pAD1-encoded small RNA molecule, mD, negatively regulates Enterococcus faecalis pheromone response by enhancing transcription termination. J Bacteriol 182 : 10621073.[PubMed] [CrossRef]
126. Fujimoto S,, Clewell DB . 1998. Regulation of the pAD1 sex pheromone response of Enterococcus faecalis by direct interaction between the cAD1 peptide mating signal and the negatively regulating, DNA-binding TraA protein. Proc Natl Acad Sci USA 95 : 64306435.[PubMed] [CrossRef]
127. Pontius LT,, Clewell DB . 1992. Conjugative transfer of Enterococcus faecalis plasmid pAD1: nucleotide sequence and transcriptional fusion analysis of a region involved in positive regulation. J Bacteriol 174 : 31523160.[PubMed]
128. Galli D,, Lottspeich F,, Wirth R . 1990. Sequence analysis of Enterococcus faecalis aggregation substance encoded by the sex pheromone plasmid pAD1. Mol Microbiol 4 : 895904.[PubMed] [CrossRef]
129. Chuang ON,, Schlievert PM,, Wells CL,, Manias DA,, Tripp TJ,, Dunny GM . 2009. Multiple functional domains of Enterococcus faecalis aggregation substance Asc10 contribute to endocarditis virulence. Infect Immun 77 : 539548.[PubMed] [CrossRef]
130. Waters CM,, Wells CL,, Dunny GM . 2003. The aggregation domain of aggregation substance, not the RGD motifs, is critical for efficient internalization by HT-29 enterocytes. Infect Immun 71 : 56825689.[PubMed] [CrossRef]
131. Muscholl-Silberhorn A . 1998. Analysis of the clumping-mediating domain(s) of sex pheromone plasmid pAD1-encoded aggregation substance. Eur J Biochem 258 : 515520.[PubMed] [CrossRef]
132. Waters CM,, Dunny GM . 2001. Analysis of functional domains of the Enterococcus faecalis pheromone-induced surface protein aggregation substance. J Bacteriol 183 : 56595667.[PubMed] [CrossRef]
133. Vanek NN,, Simon SI,, Jacques-Palaz K,, Mariscalco MM,, Dunny GM,, Rakita RM . 1999. Enterococcus faecalis aggregation substance promotes opsonin-independent binding to human neutrophils via a complement receptor type 3-mediated mechanism. FEMS Immunol Med Microbiol 26 : 4960.[PubMed] [CrossRef]
134. Sussmuth SD,, Muscholl-Silberhorn A,, Wirth R,, Susa M,, Marre R,, Rozdzinski E . 2000. Aggregation substance promotes adherence, phagocytosis, and intracellular survival of Enterococcus faecalis within human macrophages and suppresses respiratory burst. Infect Immun 68 : 49004906.[PubMed] [CrossRef]
135. An FY,, Clewell DB . 2002. Identification of the cAD1 sex pheromone precursor in Enterococcus faecalis . J Bacteriol 184 : 18801887.[CrossRef]
136. Jett BD,, Atkuri RV,, Gilmore MS . 1998. Enterococcus faecalis localization in experimental endophthalmitis: role of plasmid-encoded aggregation substance. Infect Immun 66 : 843848.[PubMed]
137. Garsin DA,, Sifri CD,, Mylonakis E,, Qin X,, Singh KV,, Murray BE,, Calderwood SB,, Ausubel FM . 2001. A simple model host for identifying Gram-positive virulence factors. Proc Natl Acad Sci USA 98 : 1089210897.[PubMed] [CrossRef]
138. Berti M,, Candiani G,, Kaufhold A,, Muscholl A,, Wirth R . 1998. Does aggregation substance of Enterococcus faecalis contribute to development of endocarditis? Infection 26 : 4853.[PubMed] [CrossRef]
139. Haas W,, Shepard BD,, Gilmore MS . 2002. Two-component regulator of Enterococcus faecalis cytolysin responds to quorum-sensing autoinduction. Nature 415 : 8487.[PubMed] [CrossRef]
140. Huycke MM,, Gilmore MS,, Jett BD,, Booth JL . 1992. Transfer of pheromone-inducible plasmids between Enterococcus faecalis in the Syrian hamster gastrointestinal tract. J Infect Dis 166 : 11881191.[PubMed] [CrossRef]
141. Van Tyne D,, Martin MJ,, Gilmore MS . 2013. Structure, function, and biology of the Enterococcus faecalis cytolysin. Toxins (Basel) 5 : 895911.[PubMed] [CrossRef]
142. Tang W,, van der Donk WA . 2013. The sequence of the enterococcal cytolysin imparts unusual lanthionine stereochemistry. Nat Chem Biol 9 : 157159.[PubMed] [CrossRef]
143. Cox CR,, Coburn PS,, Gilmore MS . 2005. Enterococcal cytolysin: a novel two component peptide system that serves as a bacterial defense against eukaryotic and prokaryotic cells. Curr Protein Pept Sci 6 : 7784.[PubMed] [CrossRef]
144. Roux A,, Payne SM,, Gilmore MS . 2009. Microbial telesensing: probing the environment for friends, foes, and food. Cell Host Microbe 6 : 115124.[PubMed] [CrossRef]
145. Ike Y,, Hashimoto H,, Clewell DB . 1984. Hemolysin of Streptococcus faecalis subspecies zymogenes contributes to virulence in mice. Infect Immun 45 : 528530.[PubMed]
146. Dupont H,, Montravers P,, Mohler J,, Carbon C . 1998. Disparate findings on the role of virulence factors of Enterococcus faecalis in mouse and rat models of peritonitis. Infect Immun 66 : 25702575.[PubMed]
147. Ike Y,, Hashimoto H,, Clewell DB . 1987. High incidence of hemolysin production by Enterococcus (Streptococcus) faecalis strains associated with human parenteral infections. J Clin Microbiol 25 : 15241528.[PubMed]
148. Huycke MM,, Gilmore MS . 1995. Frequency of aggregation substance and cytolysin genes among enterococcal endocarditis isolates. Plasmid 34 : 152156.[PubMed] [CrossRef]
149. Booth MC,, Hatter KL,, Miller D,, Davis J,, Kowalski R,, Parke DW,, Chodosh J,, Jett BD,, Callegan MC,, Penland R,, Gilmore MS . 1998. Molecular epidemiology of Staphylococcus aureus and Enterococcus faecalis in endophthalmitis. Infect Immun 66 : 356360.[PubMed]
150. Dunny GM,, Clewell DB . 1975. Transmissible toxin (hemolysin) plasmid in Streptococcus faecalis and its mobilization of a noninfectious drug resistance plasmid. J Bacteriol 124 : 784790.[PubMed]
151. Jacob AE,, Douglas GJ,, Hobbs SJ . 1975. Self-transferable plasmids determining the hemolysin and bacteriocin of Streptococcus faecalis var. zymogenes. J Bacteriol 121 : 863872.[PubMed]
152. Clewell DB,, Tomich PK,, Gawron-Burke MC,, Franke AE,, Yagi Y,, An FY . 1982. Mapping of Streptococcus faecalis plasmids pAD1 and pAD2 and studies relating to transposition of Tn917. J Bacteriol 152 : 12201230.[PubMed]
153. Dunny GM,, Craig RA,, Carron RL,, Clewell DB . 1979. Plasmid transfer in Streptococcus faecalis: production of multiple sex pheromones by recipients. Plasmid 2 : 454465.[PubMed] [CrossRef]
154. Tomich PK,, An FY,, Damle SP,, Clewell DB . 1979. Plasmid-related transmissibility and multiple drug resistance in Streptococcus faecalis subsp. zymogenes strain DS16. Antimicrob Agents Chemother 15 : 828830.[PubMed] [CrossRef]
155. Clewell DB . 1981. Plasmids, drug resistance, and gene transfer in the genus Streptococcus . Microbiol Rev 45 : 409436.[PubMed]
156. Oliver DR,, Brown BL,, Clewell DB . 1977. Characterization of plasmids determining hemolysin and bacteriocin production in Streptococcus faecalis 5952. J Bacteriol 130 : 948950.[PubMed]
157. Clewell D,, Yagi Y,, Ike Y,, Craig R,, Brown B,, An F, . 1982. Sex pheromones in Streptococcus faecalis: multiple pheromone systems in strain DS5, similarities of pAD1 and pAMd1, and mutants of pAD1 altered in conjugative properties, p 97100. In Schlessinger D (ed), Microbiology. American Society for Microbiology, Washington, DC.
158. Jett BD,, Gilmore MS . 1990. The growth-inhibitory effect of the Enterococcus faecalis bacteriocin encoded by pAD1 extends to the oral streptococci. J Dent Res 69 : 16401645.[PubMed] [CrossRef]
159. Le Bouguenec C,, de Cespedes G,, Horaud T . 1988. Molecular analysis of a composite chromosomal conjugative element (Tn3701) of Streptococcus pyogenes . J Bacteriol 170 : 39303936.[PubMed]
160. Colmar I,, Horaud T . 1987. Enterococcus faecalis hemolysin-bacteriocin plasmids belong to the same incompatibility group. Appl Environ Microbiol 53 : 567570.[PubMed]
161. Gilmore MS,, Segarra RA,, Booth MC . 1990. An HlyB-type function is required for expression of the Enterococcus faecalis hemolysin/bacteriocin. Infect Immun 58 : 39143923.[PubMed]
162. Segarra RA,, Booth MC,, Morales DA,, Huycke MM,, Gilmore MS . 1991. Molecular characterization of the Enterococcus faecalis cytolysin activator. Infect Immun 59 : 12391246.[PubMed]
163. Coburn PS,, Hancock LE,, Booth MC,, Gilmore MS . 1999. A novel means of self-protection, unrelated to toxin activation, confers immunity to the bactericidal effects of the Enterococcus faecalis cytolysin. Infect Immun 67 : 33393347.[PubMed]
164. Gilmore MS,, Segarra RA,, Booth MC,, Bogie CP,, Hall LR,, Clewell DB . 1994. Genetic structure of the Enterococcus faecalis plasmid pAD1-encoded cytolytic toxin system and its relationship to lantibiotic determinants. J Bacteriol 176 : 73357344.[PubMed]
165. Booth MC,, Bogie CP,, Sahl HG,, Siezen RJ,, Hatter KL,, Gilmore MS . 1996. Structural analysis and proteolytic activation of Enterococcus faecalis cytolysin, a novel lantibiotic. Mol Microbiol 21 : 11751184.[PubMed] [CrossRef]
166. Coburn PS,, Pillar CM,, Jett BD,, Haas W,, Gilmore MS . 2004. Enterococcus faecalis senses target cells and in response expresses cytolysin. Science 306 : 22702272.[PubMed] [CrossRef]
167. Rumpel S,, Razeto A,, Pillar CM,, Vijayan V,, Taylor A,, Giller K,, Gilmore MS,, Becker S,, Zweckstetter M . 2004. Structure and DNA-binding properties of the cytolysin regulator CylR2 from Enterococcus faecalis . EMBO J 23 : 36323642.[PubMed] [CrossRef]
168. Rumpel S,, Becker S,, Zweckstetter M . 2008. High-resolution structure determination of the CylR2 homodimer using paramagnetic relaxation enhancement and structure-based prediction of molecular alignment. J Biomol NMR 40 : 113.[PubMed] [CrossRef]
169. Patton GC,, van der Donk WA . 2005. New developments in lantibiotic biosynthesis and mode of action. Curr Opin Microbiol 8 : 543551.[PubMed] [CrossRef]
170. Banerjee S,, Hansen JN . 1988. Structure and expression of a gene encoding the precursor of subtilin, a small protein antibiotic. J Biol Chem 263 : 95089514.[PubMed]
171. Schnell N,, Entian KD,, Schneider U,, Gotz F,, Zahner H,, Kellner R,, Jung G . 1988. Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide-rings. Nature 333 : 276278.[PubMed] [CrossRef]
172. Kaletta C,, Entian KD . 1989. Nisin, a peptide antibiotic: cloning and sequencing of the nisA gene and posttranslational processing of its peptide product. J Bacteriol 171 : 15971601.[PubMed]
173. Willey JM,, van der Donk WA . 2007. Lantibiotics: peptides of diverse structure and function. Annu Rev Microbiol 61 : 477501.[PubMed] [CrossRef]
174. Stark J . 1960. Antibiotic activity of haemolytic enterococci. Lancet i : 733734.[PubMed] [CrossRef]
175. Brock T,, Peacher B,, Pierson D . 1963. Survey of the bacteriocines of enterococci. J Bacteriol 86 : 702707.[PubMed]
176. Stevens SX,, Jensen HG,, Jett BD,, Gilmore MS . 1992. A hemolysin-encoding plasmid contributes to bacterial virulence in experimental Enterococcus faecalis endophthalmitis. Invest Ophthalmol Vis Sci 33 : 16501656.[PubMed]
177. Jett BD,, Jensen HG,, Nordquist RE,, Gilmore MS . 1992. Contribution of the pAD1-encoded cytolysin to the severity of experimental Enterococcus faecalis endophthalmitis. Infect Immun 60 : 24452452.[PubMed]
178. Huycke MM,, Joyce WA,, Gilmore MS . 1995. Enterococcus faecalis cytolysin without effect on the intestinal growth of susceptible enterococci in mice. J Infect Dis 172 : 273276.[PubMed] [CrossRef]
179. Wells CL,, Jechorek RP,, Erlandsen SL . 1990. Evidence for the translocation of Enterococcus faecalis across the mouse intestinal tract. J Infect Dis 162 : 8290.[PubMed] [CrossRef]
180. Gilmore MS,, Coburn PS,, Nallapareddy SR,, Murray BE, . 2002. Enterococcal virulence. In Gilmore MS (ed), The Enterococci. Pathogenesis, Molecular Biology, and Antimicrobial Resistance. American Society for Microbiology, Washington, D.C.
181. Yamshchikov AV,, Schuetz A,, Lyon GM . 2010. Rhodococcus equi infection. Lancet Infect Dis 10 : 350359.[PubMed] [CrossRef]
182. Tkachuk-Saad O,, Prescott J . 1991. Rhodococcus equi plasmids: isolation and partial characterization. J Clin Microbiol 29 : 26962700.[PubMed]
183. Takai S,, Imai Y,, Fukunaga N,, Uchida Y,, Kamisawa K,, Sasaki Y,, Tsubaki S,, Sekizaki T . 1995. Identification of virulence-associated antigens and plasmids in Rhodococcus equi from patients with AIDS. J Infect Dis 172 : 13061311.[PubMed] [CrossRef]
184. Giguere S,, Hondalus MK,, Yager JA,, Darrah P,, Mosser DM,, Prescott JF . 1999. Role of the 85-kilobase plasmid and plasmid-encoded virulence-associated protein A in intracellular survival and virulence of Rhodococcus equi . Infect Immun 67 : 35483557.[PubMed]
185. Takai S,, Sekizaki T,, Ozawa T,, Sugawara T,, Watanabe Y,, Tsubaki S . 1991. Association between a large plasmid and 15- to 17-kilodalton antigens in virulent Rhodococcus equi . Infect Immun 59 : 40564060.[PubMed]
186. Yager JA,, Prescott CA,, Kramar DP,, Hannah H,, Balson GA,, Croy BA . 1991. The effect of experimental infection with Rhodococcus equi on immunodeficient mice. Vet Microbiol 28 : 363376.[PubMed] [CrossRef]
187. Takai S,, Koike K,, Ohbushi S,, Izumi C,, Tsubaki S . 1991. Identification of 15- to 17-kilodalton antigens associated with virulent Rhodococcus equi . J Clin Microbiol 29 : 439443.[PubMed]
188. Takai S,, Watanabe Y,, Ikeda T,, Ozawa T,, Matsukura S,, Tamada Y,, Tsubaki S,, Sekizaki T . 1993. Virulence-associated plasmids in Rhodococcus equi . J Clin Microbiol 31 : 17261729.[PubMed]
189. Tan C,, Prescott JF,, Patterson MC,, Nicholson VM . 1995. Molecular characterization of a lipid-modified virulence-associated protein of Rhodococcus equi and its potential in protective immunity. Can J Vet Res 59 : 5159.[PubMed]
190. Takai S,, Anzai T,, Fujita Y,, Akita O,, Shoda M,, Tsubaki S,, Wada R . 2000. Pathogenicity of Rhodococcus equi expressing a virulence-associated 20 kDa protein (VapB) in foals. Vet Microbiol 76 : 7180.[PubMed] [CrossRef]
191. Jain S,, Bloom BR,, Hondalus MK . 2003. Deletion of vapA encoding Virulence Associated Protein A attenuates the intracellular actinomycete Rhodococcus equi . Mol Microbiol 50 : 115128.[PubMed] [CrossRef]
192. Takai S,, Iie M,, Watanabe Y,, Tsubaki S,, Sekizaki T . 1992. Virulence-associated 15- to 17-kilodalton antigens in Rhodococcus equi: temperature-dependent expression and location of the antigens. Infect Immun 60 : 29952997.[PubMed]
193. Takai S,, Fukunaga N,, Kamisawa K,, Imai Y,, Sasaki Y,, Tsubaki S . 1996. Expression of virulence-associated antigens of Rhodococcus equi is regulated by temperature and pH. Microbiol Immunol 40 : 591594.[PubMed] [CrossRef]
194. Dorman CJ,, Porter ME . 1998. The Shigella virulence gene regulatory cascade: a paradigm of bacterial gene control mechanisms. Mol Microbiol 29 : 677684.[PubMed] [CrossRef]
195. Lindler LE,, Plano GV,, Burland V,, Mayhew GF,, Blattner FR . 1998. Complete DNA sequence and detailed analysis of the Yersinia pestis KIM5 plasmid encoding murine toxin and capsular antigen. Infect Immun 66 : 57315742.[PubMed]
196. Perry RD,, Straley SC,, Fetherston JD,, Rose DJ,, Gregor J,, Blattner FR . 1998. DNA sequencing and analysis of the low-Ca2+-response plasmid pCD1 of Yersinia pestis KIM5. Infect Immun 66 : 46114623.[PubMed]
197. Byrne BA,, Prescott JF,, Palmer GH,, Takai S,, Nicholson VM,, Alperin DC,, Hines SA . 2001. Virulence plasmid of Rhodococcus equi contains inducible gene family encoding secreted proteins. Infect Immun 69 : 650656.[PubMed] [CrossRef]