1887

Chapter 5 : Replication and Maintenance of Linear Phage-Plasmid N15

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Replication and Maintenance of Linear Phage-Plasmid N15, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818982/9781555818975_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555818982/9781555818975_Chap05-2.gif

Abstract:

All cells with linear chromosomes must employ special mechanisms to replicate the extreme termini of their chromosomes, since DNA polymerases alone are unable to perform this function ( ). Most eukaryotes have open-ended DNA and employ special “telomerase” enzymes for this purpose, but there are other solutions that ensure complete replication of linear DNA: protein priming, recombination, and covalently closed terminal hairpins (reviewed in reference ). Prokaryotes usually posses circular plasmids and chromosomes, but examples of linear replicons are known. Bacteriophage N15 belongs to the small group of organisms known to replicate as linear DNA with covalently closed telomeres. Besides N15 and related phage-plasmids, only a few examples of such replicons from bacteria are known, including the linear plasmids and chromosomes common in the spirochete genus ( ) and one of the two chromosomes of ( ). In this review I will summarize the most relevant work on N15 and related phages, with a special emphasis on the mechanism of replication, generation of hairpin telomeres, control of lysogeny, and plasmid prophage maintenance.

Citation: Ravin N. 2015. Replication and Maintenance of Linear Phage-Plasmid N15, p 71-82. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0032-2014
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

(A) Mechanism of conversion of phage DNA into linear plasmid. , , single stranded cohesive ends; , site after annealing and ligation of cohesive ends; , uncut target site of protelomerase; and , left and right hairpin ends of the prophage created by protelomerase. (B) Hairpin formation reaction by the protelomerase. The positions of the cleavage sites are marked by a filled triangle. Catalytically active tyrosine is shown by a hexagon; the direction of refolding of single-stranded ends is shown by a dotted arrow. The protelomerase is shown by a gray oval.

Citation: Ravin N. 2015. Replication and Maintenance of Linear Phage-Plasmid N15, p 71-82. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0032-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

(A) Map of N15 plasmid prophage. The N15 linear prophage is shown with a scale in kilobase pairs. Rectangles immediately above and below the scale represent predicted genes that are transcribed rightward and leftward, respectively; their colors indicate functional assignments in the following way: genes encoding terminase and virion proteins (yellow), genes responsible for plasmid maintenance (green), genes responsible for the control of lysogeny (red), other genes with predicted functions (gray), and genes with unknown functions (white). The N15 gene names are given within or near the rectangles, and alternate descriptive names are indicated above or below. Asterisks (*) mark the position of the centromere sites involved in plasmid partition. , replication initiation site. (B) Mosaic relationship between the whole genomes of phages λ, N15, ɸKO2, and PY54. Shaded areas between the genomes indicate the main regions of homology. The end of each phage’s circularly permuted virion genome (cosRL) is marked by a black vertical line.

Citation: Ravin N. 2015. Replication and Maintenance of Linear Phage-Plasmid N15, p 71-82. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0032-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Three lysogeny control regions. Protein-encoding genes are shown by gray boxes; , which encodes an RNA, by an open box across the main line. Bent arrows indicate promoters (P). The positions of transcription terminators (T) are shown by solid triangles. CB binding sites () are shown by black rectangles; the LexA binding site at P471, by a black circle. Genes and sites shown above (below) the main line apply to transcription from left to right (right to left).

Citation: Ravin N. 2015. Replication and Maintenance of Linear Phage-Plasmid N15, p 71-82. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0032-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Model of the N15 plasmid prophage and lytic replication. A indicates replication of the N15 plasmid prophage. B shows lytic replication initiated in the lysogen. Note that the circular head-to-head dimer is supposed to be processed by protelomerase into two circular monomers (only one is shown). The known or suggested participation of the N15 proteins TelN and RepA at the individual steps is shown.

Citation: Ravin N. 2015. Replication and Maintenance of Linear Phage-Plasmid N15, p 71-82. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0032-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

The maximum likelihood trees were calculated from the multiple sequence alignments of (A) RepA or (B) TelN proteins. The numbers above the nodes indicate bootstrap support values. The trees are drawn to scale, with branch lengths measured by the number of substitutions per site.

Citation: Ravin N. 2015. Replication and Maintenance of Linear Phage-Plasmid N15, p 71-82. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0032-2014
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818982.chap5
1. Watson J . 1972. Origin of concatemeric T7 DNA. Nat New Biol 239 : 197 201.[PubMed] [CrossRef]
2. Casjens S . 1999. Evolution of the linear DNA replicons of the Borrelia spirochetes. Curr Opin Microbiol 2 : 529 534.[PubMed] [CrossRef]
3. Barbour AG,, Garon CF . 1987. Linear plasmids of the Borrelia burgdorferi have covalently closed ends. Science 237 : 409 411.[PubMed] [CrossRef]
4. Casjens S,, Murphy M,, DeLange M,, Sampson L,, van Vugt R,, Huang WM . 1997. Telomeres of the linear chromosomes of Lyme disease spirochaetes: nucleotide sequence and possible exchange with linear plasmid telomeres. Mol Microbiol 26 : 581 596.[PubMed] [CrossRef]
5. Tourand Y,, Deneke J,, Moriarty TJ,, Chaconas G . 2009. Characterization and in vitro reaction properties of 19 unique hairpin telomeres from the linear plasmids of the Lyme disease spirochete. J Biol Chem 284 : 7264 7272.[PubMed] [CrossRef]
6. Allardet-Servent AS,, Michaux-Charachon E,, Jumas-Bilak L,, Karayan,, Ramuz M . 1993. Presence of one linear and one circular chromosome in the Agrobacterium tumefaciens C58 genome. J Bacteriol 175 : 7869 7874.[PubMed]
7. Goodner B,, Hinkle G,, Gattung S,, Miller N,, Blanchard M,, Qurollo B,, Goldman B,, Cao Y,, Askenazi M,, Halling C,, Mullin L,, Houmiel K,, Gordon J,, Vaudin M,, Iartchouk O,, Epp A,, Liu F,, Wollam C,, Allinger M,, Doughty D,, Scott C,, Lappas C,, Markelz B,, Flanagan C,, Crowell C,, Gurson J,, Lomo C,, Sear C,, Strub G,, Cielo C,, Slater S . 2001. Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294 : 2323 2328.[PubMed] [CrossRef]
8. Golub EI,, Ravin VK . 1967. New system of phage mediated conversion. Dokl Acad Nauk USSR 174 : 465 467.[PubMed]
9. Ravin VK,, Shulga MG . 1970. The evidence of extrachromosomal location of prophage N15. Virology 40 : 800 807.[CrossRef]
10. Ravin VK . 1971. Lysogeny, p. 106. Nauka Press, Moscow.
11. Ravin VK . 1968. The functioning of the genes of temperate bacteriophage in lysogenic cells. Genetika 4 : 119 124.
12. Rybchin VN,, Svarchevsky AN . 1999. The plasmid prophage N15, a linear DNA with covalently closed ends. Mol Microbiol 33 : 895 903.[PubMed] [CrossRef]
13. Svarchevsky AN,, Rybchin VN . 1984. Physical mapping of plasmid N15 DNA. Mol Gen Mikrobiol Virusol 10 : 16 22.
14. Malinin AY,, Vostrov AA,, Rybchin VN,, Svarchevsky AN . 1992. Structure of the linear plasmid N15 ends. Mol Gen Mikrobiol Virusol 5–6 : 19 22.[PubMed]
15. Stoppel RD,, Meyer M,, Schlegel HG . 1995. The nickel resistance determinant cloned from the enterobacterium Klebsiella oxytoca: conjugational transfer, expression, regulation and DNA homologies to various nickel-resistant bacteria. Biometals 8 : 70 79.[PubMed] [CrossRef]
16. Hertwig S,, Klein I,, Lurz R,, Lanka E,, Appel B . 2003. PY54, a linear plasmid prophage of Yersinia enterocolitica with covalently closed ends. Mol Microbiol 48 : 989 1003.[PubMed] [CrossRef]
17. Lan SF,, Huang CH,, Chang CH,, Liao WC,, Lin IH,, Jian WN,, Wu YG,, Chen SY,, Wong HC . 2009. Characterization of a new plasmid-like prophage in a pandemic Vibrio parahaemolyticus O3:K6 strain. Appl Environ Mirobiol 75 : 2659 2667.[PubMed] [CrossRef]
18. Zabala B,, Hammerl JA,, Espejo RT,, Hertwig S . 2009. The linear plasmid prophage Vp58.5 of Vibrio parahaemolyticus is closely related to the integrating phage VHML and constitutes a new incompatibility group of telomere phages. J Virol 83 : 9313 9320.[PubMed] [CrossRef]
19. Villa A,, Kropinski AM,, Abbasifar R,, Griffiths MW . 2012. Complete genome sequence of Vibrio parahaemolyticus bacteriophage vB_VpaM_MAR. J Virol 86 : 13138 13139.[PubMed] [CrossRef]
20. Mobberley JM,, Authement RN,, Segall AM,, Paul JH . 2008. The temperate marine phage PhiHAP-1 of Halomonas aquamarina possesses a linear plasmid-like prophage genome. J Virol 82 : 6618 6630.[PubMed] [CrossRef]
21. Oakey HJ,, Cullen BR,, Owens L . 2002. The complete nucleotide sequence of the Vibrio harveyi bacteriophage VHML. J Appl Microbiol 93 : 1089 1098.[PubMed] [CrossRef]
22. Lima-Mendez G,, Van Helden J,, Toussaint A,, Leplae R . 2008. Reticulate representation of evolutionary and functional relationships between phage genomes. Mol Biol Evol 25 : 762 777.[PubMed] [CrossRef]
23. Ravin V,, Ravin N,, Casjens S,, Ford M,, Hatfull G,, Hendrix R . 2000. Genomic sequence and analysis of the atypical bacteriophage N15. J Mol Biol 299 : 53 73.[PubMed] [CrossRef]
24. Vostrov A,, Vostrukhina O,, Svarchevsky A,, Rybchin V . 1996. Proteins responsible for lysogenic conversion caused by coliphages N15 and phi80 are highly homologous. J Bacteriol 178 : 1484 1486.[PubMed]
25. Ravin V,, Golub E . 1967. A study of phage conversion in Escherichia coli. I. The aquisition of resistance to bacteriophage T1 as a result of lysogenization. Genetika 4 : 113 121.
26. Casjens SR,, Gilcrease EB,, Huang WM,, Bunny KL,, Pedulla ML,, Ford ME,, Hourtz JM,, Hatfull GF,, Hendrix RW . 2004. The pKO2 linear plasmid prophage of Klebsiella oxytoca . J Bacteriol 186 : 1818 1832.[PubMed] [CrossRef]
27. Hertwig S,, Klein I,, Schmidt V,, Beck S,, Hammerl JA,, Appel B . 2003. Sequence analysis of the genome of the temperate Yersinia enterocolitica phage PY54. J Mol Biol 331 : 605 622.[CrossRef]
28. Lobocka M,, Svarchevsky AN,, Rybchin VN,, Yarmolinsky M . 1996. Characterization of the primary immunity region of the Escherichia coli linear plasmid prophage N15. J Bacteriol 178 : 2902 2910.[PubMed]
29. Ravin NV,, Ravin VK . 1994. An ultrahigh-copy plasmid based on the mini-replicone of the temperate phage N15. Mol Gen Mikrobiol Virusol 1 : 37 39.[PubMed]
30. Heinrich J,, Riedel HD,, Ruckert B,, Lurz R,, Schuster H . 1995. The lytic replicon of bacteriophage P1 is controlled by an antisense RNA. Nucleic Acids Res 23 : 1468 1474.[PubMed] [CrossRef]
31. Ravin NV,, Svarchevsky AN,, Deho G . 1999. The antiimunity system of phage-plasmid N15: identification of the antirepressor gene and its control by a small processed RNA. Mol Microbiol 34 : 980 994.[PubMed] [CrossRef]
32. Citron M,, Schuster H . 1992. The c4 repressor of bacteriophage P1 is a processed 77 base antisense RNA. Nucleic Acids Res 20 : 3085 3090.[PubMed] [CrossRef]
33. Deho G,, Zangrossi S,, Sabbattini P,, Sironi G,, Ghisotti D . 1992. Bacteriophage P4 immunity controlled by small RNAs via transcription termination. Mol Microbiol 6 : 3415 3425.[PubMed] [CrossRef]
34. Mardanov AV,, Ravin NV . 2007. Antirepressor needed for induction of linear plasmid-prophage N15 belongs to the SOS regulon. J Bacteriol 189 : 6333 6338.[PubMed] [CrossRef]
35. Svarchevsky AN,, Rybchin VN . 1984. Characteristics of plasmid properties of bacteriophage N15. Mol Gen Mikrobiol Virusol 10 : 34 39.
36. Hiraga S . 1992. Chromosome and plasmid partition in Escherichia coli . Annu Rev Biochem 61 : 283 306.[PubMed] [CrossRef]
37. Gerdes K,, Jacobsen JS,, Franch T . 1997. Plasmid stabilization by post-segregational killing. Genet Eng 19 : 49 61.[PubMed] [CrossRef]
38. Dziewit L,, Jazurek M,, Drewniak L,, Baj J,, Bartosik D . 2007. The SXT conjugative element and linear prophage N15 encode toxin-antitoxin-stabilizing systems homologous to the tad-ata module of the Paracoccus aminophilus plasmid pAMI2. J Bacteriol 189 : 1983 1997.[PubMed] [CrossRef]
39. Sankova TP,, Svarchevsky AN,, Rybchin VN . 1992. Isolation, characterization and mapping of N15 plasmid insertion mutants. Genetika 28 : 66 76.[PubMed]
40. Ravin N,, Lane D . 1999. Partition of the linear plasmid, N15: functional interactions with the sop locus of the F plasmid. J Bacteriol 181 : 6898 6906.[PubMed]
41. Grigoriev PS,, Lobocka MB . 2001. Determinants of segregational stability of the linear plasmid-prophage N15 of Escherichia coli . Mol Microbiol 42 : 355 368.[CrossRef]
42. Ravin NV,, Rech J,, Lane D . 2003. Mapping of functional domains in F plasmid partition proteins reveals a bipartite SopB-recognition domain in SopA. J Mol Biol 329 : 875 889.[PubMed] [CrossRef]
43. Dorokhov BD,, Lane D,, Ravin NV . 2003. Partition operon expression in the linear plasmid prophage N15 is controlled by both Sop proteins and protelomerase. Mol Microbiol 50 : 713 721.[PubMed] [CrossRef]
44. Dorokhov B,, Ravin N,, Lane D . 2010. On the role of centromere dispersion in stability of linear bacterial plasmids. Plasmid 64 : 51 59.[PubMed] [CrossRef]
45. Mardanov AV,, Lane D,, Ravin NV . 2010. Sop proteins can cause transcriptional silencing of genes located close to the centromere sites of linear plasmid N15. Mol Biol (Mosk) 44( 2) : 294 300(InRussian).[PubMed]
46. Lynch AS,, Wang JC . 1995. SopB protein-mediated silencing of genes linked to the sopC locus of Escherichia coli F plasmid. Proc Natl Acad Sci USA 92 : 1896 1900.[PubMed] [CrossRef]
47. Ravin NV,, Rech J,, Lane D . 2008. Extended function of plasmid partition genes: Sop system of linear phage-plasmid N15 facilitates late gene expression. J Bacteriol 190 : 3538 3545.[PubMed] [CrossRef]
48. Kobryn K,, Chaconas G . 2002. ResT, a telomere resolvase encoded by the Lyme disease spirochete. Mol Cell 9 : 195 201.[PubMed] [CrossRef]
49. Chaconas G,, Kobryn K . 2010. Structure, function, and evolution of linear replicons in Borrelia . Annu Rev Microbiol 64 : 185 202.[PubMed] [CrossRef]
50. Huang WM,, DaGloria J,, Fox H,, Ruan Q,, Tillou J,, Shi K,, Aihara H,, Aron J,, Casjens S . 2012. Linear chromosome generating system of Agrobacterium tumefaciens C58: protelomerase generates and protects hairpin ends. J Biol Chem 287 : 25551 25563.[PubMed] [CrossRef]
51. Deneke J,, Ziegelin G,, Lurz R,, Lanka E . 2000. The protelomerase of temperate Escherichia coli phage N15 has cleaving-joining activity. Proc Natl Acad Sci USA 97 : 7721 7726.[PubMed] [CrossRef]
52. Deneke J,, Ziegelin G,, Lurz R,, Lanka E . 2002. Phage N15 telomere resolution: target requirements for recognition and processing by the protelomerase. J Biol Chem 277 : 10410 10419.[PubMed] [CrossRef]
53. Huang WM,, Joss L,, Hsieh T,, Casjens S . 2004. Protelomerase uses a topoisomerase IB/Y-recombinase type mechanism to generate DNA hairpin ends. J Mol Biol 337 : 77 92.[PubMed] [CrossRef]
54. Aihara H,, Huang WM,, Ellenberger T . 2007. An interlocked dimer of the protelomerase TelK distorts DNA structure for the formation of hairpin telomeres. Mol Cell 27 : 901 913.[PubMed] [CrossRef]
55. Shi K,, Huang WM,, Aihara H . 2013. An enzyme-catalyzed multistep DNA refolding mechanism in hairpin telomere formation. PLoS Biol 11 : e1001472. doi:10.1317/journal.pbio.1001472. [PubMed]
56. Ravin NV,, Strakhova TS,, Kuprianov VV . 2001. The protelomerase of the phage-plasmid N15 is responsible for its maintenance in linear form. J Mol Biol 312 : 899 906.[PubMed] [CrossRef]
57. Cui T,, Moro-oka N,, Ohsumi K,, Kodama K,, Ohshima T,, Ogasawara N,, Mori H,, Wanner B,, Niki H,, Horiuchi T . 2007. Escherichia coli with a linear genome. EMBO Rep. 8 : 181 187.[PubMed] [CrossRef]
58. Ooi YS,, Warburton PE,, Ravin NV,, Narayanan K . 2008. Recombineering linear DNA that replicate stably in E. coli . Plasmid 59 : 63 71.[PubMed] [CrossRef]
59. Dorokhov BD,, Strakhova TS,, Ravin NV . 2004. Expression regulation of the protelomerase gene of the bacteriophage N15. Mol Gen Mikrobiol Virusol 2 : 28 32.[PubMed]
60. Ravin NV,, Ravin VK . 1999. Use of a linear multicopy vector based on the mini-replicon of temperate coliphage N15 for cloning DNA with abnormal secondary structures. Nucleic Acids Res 27 : e13. [PubMed] [CrossRef]
61. Ravin NV,, Kuprianov VV,, Gilcrease EB,, Casjens SR . 2003. Bidirectional replication from an internal ori site of the linear N15 plasmid prophage. Nucleic Acids Res 31 : 6552 6560.[PubMed] [CrossRef]
62. Mardanov AV,, Ravin NV . 2006. Functional characterization of the repA replication gene of linear plasmid prophage N15. Res Microbiol 157 : 176 183.[PubMed] [CrossRef]
63. Ziegelin G,, Scherzinger E,, Lurz R,, Lanka E . 1993. Phage P4 alpha protein is multifunctional with origin recognition, helicase and primase activities. EMBO J 12 : 3703 3708.[PubMed]
64. Ziegelin G,, Tegtmeyer N,, Lurz R,, Hertwig S,, Hammerl J,, Appel B,, Lanka E . 2005. The repA gene of the linear Yersinia enterocolitica prophage PY54 functions as a circular minimal replicon in Escherichia coli . J Bacteriol 187 : 3445 3454.[PubMed] [CrossRef]
65. Mardanov AV,, Ravin NV . 2009. Conversion of linear DNA with hairpin telomeres into a circular molecule in the course of phage N15 lytic replication. J Mol Biol 391 : 261 268.[PubMed] [CrossRef]
66. Kobryn K,, Chaconas G . 2005. Fusion of hairpin telomeres by the B. burgdorferi telomere resolvase ResT: implications for shaping a genome in flux. Mol Cell 17 : 783 791.[PubMed] [CrossRef]
67. Godiska R,, Mead D,, Dhodda V,, Wu C,, Hochstein R,, Karsi A,, Usdin K,, Entezam A,, Ravin N . 2010. Linear plasmid vector for cloning of repetitive or unstable sequences in Escherichia coli . Nucleic Acids Res 38( 6) : e88. [PubMed] [CrossRef]
68. Pfander C,, Anar B,, Schwach F,, Otto TD,, Brochet M,, Volkmann K,, Quail MA,, Pain A,, Rosen B,, Skarnes W,, Rayner JC,, Billker O . 2011 A scalable pipeline for highly effective genetic modification of a malaria parasite. Nat Methods 8 : 1078 1082.[PubMed] [CrossRef]
69. Mardanov AV,, Strakhova TS,, Smagin VA,, Ravin NV . 2007. Tightly regulated, high-level expression from controlled copy number vectors based on the replicon of temperate phage N15. Gene 395 : 15 21.[PubMed] [CrossRef]
70. Baxter JC,, Funnell BE, . 2015. Plasmid partition mechanisms, p 135 172. In Tomalsky M,, Alonso JC (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error