1887

Chapter 3 : Mechanisms of Theta Plasmid Replication

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Mechanisms of Theta Plasmid Replication, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818982/9781555818975_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555818982/9781555818975_Chap03-2.gif

Abstract:

Plasmids have been used as convenient models for the study of molecular mechanisms of replication and DNA repair due to their small size, dispensability to the host, and easy manipulation. In addition, plasmids are key facilitators for the evolution and dissemination of drug resistance and for the evolution of complex interactions with animal or plant hosts. Understanding plasmid replication and maintenance therefore has significant practical implications for the clinic and for bioremediation.

Citation: Lilly J, Camps M. 2015. Mechanisms of Theta Plasmid Replication, p 45-69. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0029-2014
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Model of plasmid replication by the strand-displacement mechanism. (I) Parental DNA duplex (solid black lines) depicting the two single-stranded replication initiation sites, (light gray box) and (dark gray box). Vertical lines show hybridization between DNA strands. (II) The DNA duplex is melted through binding of RepC (possibly in concert with the RepA helicase), allowing the two sites to form hairpins (ball and stick). (III) The base of the hairpin is recognized by RepB′, which initiates the synthesis of an RNA primer (light gray dashed line). Extension of the free 3′-OH of the primer by Pol III (assisted by the RepA helicase) is shown as dashed black arrows. Two D-loops are formed, one for each direction of synthesis, as parental strands are displaced and dissociate from each other, leaving ssDNA intermediates. This is shown as areas where one of the strands has no hydrogen bonding. (IV) Synthesis continues in both directions, extending the area of D-loop formation. (V) Elongation is completed and termination of replication occurs on both strands at the sites in which replication began. At this point, the sites on the newly synthesized daughter strands are restored. (VI) Segregation: the two daughter strands are ligated, resulting in two DNA duplexes, each containing a parental strand (solid black line) and daughter strand (dashed black line).

Citation: Lilly J, Camps M. 2015. Mechanisms of Theta Plasmid Replication, p 45-69. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0029-2014
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818982.chap3
1. Giraldo R,, Fernandez-Tresguerres ME . 2004. Twenty years of the pPS10 replicon: insights on the molecular mechanism for the activation of DNA replication in iteron-containing bacterial plasmids. Plasmid 52 : 69 83.[PubMed] [CrossRef]
2. Kittleson JT,, Cheung S,, Anderson JC . 2011. Rapid optimization of gene dosage in E. coli using DIAL strains. J Biol Eng 5 : 10. [PubMed] [CrossRef]
3. Gregg AV,, McGlynn P,, Jaktaji RP,, Lloyd RG . 2002. Direct rescue of stalled DNA replication forks via the combined action of PriA and RecG helicase activities. Mol Cell 9 : 241 251.[PubMed] [CrossRef]
4. Kogoma T . 1997. Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol Mol Biol Rev 61 : 212 238.[PubMed]
5. Sandler SJ,, Marians KJ . 2000. Role of PriA in replication fork reactivation in Escherichia coli . J Bacteriol 182 : 9 13.[PubMed] [CrossRef]
6. Masai H,, Arai K . 1996. DnaA- and PriA-dependent primosomes: two distinct replication complexes for replication of Escherichia coli chromosome. Front Biosci 1 : d48 d58.[PubMed]
7. Wu CA,, Zechner EL,, Marians KJ . 1992. Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. I. Multiple effectors act to modulate Okazaki fragment size. J Biol Chem 267 : 4030 4044.[PubMed]
8. Johnson A,, O’Donnell M . 2005. Cellular DNA replicases: components and dynamics at the replication fork. Annu Rev Biochem 74 : 283 315.[PubMed] [CrossRef]
9. McHenry CS . 2011. DNA replicases from a bacterial perspective. Annu Rev Biochem 80 : 403 436.[PubMed] [CrossRef]
10. Tanner NA,, Hamdan SM,, Jergic S,, Loscha KV,, Schaeffer PM,, Dixon NE,, van Oijen AM . 2008. Single-molecule studies of fork dynamics in Escherichia coli DNA replication. Nat Struct Mol Biol 15 : 998. [PubMed] [CrossRef]
11. Lenhart JS,, Schroeder JW,, Walsh BW,, Simmons LA . 2012. DNA repair and genome maintenance in Bacillus subtilis . Microbiol Mol Biol Rev 76 : 530 564.[PubMed] [CrossRef]
12. Rannou O,, Le Chatelier E,, Larson MA,, Nouri H,, Dalmais B,, Laughton C,, Janniere L,, Soultanas P . 2013. Functional interplay of DnaE polymerase, DnaG primase and DnaC helicase within a ternary complex, and primase to polymerase hand-off during lagging strand DNA replication in Bacillus subtilis . Nucleic Acids Res 41 : 5303 5320.[PubMed] [CrossRef]
13. Allen JM,, Simcha DM,, Ericson NG,, Alexander DL,, Marquette JT,, Van Biber BP,, Troll CJ,, Karchin R,, Bielas JH,, Loeb LA,, Camps M . 2011. Roles of DNA polymerase I in leading and lagging-strand replication defined by a high-resolution mutation footprint of ColE1 plasmid replication. Nucleic Acids Res 39 : 7020 7033.[PubMed] [CrossRef]
14. Patel PH,, Suzuki M,, Adman E,, Shinkai A,, Loeb LA . 2001. Prokaryotic DNA polymerase I: evolution, structure, and “base flipping” mechanism for nucleotide selection. J Mol Biol 308 : 823 837.[PubMed] [CrossRef]
15. Maki H,, Bryan SK,, Horiuchi T,, Moses RE . 1989. Suppression of dnaE nonsense mutations by pcbA1. J Bacteriol 171 : 3139 3143.[PubMed]
16. Troll C,, Yoder J,, Alexander D,, Hernandez J,, Loh Y,, Camps M . 2014. The mutagenic footprint of low-fidelity Pol I ColE1 plasmid replication in E. coli reveals an extensive interplay between Pol I and Pol III. Curr Genet 60 : 123 134.[PubMed] [CrossRef]
17. Mukhopadhyay G,, Chattoraj DK . 1993. Conformation of the origin of P1 plasmid replication. Initiator protein induced wrapping and intrinsic unstacking. J Mol Biol 231 : 19 28.[PubMed] [CrossRef]
18. Urh M,, Wu J,, Wu J,, Forest K,, Inman RB,, Filutowicz M . 1998. Assemblies of replication initiator protein on symmetric and asymmetric DNA sequences depend on multiple protein oligomerization surfaces. J Mol Biol 283 : 619 631.[PubMed] [CrossRef]
19. Filutowicz M,, Dellis S,, Levchenko I,, Urh M,, Wu F,, York D . 1994. Regulation of replication of an iteron-containing DNA molecule. Prog Nucleic Acid Res Mol Biol 48 : 239 273.[PubMed] [CrossRef]
20. Stenzel TT,, MacAllister T,, Bastia D . 1991. Cooperativity at a distance promoted by the combined action of two replication initiator proteins and a DNA bending protein at the replication origin of pSC101. Genes Dev 5 : 1453 1463.[PubMed] [CrossRef]
21. Park K,, Chattoraj DK . 2001. DnaA boxes in the P1 plasmid origin: the effect of their position on the directionality of replication and plasmid copy number. J Mol Biol 310 : 69 81.[PubMed] [CrossRef]
22. Doran KS,, Helinski DR,, Konieczny I . 1999. Host-dependent requirement for specific DnaA boxes for plasmid RK2 replication. Mol Microbiol 33 : 490 498.[PubMed] [CrossRef]
23. del Solar G,, Giraldo R,, Ruiz-Echevarria MJ,, Espinosa M,, Diaz-Orejas R . 1998. Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev 62 : 434 464.[PubMed]
24. Rakowski SA,, Filutowicz M . 2013. Plasmid R6K replication control. Plasmid 69 : 231 242.[PubMed] [CrossRef]
25. Wu YC,, Liu ST . 2010. A sequence that affects the copy number and stability of pSW200 and ColE1. J Bacteriol 192 : 3654 3660.[PubMed] [CrossRef]
26. Masukata H,, Tomizawa J . 1986. Control of primer formation for ColE1 plasmid replication: conformational change of the primer transcript. Cell 44 : 125 136.[PubMed] [CrossRef]
27. Camps M . 2010. Modulation of ColE1-like plasmid replication for recombinant gene expression. Recent Pat DNA Gene Seq 4 : 58 73.[PubMed] [CrossRef]
28. Cesareni G,, Helmer-Citterich M,, Castagnoli L . 1991. Control of ColE1 plasmid replication by antisense RNA. Trends Genet 7 : 230 235.[PubMed] [CrossRef]
29. Wang Z,, Yuan Z,, Hengge UR . 2004. Processing of plasmid DNA with ColE1-like replication origin. Plasmid 51 : 149 161.[PubMed] [CrossRef]
30. Lee EH,, Kornberg A . 1991. Replication deficiencies in priA mutants of Escherichia coli lacking the primosomal replication n’ protein. Proc Natl Acad Sci USA 88 : 3029 3032.[CrossRef]
31. Sandler SJ,, Samra HS,, Clark AJ . 1996. Differential suppression of priA2::kan phenotypes in Escherichia coli K-12 by mutations in priA, lexA, and dnaC. Genetics 143 : 5 13.[PubMed]
32. Jaktaji RP,, Lloyd RG . 2003. PriA supports two distinct pathways for replication restart in UV-irradiated Escherichia coli cells. Mol Microbiol 47 : 1091 1100.[PubMed] [CrossRef]
33. Nakasu S,, Tomizawa J . 1992. Structure of the ColE1 DNA molecule before segregation to daughter molecules. Proc Natl Acad Sci USA 89 : 10139 10143.[PubMed] [CrossRef]
34. Drolet M . 2006. Growth inhibition mediated by excess negative supercoiling: the interplay between transcription elongation, R-loop formation and DNA topology. Mol Microbiol 59 : 723 730.[PubMed] [CrossRef]
35. Drolet M,, Broccoli S,, Rallu F,, Hraiky C,, Fortin C,, Masse E,, Baaklini I . 2003. The problem of hypernegative supercoiling and R-loop formation in transcription. Front Biosci 8 : d210 d221. [PubMed] [CrossRef]
36. Gowrishankar J,, Harinarayanan R . 2004. Why is transcription coupled to translation in bacteria? Mol Microbiol 54 : 598 603.[PubMed] [CrossRef]
37. Fukuoh A,, Iwasaki H,, Ishioka K,, Shinagawa H . 1997. ATP-dependent resolution of R-loops at the ColE1 replication origin by Escherichia coli RecG protein, a Holliday junction-specific helicase. EMBO J 16 : 203 209.[PubMed] [CrossRef]
38. del Solar G,, Alonso JC,, Espinosa M,, Diaz-Orejas R . 1996. Broad-host-range plasmid replication: an open question. Mol Microbiol 21 : 661 666.[PubMed] [CrossRef]
39. Yasueda H,, Horii T,, Itoh T . 1989. Structural and functional organization of ColE2 and ColE3 replicons. Mol Gen Genet 215 : 209 216.[PubMed] [CrossRef]
40. Aoki K,, Shinohara M,, Itoh T . 2007. Distinct functions of the two specificity determinants in replication initiation of plasmids ColE2-P9 and ColE3-CA38. J Bacteriol 189 : 2392 2400.[PubMed] [CrossRef]
41. Takechi S,, Matsui H,, Itoh T . 1995. Primer RNA synthesis by plasmid-specified Rep protein for initiation of ColE2 DNA replication. EMBO J 14 : 5141 5147.[PubMed]
42. Takechi S,, Itoh T . 1995. Initiation of unidirectional ColE2 DNA replication by a unique priming mechanism. Nucleic Acids Res 23 : 4196 4201.[PubMed] [CrossRef]
43. Bruand C,, Ehrlich SD . 1998. Transcription-driven DNA replication of plasmid pAMbeta1 in Bacillus subtilis . Mol Microbiol 30 : 135 145.[PubMed] [CrossRef]
44. Le Chatelier E,, Janniere L,, Ehrlich SD,, Canceill D . 2001. The RepE initiator is a double-stranded and single-stranded DNA-binding protein that forms an atypical open complex at the onset of replication of plasmid pAMbeta 1 from Gram-positive bacteria. J Biol Chem 276 : 10234 10246.[PubMed] [CrossRef]
45. Brantl S . 2014. Antisense-RNA mediated control of plasmid replication: pIP501 revisited. Plasmid. [Epub ahead of print.] doi:10.1016/j.plasmid.2014.07.004. [CrossRef]
46. Bidnenko V,, Ehrlich SD,, Janniere L . 1998. In vivo relations between pAMbeta1-encoded type I topoisomerase and plasmid replication. Mol Microbiol 28 : 1005 1016.[PubMed] [CrossRef]
47. Janniere L,, Bidnenko V,, McGovern S,, Ehrlich SD,, Petit MA . 1997. Replication terminus for DNA polymerase I during initiation of pAM beta 1 replication: role of the plasmid-encoded resolution system. Mol Microbiol 23 : 525 535.[PubMed] [CrossRef]
48. Sakai H,, Komano T . 1996. DNA replication of IncQ broad-host-range plasmids in Gram-negative bacteria. Biosci Biotechnol Biochem 60 : 377 382.[PubMed] [CrossRef]
49. Loftie-Eaton W,, Rawlings DE . 2012. Diversity, biology and evolution of IncQ-family plasmids. Plasmid 67 : 15 34.[PubMed] [CrossRef]
50. Honda Y,, Akioka T,, Takebe S,, Tanaka K,, Miao D,, Higashi A,, Nakamura T,, Taguchi Y,, Sakai H,, Komano T . 1993. Mutational analysis of the specific priming signal essential for DNA replication of the broad host-range plasmid RSF1010. FEBS Lett 324 : 67 70.[PubMed] [CrossRef]
51. Miao DM,, Honda Y,, Tanaka K,, Higashi A,, Nakamura T,, Taguchi Y,, Sakai H,, Komano T,, Bagdasarian M . 1993. A base-paired hairpin structure essential for the functional priming signal for DNA replication of the broad host range plasmid RSF1010. Nucleic Acids Res 21 : 4900 4903.[PubMed] [CrossRef]
52. Rawlings DE,, Tietze E . 2001. Comparative biology of IncQ and IncQ-like plasmids. Microbiol Mol Biol Rev 65 : 481 496.[PubMed] [CrossRef]
53. Tanaka K,, Kino K,, Taguchi Y,, Miao DM,, Honda Y,, Sakai H,, Komano T,, Bagdasarian M . 1994. Functional difference between the two oppositely oriented priming signals essential for the initiation of the broad host-range plasmid RSF1010 DNA replication. Nucleic Acids Res 22 : 767 772.[PubMed] [CrossRef]
54. Nordstrom K,, Wagner EG . 1994. Kinetic aspects of control of plasmid replication by antisense RNA. Trends Biochem Sci 19 : 294 300.[PubMed] [CrossRef]
55. del Solar G,, Espinosa M . 2000. Plasmid copy number control: an ever-growing story. Mol Microbiol 37 : 492 500.[PubMed] [CrossRef]
56. Wagner EG,, Altuvia S,, Romby P . 2002. Antisense RNAs in bacteria and their genetic elements. Adv Genet 46 : 361 398.[PubMed] [CrossRef]
57. Brantl S, . 2014. Plasmid replication control by antisense RNAs. In Tolmasky ME,, Alonso JC (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. In press.
58. Hjalt TA,, Wagner EG . 1995. Bulged-out nucleotides in an antisense RNA are required for rapid target RNA binding in vitro and inhibition in vivo . Nucleic Acids Res 23 : 580 587.[PubMed] [CrossRef]
59. Go H,, Lee K . 2011. A genetic system for RNase E variant-controlled overproduction of ColE1-type plasmid DNA. J Biotechnol 152 : 171 175.[PubMed] [CrossRef]
60. Nishio SY,, Itoh T . 2008. Replication initiator protein mRNA of ColE2 plasmid and its antisense regulator RNA are under the control of different degradation pathways. Plasmid 59 : 102 110.[PubMed] [CrossRef]
61. Xu FF,, Gaggero C,, Cohen SN . 2002. Polyadenylation can regulate ColE1 type plasmid copy number independently of any effect on RNAI decay by decreasing the interaction of antisense RNAI with its RNAII target. Plasmid 48 : 49 58.[PubMed] [CrossRef]
62. Nishio SY,, Itoh T . 2008. The effects of RNA degradation enzymes on antisense RNAI controlling ColE2 plasmid copy number. Plasmid 60 : 174 180.[PubMed] [CrossRef]
63. Binnie U,, Wong K,, McAteer S,, Masters M . 1999. Absence of RNASE III alters the pathway by which RNAI, the antisense inhibitor of ColE1 replication, decays. Microbiology 145( Pt 11) : 3089 3100.[PubMed]
64. Nishio SY,, Itoh T . 2009. Arginine-rich RNA binding domain and protein scaffold domain of RNase E are important for degradation of RNAI but not for that of the Rep mRNA of the ColE2 plasmid. Plasmid 62 : 83 87.[PubMed] [CrossRef]
65. Polisky B . 1988. ColE1 replication control circuitry: sense from antisense. Cell 55 : 929 932.[PubMed] [CrossRef]
66. Yavachev L,, Ivanov I . 1988. What does the homology between E. coli tRNAs and RNAs controlling ColE1 plasmid replication mean? J Theor Biol 131 : 235 241.[CrossRef]
67. Wang Z,, Yuan Z,, Xiang L,, Shao J,, Wegrzyn G . 2006. tRNA-dependent cleavage of the ColE1 plasmid-encoded RNA I. Microbiology 152 : 3467 3476.[PubMed] [CrossRef]
68. Wang Z,, Le G,, Shi Y,, Wegrzyn G,, Wrobel B . 2002. A model for regulation of ColE1-like plasmid replication by uncharged tRNAs in amino acid-starved Escherichia coli cells. Plasmid 47 : 69 78.[PubMed] [CrossRef]
69. Grabherr R,, Nilsson E,, Striedner G,, Bayer K . 2002. Stabilizing plasmid copy number to improve recombinant protein production. Biotechnol Bioeng 77 : 142 147.[PubMed] [CrossRef]
70. Hiraga S,, Sugiyama T,, Itoh T . 1994. Comparative analysis of the replicon regions of eleven ColE2-related plasmids. J Bacteriol 176 : 7233 7243.[PubMed]
71. Malmgren C,, Engdahl HM,, Romby P,, Wagner EG . 1996. An antisense/target RNA duplex or a strong intramolecular RNA structure 5′ of a translation initiation signal blocks ribosome binding: the case of plasmid R1. RNA 2 : 1022 1032.[PubMed]
72. Brantl S,, Birch-Hirschfeld E,, Behnke D . 1993. RepR protein expression on plasmid pIP501 is controlled by an antisense RNA-mediated transcription attenuation mechanism. J Bacteriol 175 : 4052 4061.[PubMed]
73. Giraldo R,, Fernandez-Tornero C,, Evans PR,, Diaz-Orejas R,, Romero A . 2003. A conformational switch between transcriptional repression and replication initiation in the RepA dimerization domain. Nat Struct Biol 10 : 565 571.[PubMed] [CrossRef]
74. DasGupta S,, Mukhopadhyay G,, Papp PP,, Lewis MS,, Chattoraj DK . 1993. Activation of DNA binding by the monomeric form of the P1 replication initiator RepA by heat shock proteins DnaJ and DnaK. J Mol Biol 232 : 23 34.[PubMed] [CrossRef]
75. Diaz-Lopez T,, Lages-Gonzalo M,, Serrano-Lopez A,, Alfonso C,, Rivas G,, Diaz-Orejas R,, Giraldo R . 2003. Structural changes in RepA, a plasmid replication initiator, upon binding to origin DNA. J Biol Chem 278 : 18606 18616.[PubMed] [CrossRef]
76. Kawasaki Y,, Wada C,, Yura T . 1990. Roles of Escherichia coli heat shock proteins DnaK, DnaJ and GrpE in mini-F plasmid replication. Mol Gen Genet 220 : 277 282.[PubMed] [CrossRef]
77. Wickner S,, Skowyra D,, Hoskins J,, McKenney K . 1992. DnaJ, DnaK, and GrpE heat shock proteins are required in oriP1 DNA replication solely at the RepA monomerization step. Proc Natl Acad Sci USA 89 : 10345 10349.[PubMed] [CrossRef]
78. Gasset-Rosa F,, Diaz-Lopez T,, Lurz R,, Prieto A,, Fernandez-Tresguerres ME,, Giraldo R . 2008. Negative regulation of pPS10 plasmid replication: origin pairing by zipping-up DNA-bound RepA monomers. Mol Microbiol 68 : 560 572.[PubMed] [CrossRef]
79. Park K,, Han E,, Paulsson J,, Chattoraj DK . 2001. Origin pairing (‘handcuffing’) as a mode of negative control of P1 plasmid copy number. EMBO J 20 : 7323 7332.[PubMed] [CrossRef]
80. Zzaman S,, Bastia D . 2005. Oligomeric initiator protein-mediated DNA looping negatively regulates plasmid replication in vitro by preventing origin melting. Mol Cell 20 : 833 843.[PubMed] [CrossRef]
81. Das N,, Valjavec-Gratian M,, Basuray AN,, Fekete RA,, Papp PP,, Paulsson J,, Chattoraj DK . 2005. Multiple homeostatic mechanisms in the control of P1 plasmid replication. Proc Natl Acad Sci USA 102 : 2856 2861.[PubMed] [CrossRef]

Tables

Generic image for table
TABLE 1

Comparison of the three basic modes of plasmid replication initiation in circular plasmids

Citation: Lilly J, Camps M. 2015. Mechanisms of Theta Plasmid Replication, p 45-69. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0029-2014

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error